

Mary River Project 2020 Core Receiving Environment Monitoring Program Report

Part 1 of 3 (Sections 1 to 7)

Prepared for: **Baffinland Iron Mines Corporation**Oakville, Ontario

Prepared by:

Minnow Environmental Inc.
Georgetown, Ontario

March 2021

Mary River Project 2020 Core Receiving Environment Monitoring Program Report

Jess Tester, B.Sc., R.P. Bio.

Project Manager

Paul LePage, M.Sc.Senior Project Advisor

EXECUTIVE SUMMARY

The Mary River Project (the Project) is an operating high-grade iron mine located in the Qikigtani Region of northern Baffin Island, Nunavut. Owned and operated by Baffinland Iron Mines Corporation (Baffinland), the mine began commercial operation in 2015. Mining activities at the Project include open pit ore extraction, ore haulage, stockpiling, crushing, and screening, followed by transport by truck to Milne Port for subsequent seasonal loading onto bulk carrier ships for transfer to international markets. No milling or additional processing of the ore is conducted on-site and therefore no tailings are produced at the Project. Mine waste management facilities at the mine site include a mine waste rock stockpile and surface runoff collection/containment ponds situated near the mine waste rock stockpile and ore stockpile areas. In addition to periodic discharge of treated effluent from these facilities to the Mary River system. other potential mine inputs to aquatic systems located adjacent to the Mine Site include runoff and dust from ore (crusher) stockpiles located within the Sheardown Lake catchment, treated sewage effluent discharge to Mary River, runoff and explosives residue deposition from quarry operations within the Camp Lake catchment, deposition of fugitive dust generated by mine activities, and general mine site runoff.

Under the terms and conditions of the Project's Type 'A' Water Licence issued by the Nunavut Water Board, Baffinland was required to develop and implement an Aquatic Effects Monitoring Plan (AEMP) at the Mine Site. In order to meet the AEMP objectives, Baffinland developed a Core Receiving Environment Monitoring Program (CREMP) to provide a basis for the evaluation of mine-related influences on water quality, sediment quality, and/or aquatic biota (including phytoplankton, benthic invertebrates, and fish). The primary receiving systems that serve as the focus for the CREMP include the Camp Lake system (i.e., Camp Lake tributaries 1 and 2, Camp Lake), the Sheardown Lake system (i.e., Sheardown Lake tributaries 1, 9, and 12, Sheardown Lake northwest basin, and Sheardown Lake southeast basin), and the Mary River and Mary Lake system. Potential mine related effects within the mine primary receiving systems have been assessed annually under the CREMP since the commencement of commercial mine operation in 2015 using a combination of comparisons to site-specific benchmarks for water and sediment quality developed for the AEMP and application of an effects-based approach using standard environmental effects monitoring techniques. Annual results from the CREMP are applied within a four-step Assessment Approach and Management Response Framework designed for the Mary River Project AEMP to then guide management response decisions related to changes in parameter concentrations and/or aquatic biota attributable to mine operations.

The results of the 2020 CREMP indicated mine-related influences on water and sediment quality at some of the primary receiving systems, but no ecologically significant, adverse, mine-related

effects to biota were identified at any of the receiving waterbodies based on comparisons to applicable reference and/or baseline conditions. Within the Camp Lake system, copper concentrations were elevated above site-specific AEMP water quality benchmarks at the north branch of Camp Lake Tributary 1 (CLT1) in 2020, but because this elevation in copper concentrations did not appear to be mine-related, a low action response to identify the source of copper to the CLT1 north branch using expanded water quality monitoring is recommended. At the CLT1 upper main stem, iron concentrations were elevated above AEMP water quality benchmarks, concentrations at reference creeks, and concentrations during baseline, indicating a mine-related change that prompted a low action response recommendation to establish assess effects on biota within the upper main stem through the establishment of benthic invertebrate community sampling stations. At Camp Lake Tributary 2, no changes in concentrations of AEMP benchmark parameters occurred relative to background or to baseline and no adverse biological effects were indicated in 2020, and thus no adjustments to the existing AEMP are recommended. At Camp Lake, arsenic concentrations were elevated within littoral sediment compared to reference lake sediments and to Camp Lake baseline data. No mine-related sources of arsenic to the Camp Lake system have been evident currently or in the past, and therefore a low action response to harmonize sediment quality and benthic invertebrate community monitoring stations using increased replication at littoral habitat of Camp Lake is recommended. No

Within the Sheardown Lake system, copper concentrations were elevated above site-specific AEMP water quality benchmarks at Sheardown Lake Tributary 1 (SDLT1) in 2020, but because this elevation in copper concentrations did not appear to be mine-related, a low action response is recommended to identify the source of copper to SDLT1 using expanded water quality monitoring. No mine-related changes to phytoplankton or benthic invertebrates were indicated at Sheardown Lake tributaries 9 and 12 in 2020, but because water quality is not monitored at these tributaries under the current AEMP, a low action response to add a water quality monitoring station at each of these two tributaries is recommended to improve the ability of the program to interpret biological data in the future. At the Sheardown Lake northwest (NW) and southeast (SE) basins, water quality consistently met AEMP benchmarks and, despite arsenic, chromium, iron, manganese, and/or nickel concentrations above AEMP benchmarks for sediment quality at one or both basins, concentrations of all these metals were comparable to those of background and/or basin-specific baseline indicating no mine-related change in metal concentrations. Because concentrations of metals in Sheardown Lake sediment were similar to those shown at the reference lake and/or baseline, it is recommended that consideration be given to updating the AEMP sediment quality benchmarks for Sheardown Lake to reflect both reference lake and baseline data.

Within the Mary River/Mary Lake system, no mine-related effects to water quality were indicated based on comparison to reference areas and to baseline data. An AEMP benchmark for sediment quality was exceeded for manganese at a single profundal station at Mary Lake in 2020, but based on the isolated occurrence of this exceedance and the fact that average manganese concentrations in sediment at Mary Lake were not elevated compared to concentrations at the reference lake or to those during baseline, no mine-related change in manganese concentrations were indicated at Mary Lake. Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no changes to AEMP monitoring at Mary River/Mary Lake are recommended.

TABLE OF CONTENTS

E)	XECUTI	VE SUMMARY	I
Α	CRONY	MS AND ABBREVIATIONS	XII
1	INTRO	DDUCTION	1
2	METH	IODS	4
2	2.1 Ov	/erview	4
2	2.2 W	ater Quality	6
	2.2.1	General Design	6
	2.2.2	In situ Water Quality Measurement Data Collection and Analysis	6
	2.2.3	Water Chemistry Sampling and Data Analysis	11
2	2.3 Se	ediment Quality	
	2.3.1	General Design	
		Sample Collection and Laboratory Analysis	
		Data Analysis	
2		ological Assessment	
		Phytoplankton	
		Benthic Invertebrate Community	
,		Fish Population	
		fects Assessment	
		PLAKE SYSTEM	
;		amp Lake Tributary 1 (CLT1)	
		Water Quality	
		Sediment Quality	
		Phytoplankton	
	3.1.4	Benthic Invertebrate Community	
		Effects Assessment and Recommendations	
•		amp Lake Tributary 2 (CLT2)	
		Water Quality	
	3.2.2	Sediment Quality	
	3.2.3 3.2.4	Phytoplankton Benthic Invertebrate Community	
	_	Effects Assessment and Recommendations	
,		amp Lake (JLO)	
•		Water Quality	
		Sediment Quality	
	3.3.3	Phytoplankton	
	3.3.4	Benthic Invertebrate Community	
	3.3.5	Fish Population	
	3.3.6	Effects Assessment and Recommendations	
4	CHEV	RDOWN LAKE SYSTEM	
-		neardown Lake Tributaries (SDLT1, SDLT12, and SDLT9)	
•	4.1.1	Water Quality	82 22
		Sediment Quality	
		Phytoplankton	
	414	Benthic Invertebrate Community	89
		Effects Assessment and Recommendations	
4		neardown Lake Northwest (DLO-1)	
		,	

4.2.1	Water Quality	0.4
4.2.1		
4.2.3	· · · · · · · · · · · · · · · · · · ·	
4.2.4	• •	
4.2.5		
4.2.6	· ·	
_	heardown Lake Southeast (DLO-2)	
4.3.1		
4.3.2		
4.3.3		
4.3.4	• •	
4.3.5	•	
4.3.6	·	
5 MAR	Y RIVER AND MARY LAKE SYSTEM	134
	lary River Tributary-F	
	Water Quality	
5.1.2	•	
5.1.3	• •	
5.1.4	Effects Assessment and Recommendations	
	lary River	
5.2.1		
5.2.2	Sediment Quality	141
5.2.3	Phytoplankton	141
5.2.4	- J	
5.2.5	- J	
5.2.6		
	lary Lake	
	Water Quality	
5.3.2	,	
5.3.3	<i>J</i> 1	
5.3.4	- J	
5.3.5	I .	
5.3.6	Effects Assessment and Recommendations	174
	CLUSIONS	
	verview	
	amp Lake System	
6.3 SI	heardown Lake System	177
6.4 M	lary River and Mary Lake Systems	179
7 REFE	ERENCES	181
APPEND	DIX A DATA QUALITY REVIEW	
APPEND		
ALLEND	VIA I DENTINO INVERTEDRATE CUMINIUNITI DATA	

APPENDIX G FISH POPULATION SURVEY DATA

LIST OF FIGURES

Figure 1.1:	Baffinland Iron Mines Corporation, Mary River Project Location	2
Figure 2.1:	Mary River Project CREMP Study Waterbodies	
Figure 2.2:	Mary River Project CREMP Routine Water Quality and Phytoplankton	
	Monitoring Station Locations	
Figure 2.3:	Mary River Project CREMP Reference Lake 3 Monitoring Station Locations	9
Figure 2.4:	Mary River Project 2020 CREMP Mine Area Sediment Quality and Benthic	
	Station Locations	16
Figure 2.5:	Mary River Tributary-F Benthic Station Locations Used for the Mary River	
F: 0.0	Project Second EEM Study, August 2020	
Figure 2.6:	Mary River Project 2020 CREMP Fish Survey Sampling Locations	27
Figure 2.7:	Fish Survey Sampling Locations for the Mary River Project Second EEM,	20
Figure 2.0.	August 2020	28
Figure 2.8:	Baffinland Mary River Project AEMP Data Assessment Approach and Response Framework	25
Figure 3.1:	Comparison of In Situ Water Quality Variables (mean ± SD; n = 5) Measured	ა၁
i igule 5. i.	at Camp Lake Tributary 1 Benthic Invertebrate Community Stations, Mary	
	River Project CREMP, August 2020	37
Figure 3.2:	Chlorophyll-a Concentrations at Camp Lake Tributary 1 (CLT1) and Tributary	
riguic 3.2.	2 (CLT2) Phytoplankton Monitoring Stations, Mary River Project CREMP,	
	2020	43
Figure 3.3:	Temporal Comparison of Chlorophyll-a Concentrations at Camp Lake	
ga	Tributary 1 (CLT-1) and Tributary 2 (CLT-2) for Mine Baseline (2005 to 2013),	
	Construction (2014), and Operational (2015 to 2020) Periods during Fall	45
Figure 3.4:	Comparison of <i>In Situ</i> Water Quality Variables (mean ± SD; n = 5) Measured	
	at Camp Lake Tributary 2 Benthic Invertebrate Community Stations, Mary	
	River Project CREMP, August 2020	51
Figure 3.5:	Average In Situ Water Quality with Depth from Surface at Camp Lake (JLO)	
	Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling	
	Events, Mary River Project CREMP, 2020	59
Figure 3.6:	Comparison of <i>In Situ</i> Water Quality Variables (mean ± SD; n = 5) Measured	
	at Camp Lake (JLO) and Reference Lake 3 (REF3) Littoral and Profundal	
	Benthic Invertebrate Community Stations, Mary River Project CREMP,	
F: 0. 7:	August 2020	60
Figure 3.7:	Sediment Particle Size and Total Organic Carbon (TOC) Content	
	Comparisons among Camp Lake (JLO) Sediment Monitoring Stations and to	
	Reference Lake 3 Averages (mean ± SE), Mary River Project CREMP,	63
Figure 2 9:	August 2020 Temporal Comparison of Sediment Metal Concentrations (mean ± SD) at	03
Figure 3.8:	·	
	Littoral and Profundal Stations of Camp Lake and Reference Lake 3 for Mine Baseline (2005 to 2013) and Operational (2015 to 2020) Periods	67
Figure 3.9:	Chlorophyll a Concentrations at Camp Lake (JLO) Phytoplankton Monitoring	07
i iguie J.J.	Stations, Mary River Project CREMP, 2020	68
Figure 3.10:	Temporal Comparison of Chlorophyll-a Concentrations Among Seasons	
9410 0.10.	between Camp Lake and Reference Lake 3 for Mine Construction (2014) and	
	Operational (2015 to 2020) Periods (mean ± SE)	70
		_

Figure 3.11:	Catch-per-unit-effort (CPUE; mean ± SD) of Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Camp Lake (JLO) and Reference Lake 3 (REF3), Mary River Project CREMP, 2006 to 2020	76
Figure 3.12:	Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Camp Lake (JLO) and Reference Lake 3	
Figure 4.1:	(REF3), Mary River Project CREMP, August 2020	
Figure 4.2:	Chlorophyll-a Concentrations at Sheardown Lake Tributary 1 Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020	
Figure 4.3:	Temporal Comparison of Chlorophyll-a Concentrations at Sheardown Lake Tributary 1 for Mine Baseline (2005 to 2013), Construction (2014), and Operational (2015 to 2020) Periods in the Fall, Mary River Project CREMP	
Figure 4.4:	Average <i>In Situ</i> Water Quality with Depth from Surface at Sheardown Lake NW (DLO-01) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020	
Figure 4.5:	Comparison of <i>In Situ</i> Water Quality Variables (mean \pm SD; n = 5) Measured at Sheardown Lake Basins (SDNW and SDSE) and Reference Lake 3 (REF3) Littoral and Profundal Benthic Invertebrate Community Stations, Mary River	
Figure 4.6:	Project CREMP, August 2020	96
Figure 4.7:	August 2020 Temporal Comparison of Sediment Metal Concentrations (mean ± SD) at Littoral and Profundal Stations of Sheardown Lake NW (SDNW), Sheardown Lake SE (SDSE), and Reference Lake 3 for Mine Baseline (2005 to 2013)	
Figure 4.8:	and Operational (2015 to 2020) Periods	
Figure 4.9:	Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between Sheardown Lake NW and Reference Lake 3 for Mine Construction	
Figure 4.10:	(2014) and Operational (2015 to 2020) Periods (mean ± SE)	
Figure 4.11:	Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Sheardown Lake NW (DLO-01) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020	
Figure 4.12:	Average <i>In Situ</i> Water Quality with Depth from Surface at Sheardown Lake SE (DLO-02) Compared to Reference Lake 3 during Winter, Summer, and	
Figure 4.13:	Fall Sampling Events, Mary River Project CREMP, 2020	.117

Figure 4.14:	Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between Sheardown Lake SE and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)	25
Figure 4.15:	Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020	
Figure 5.1:	Comparison of <i>In Situ</i> Water Quality Variables Measured at Mary River Water Quality Monitoring Stations in Spring, Summer, and Fall 2020, Mary River	
Figure 5.2:	Project CREMP	
Figure 5.3:	Temporal Comparison of Chlorophyll-a Concentrations at Mary River Stations for Mine Baseline (2005 to 2013), Construction (2014), and Operational (2015 to 2020) Periods during the Fall	
Figure 5.4:	Selenium Concentrations (mean ± SD; n = 8) in Dorsal Muscle Tissue of Arctic Charr Captured at Mary River Effluent-Exposed and Reference Study Areas During the Second EEM Study, August 2020	
Figure 5.5:	Average <i>In Situ</i> Water Quality with Depth from Surface at the Mary Lake North Basin (BLO) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020	
Figure 5.6:	Average <i>In Situ</i> Water Quality with Depth from Surface at the Mary Lake South Basin (BLO) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020	
Figure 5.7:	Comparison of <i>In Situ</i> Water Quality Variables (mean ± SD) Measured at Mary Lake (BLO) and Reference Lake 3 (REF3) Littoral and Profundal Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020	
Figure 5.8:	Sediment Particle Size and Total Organic Carbon (TOC) Content Comparisons among Mary Lake (BLO) Sediment Monitoring Stations and to Reference Lake 3 (mean ± SE), Mary River Project CREMP, August 20201	
Figure 5.9:	Temporal Comparison of Sediment Metal Concentrations (mean ± SD) at Littoral and Profundal Stations of Mary Lake and Reference Lake 3 for Mine Baseline (2005 to 2013) and Operational (2015 to 2020) Periods	
Figure 5.10:	Chlorophyll-a Concentrations at Mary Lake (BLO) Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020	
Figure 5.11:	Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between the Mary Lake South Basin and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)1	
Figure 5.12:	Catch-per-unit-effort (CPUE; mean ± SD) of Arctic Charr Captured by Back-pack Electrofishing and Gill Netting at Mary Lake (BLO), Mary River Project	
Figure 5.13:	CREMP, 2006 to 2020	
LIST OF TAB	BLES	
Table 2.1:	Mary River Project CREMP Water Quality and Phytoplankton Monitoring	7

Table 2.2:	Water Quality Guidelines Used for the Mary River Project 2015 to 2020 CREMP Studies
Table 2.3:	Enrichment Factor Categories for Water and Sediment Chemistry Comparisons
Table 2.4:	Lake Sediment Quality and Benthic Invertebrate Community Monitoring Station Coordinates Used for the Mary River Project 2020 CREMP Study15
Table 2.5:	Stream and River Sediment and Benthic Invertebrate Community Monitoring Station Identifiers and Coordinates Used for the Mary River Project CREMP
Table 2.6:	2020 Study
Table 3.1:	Mean Water Chemistry at Camp Lake Tributary 1 (CLT1) Monitoring Stations During Spring, Summer, and Fall, Mary River Project CREMP, 202038
Table 3.2:	Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 1 (CLT1) and Lotic Reference Area Sediment Monitoring Stations, Mary River Project CREMP, August 2020
Table 3.3:	Benthic Invertebrate Community Metric Statistical Comparison Results among Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020
Table 3.4:	Mean Water Chemistry at Camp Lake Tributary 2 (CLT2) Monitoring Stations During Spring, Summer, and Fall, Mary River Project CREMP, 202053
Table 3.5:	Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 2 (CLT2) and Lotic Reference Area Sediment Monitoring Stations, Mary River Project CREMP, August 2020
Table 3.6:	Benthic Invertebrate Community Metric Statistical Comparison Results among Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020
Table 3.7:	Mean Water Chemistry at Camp Lake (JLO) and Reference Lake 3 (REF3) Monitoring Stationsa During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020
Table 3.8:	Sediment Total Organic Carbon and Metal Concentrations at Camp Lake (JLO) and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River Project CREMP, August 2020
Table 3.9:	Benthic Invertebrate Community Statistical Comparison Results between Camp Lake (JLO) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 202071
Table 3.10:	Benthic Invertebrate Community Statistical Comparison Results between Camp Lake (JLO) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 202072
Table 3.11:	Fish Catch and Community Summary from Backpack Electrofishing and Gill Netting Conducted at Camp Lake (JLO) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020
Table 3.12:	Summary of Statistical Results for Arctic Charr Population Comparisons between Camp Lake and Reference Lake 3 from 2015 to 2020, and between Camp Lake Mine Operational and Baseline Period Data, for Fish Captured by Electrofishing and Gill Netting Methods, Mary River Project CREMP
Table 4.1:	Mean Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Monitoring Stations in Spring, Summer, and Fall, Mary River Project CREMP, 202084
Table 4.2:	Sediment Total Organic Carbon and Metal Concentrations at Sheardown Lake Tributaries (SDLT1, 12, and 9) and Applicable Reference Creek and

	River Sediment Monitoring Stations, Mary River Project CREMP, August 2020	.86
Table 4.3:	Benthic Invertebrate Community Metric Statistical Comparison Results among the Sheardown Lake Tributaries and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020	.91
Table 4.4:	Mean Water Chemistry at Sheardown Lake NW (DLO-01) and Reference Lake 3 (REF3) Monitoring Stationsa During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020	98
Table 4.5:	Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Sheardown Lake NW (DLO-01) and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River Project CREMP, August 2020	
Table 4.6:	Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake NW (DLO-01) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 2020	107
Table 4.7:	Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake NW (DLO-01) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 2019	108
Table 4.8:	Fish Catch and Community Summary from Backpack Electrofishing and Gill Netting Conducted at Sheardown Lake NW (DLO-01), Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF3), Mary River Project CREMP, August	
Table 4.9:	2020	
Table 4.10:	Mean Water Chemistry at Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF3) Monitoring Stationsa During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020	
Table 4.11:	Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Sheardown Lake SE (DLO-02), and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River Project CREMP, August 2020	
Table 4.12:	Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake SE (DLO-02) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 2020	126
Table 4.13:	Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake SE (DLO-02) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 2020	127
Table 4.14:	Summary of Statistical Results for Arctic Charr Population Comparisons between Sheardown Lake SE and Reference Lake 3 from 2015 to 2020, and between Sheardown Lake SE Mine Operational and Baseline Period Data, for Fish Captured by Electrofishing and Gill Netting Methods, Mary River Project CREMP	
Table 5.1:	Mean Water Chemistry at Mary River Monitoring Stations During Spring, Summer, and Fall Sampling Events, Mary River Project CREMP, 20201	
Table 5.2:	Benthic Invertebrate Community Metric Statistical Comparisons Between Mary River Tributary-F (MRTF) Mine- Exposed (EXP) and Reference (REF) Areas, Mary River Project Second EEM Study, August 2020	
Table 5.3:	Sediment Total Organic Carbon and Metal Concentrations at Mary River Mine- Exposed and Reference (GO-09) Sediment Monitoring Stations, Mary River Project CREMP, August 2020	

Table 5.4:	Benthic Invertebrate Community Metric Statistical Comparison Results among Mary River Reference (GO-09), Upstream (GO-03), and Mine-	
	Exposed (EO-01, EO-20, CO-05) Study Areas, Mary River Project CREMP, August 2020	1/16
Table 5.5:	Summary of Fish Catches at Mary River Project Second EEM Study Fish	. 140
14510 0.0.	Population Study Areas, August 2020	.148
Table 5.6:	Summary of Arctic Charr Endpoint Statistical Comparison Results Between Effluent-Exposed and Reference Areas Used for the Mary River Project First and Second EEM Studies, August 2017 and 2020	
Table 5.7:	Mean Water Chemistry at Mary Lake North Basin (BL0-01) and South Basin	. 149
Table 5.7.	(BL0) Monitoring Stationsa, During Winter, Summer, and Fall Sampling	
	Events, Mary River Project CREMP, 2020	.158
Table 5.8:	Sediment Total Organic Carbon and Metal Concentrations at Mary Lake	
	North Basin (BLO-01) and South Basin (BLO), and Reference Lake 3 (REF3)	
	Sediment Monitoring Stations, Mary River Project CREMP, August 2020	.161
Table 5.9:	Benthic Invertebrate Community Statistical Comparison Results between	
	Mary Lake (BLO) and Reference Lake 3 for Littoral Habitat Stations, Mary	400
Table 5.10:	River Project CREMP, August 2020 Benthic Invertebrate Community Statistical Comparison Results between	. 100
Table 5.10.	Mary Lake (BLO) and Reference Lake 3 for Profundal Habitat Stations, Mary	
	River Project CREMP, August 2020	167
Table 5.11:	Fish Catch and Community Summary from Backpack Electrofishing and Gill	
	Netting Conducted at Mary Lake (BLO) and Reference Lake 3 (REF3), Mary	
	River Project CREMP, August 2020	.169
Table 5.12:	Summary of Statistical Results for Arctic Charr Population Comparisons	
	between Mary Lake and Reference Lake 3 from 2015 to 2020, and between	
	Mary Lake Mine Operational and Baseline Period Data, for Fish Captured by	470
T-1-1- 0 4	Electrofishing and Gill Netting Methods	.1/3
Table 6.1:	Summary of AEMP Benchmark Exceedances and Effects Determination for	
	the Mary River Project 2020 CREMP and Monitoring Recommendations Based on the Results	176
		. 170

ACRONYMS AND ABBREVIATIONS

AEMP – Aquatic Effects Monitoring Plan

ANCOVA – Analysis-of-Covariance

ANOVA - Analysis-of-Variance

BCWQG – British Columbia Water Quality Guidelines

CES – Critical Effect Size

cm - Centimetre

CPUE – Catch-Per-Unit-Effort

CREMP – Core Receiving Environment Monitoring Program

CSQG – Canadian Sediment Quality Guidelines

CWQG – Canadian Water Quality Guidelines

dbRDA – Distance-Based Redundancy Analysis

DELT – Deformities, Erosions, Lesions, And Tumors

DOC – Dissolved Organic Carbon

DSS – Digital Sampling System

EEM – Environmental Effects Monitoring

ERP – Early Revenue Phase

FFG – Functional Feeding Group

GPS – Global Positioning System

HPG – Habit Preference Group

HSD – Honestly Significant Difference

KS – Kolmogorov-Smirnov

L – Litre

MDL – Method Detection Limit

MRTF – Mary River Tributary-F

Mt - Million Tonnes

NAD 83 - 1983 North American Datum

NSES – North Shore Environmental Services

NU – Nunavut

NWB - Nunavut Water Board

PEL - Probable Effect Level

PSQG – Ontario Provincial Sediment Quality Guidelines

PWQO – Ontario Provincial Water Quality Objectives

QA/QC – Quality Assurance/Quality Control

SD - Standard Deviation



- **SEL** Severe Effect Levels
- **SQG** Sediment Quality Guidelines
- **TDS** Total Dissolved Solids
- TKN Total Kjeldahl Nitrogen
- TMAES Trinity Minnow Aquatic Environmental Services
- **TOC** Total Organic Carbon
- TSS Total Suspended Solids
- **UTM** Universal Transverse Mercator
- **WQG** Water Quality Guidelines
- **YOY** Young-Of-The-Year

1 INTRODUCTION

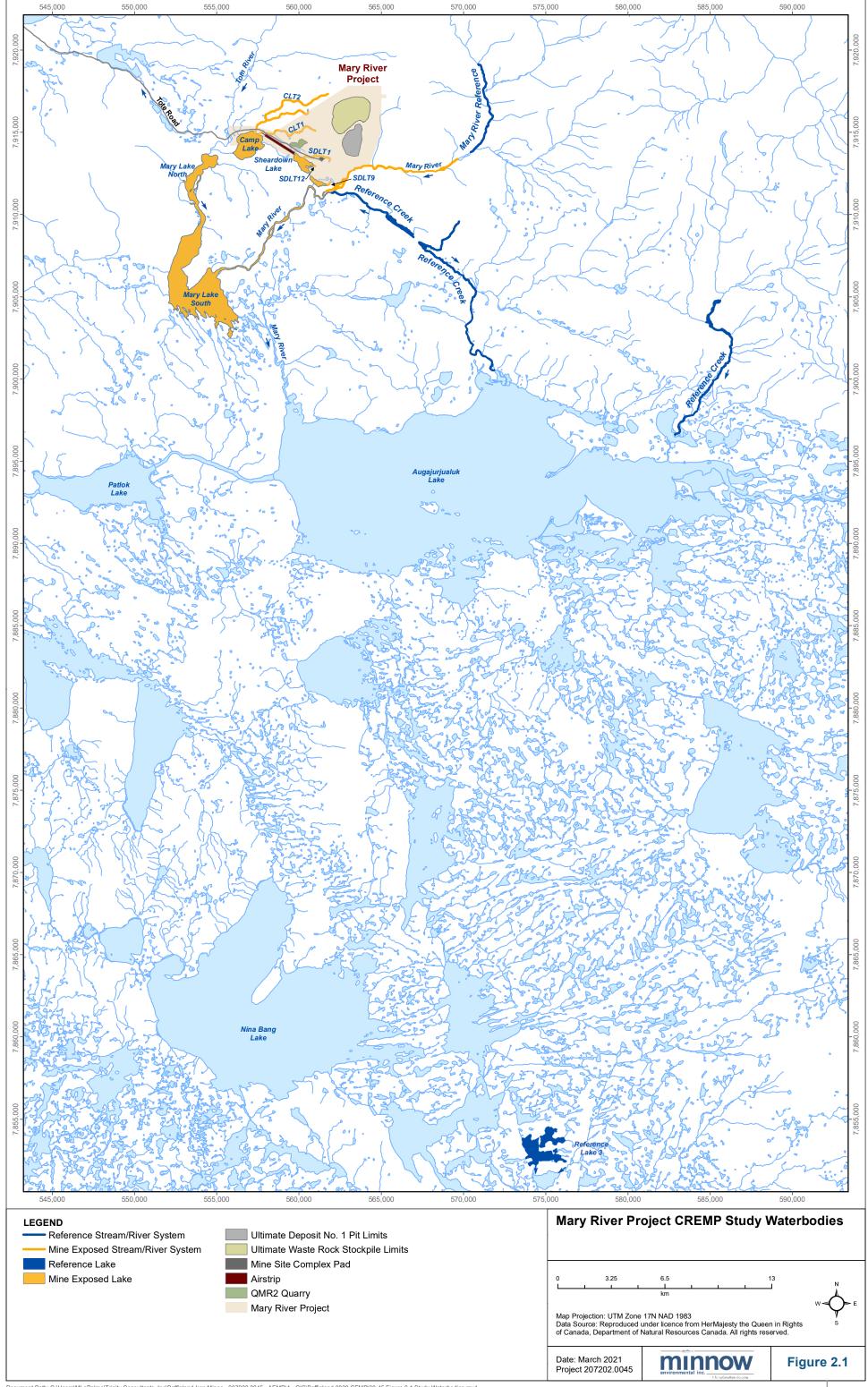
The Mary River Project (the Project), owned and operated by Baffinland Iron Mines Corporation (Baffinland), is a high-grade iron ore mining operation located in the Qikiqtani Region of northern Baffin Island, Nunavut (NU) (Figure 1.1). Commercial open pit mining, including pit bench development, ore haulage, and ore stockpiling, as well as the crushing and screening of high-grade iron ore, commenced at the Project Mine Site in 2015. In the current mining phase, referred to as the Early Revenue Phase (ERP), up to 6 million tonnes (Mt) of crushed/screened ore is mined annually at the Project. Ore from the Project Mine Site is transported in haul trucks along the Milne Inlet Tote Road to Milne Port, located approximately 100 km north of the Mine Site, where it is stockpiled. At Milne Port, the ore is loaded onto bulk carrier ships for transport to international markets during the shipping season. No milling or additional ore processing is conducted at the Mine Site, and thus no tailings are produced at the Project. Mine waste management facilities at the Mary River Project thus consist simply of a mine waste rock stockpile and surface runoff collection/containment ponds currently situated near the mine waste rock stockpile and ore stockpile areas. In addition to periodic discharge of treated effluent from these facilities to the Mary River system, other potential mine inputs to aquatic systems located adjacent to the mine include runoff and dust from ore (crusher) stockpiles located on the Mine Site within the Sheardown Lake catchment, treated sewage effluent discharge to Mary River, runoff and explosives residue deposition from quarry operations to the Camp Lake catchment, deposition of fugitive dust generated by mine activities, and general Mine Site runoff.

Under the terms and conditions of the Project's Type 'A' Water Licence (No. 2AM-MRY1325 Amendment No. 1) issued by the Nunavut Water Board (NWB), Baffinland developed an Aquatic Effects Monitoring Plan (AEMP) for the Project. A key objective of the AEMP was to provide data and information to allow for the evaluation of short- and long-term effects of the Project on aquatic ecosystems. To meet this objective, Baffinland developed a Core Receiving Environment Monitoring Program (CREMP) to assess potential mine-related influences on water quality, sediment quality, and biota (including phytoplankton, benthic invertebrates, and fish) at aquatic environments located near the mine (Baffinland 2015; KP 2014; NSC 2014). The primary receiving systems that are the focus for the CREMP include the Camp Lake system (Tributaries 1 and 2, Camp Lake), the Sheardown Lake system (Tributaries 1, 9, and 12, Sheardown Lake northwest [NW], and Sheardown Lake southeast [SE]), Mary River, and Mary Lake (Figure 1.1). Over the initial five years of mine operation, the CREMP studies have indicated only minimal effects of Project operations on the water quality and sediment quality of receiving waterbodies. Potential effects were confined to single tributaries feeding into each of Camp and Sheardown lakes, as well as near the immediate outlet of these tributaries to each respective lake

(Minnow 2016a, 2017, 2018, 2019). No adverse mine-related effects to phytoplankton, benthic invertebrates, or fish were indicated at any of the Camp Lake, Sheardown Lake, or Mary Lake systems from 2015 to 2019 based on comparisons to reference waterbodies and to available premine baseline data for each lake system (Minnow 2016a, 2017, 2018, 2019).

This report presents the methods and results of the 2020 CREMP, including an evaluation of potential Project-related influences on chemical and biological conditions at mine-exposed waterbodies through the sixth full year of mine operation. As in the five previous years, the 2020 Mary River Project CREMP included water quality monitoring, sediment quality monitoring, phytoplankton monitoring, benthic invertebrate community assessment, and an arctic charr (*Salvelinus alpinus*) fish population assessment. The 2020 CREMP was implemented in accordance with the original study design (Baffinland 2015) with the exception of the continued use of a reference creek benthic invertebrate community study area added to the program in 2016 to provide improved ability for the evaluation of mine-related influences on stream biota (Minnow 2016b, 2017, 2018, 2019, 2020).

2 METHODS


2.1 Overview

The CREMP includes water quality monitoring, sediment quality monitoring, phytoplankton monitoring, benthic invertebrate community (chlorophyll-a) assessment, population assessment (Baffinland 2015). In 2020, water quality and phytoplankton monitoring were conducted by Baffinland environment department personnel over four separate sampling events, including a lake ice-cover event (April 12th to 24th) and open-water season events corresponding to Arctic spring (freshet), summer, and fall (June 2nd to 4th, July 28th to August 3rd, and August 26th to 30th, respectively). Sediment quality, benthic invertebrate community, and fish population sampling was conducted by Trinity Minnow Aquatic Environmental Services (TMAES) personnel with assistance from Baffinland environment department personnel from August 8th to 20th 2020, the seasonal timing of which was consistent with monitoring conducted for previous baseline (2005 to 2013), mine construction (2014), and mine operational (2015 to 2019) studies. Similar to previous CREMP studies, the 2020 study included field sampling and standard laboratory quality assurance/quality control (QA/QC) for the water quality and benthic invertebrate community study components to allow for an assessment of the overall quality of each respective data set (Appendix A).

The 2020 CREMP study areas included the same mine-exposed and reference waterbodies established in the original design documents (Baffinland 2015) and the same reference lake that was added to the program in 2015 (Figure 2.1). To simplify the discussion of results, the mine-exposed study areas were separated by lake catchment as follows:

- the Camp Lake system (Camp Lake Tributaries 1 and 2, and Camp Lake);
- the Sheardown Lake system (Sheardown Lake Tributaries 1, 9, and 12, Sheardown Lake NW, and Sheardown Lake SE); and,
- the Mary River/Mary Lake system.

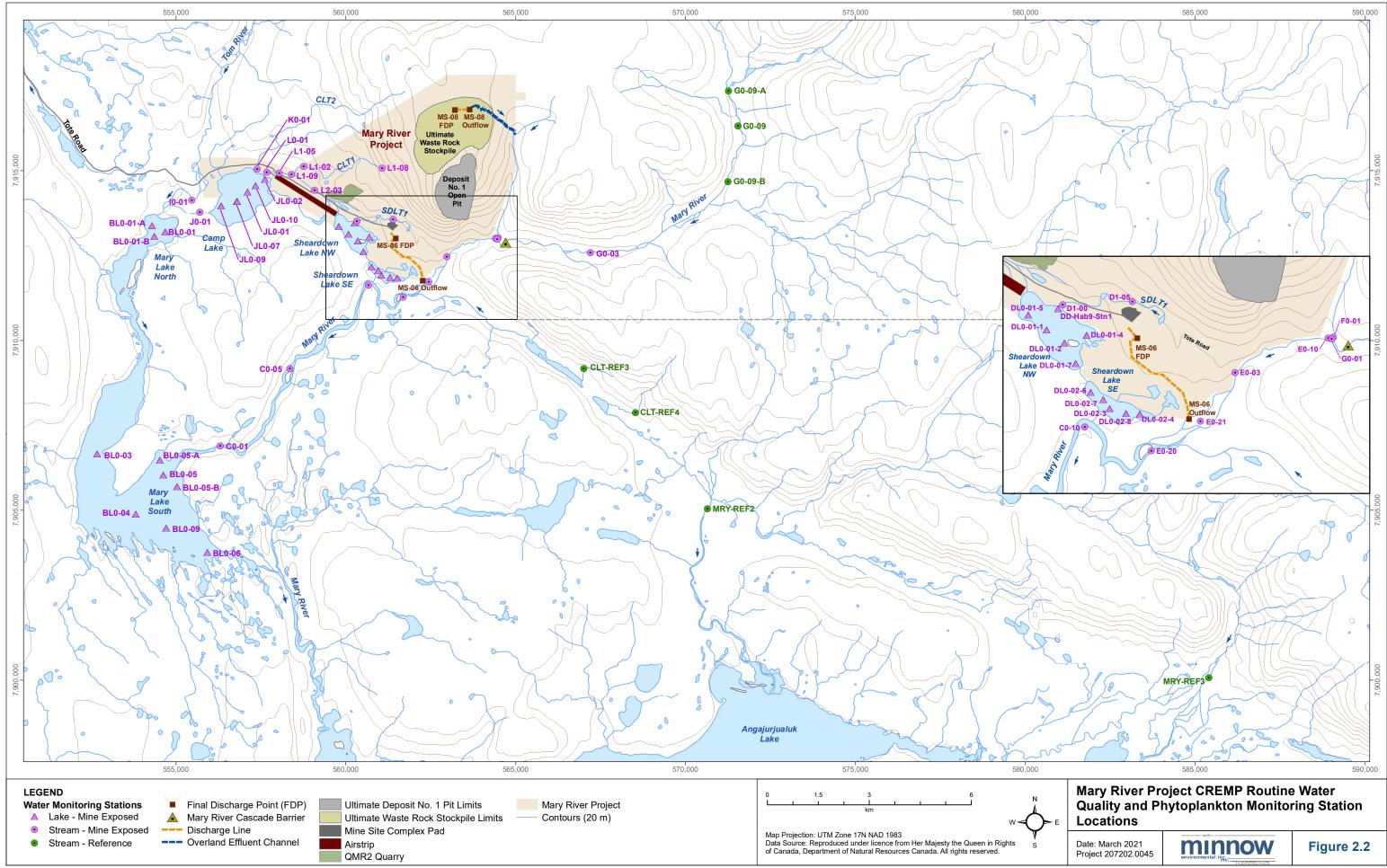
Reference Lake 3, which served as a reference waterbody for lentic (lake) environments beginning in the 2015 CREMP study, was again used as the reference lake for the 2020 study. Reference Lake 3 is located approximately 62 km south of the Mine Site (Figure 2.1), well outside the area of mine influence. Streams used as reference areas in the current and previous CREMP included an unnamed tributary to the Mary River and two unnamed tributaries to Angajurjualuk Lake, all of which are located southeast of the Mine Site (Figure 2.1). Similar to previous CREMP studies, an area of Mary River located well upstream of current mine activity

(i.e., GO-09) served as a reference area for the mine-exposed portion of Mary River in the 2020 study (Figure 2.1).

2.2 Water Quality

2.2.1 General Design

Surface water quality monitoring was conducted by Baffinland environment department personnel at the sampling locations and frequencies stipulated in the CREMP design (Baffinland 2015). The surface water sampling was conducted at as many as 57 stations during each sampling event (Table 2.1; Figures 2.2 and 2.3) and included collection of *in situ* measurements and water chemistry data. The evaluation of potential mine-related effects on surface waters in the vicinity of the Project was based upon comparisons of those parameters for which AEMP benchmarks have been developed to applicable reference data, to available baseline data, and to guidelines that included site-specific AEMP benchmarks. The AEMP benchmarks were developed to aid in defining effects of the Project on surface water quality, and to guide management response decisions to elevations above the benchmarks within a four-step Assessment Approach and Management Response Framework (Baffinland 2015).


2.2.2 In situ Water Quality Measurement Data Collection and Analysis

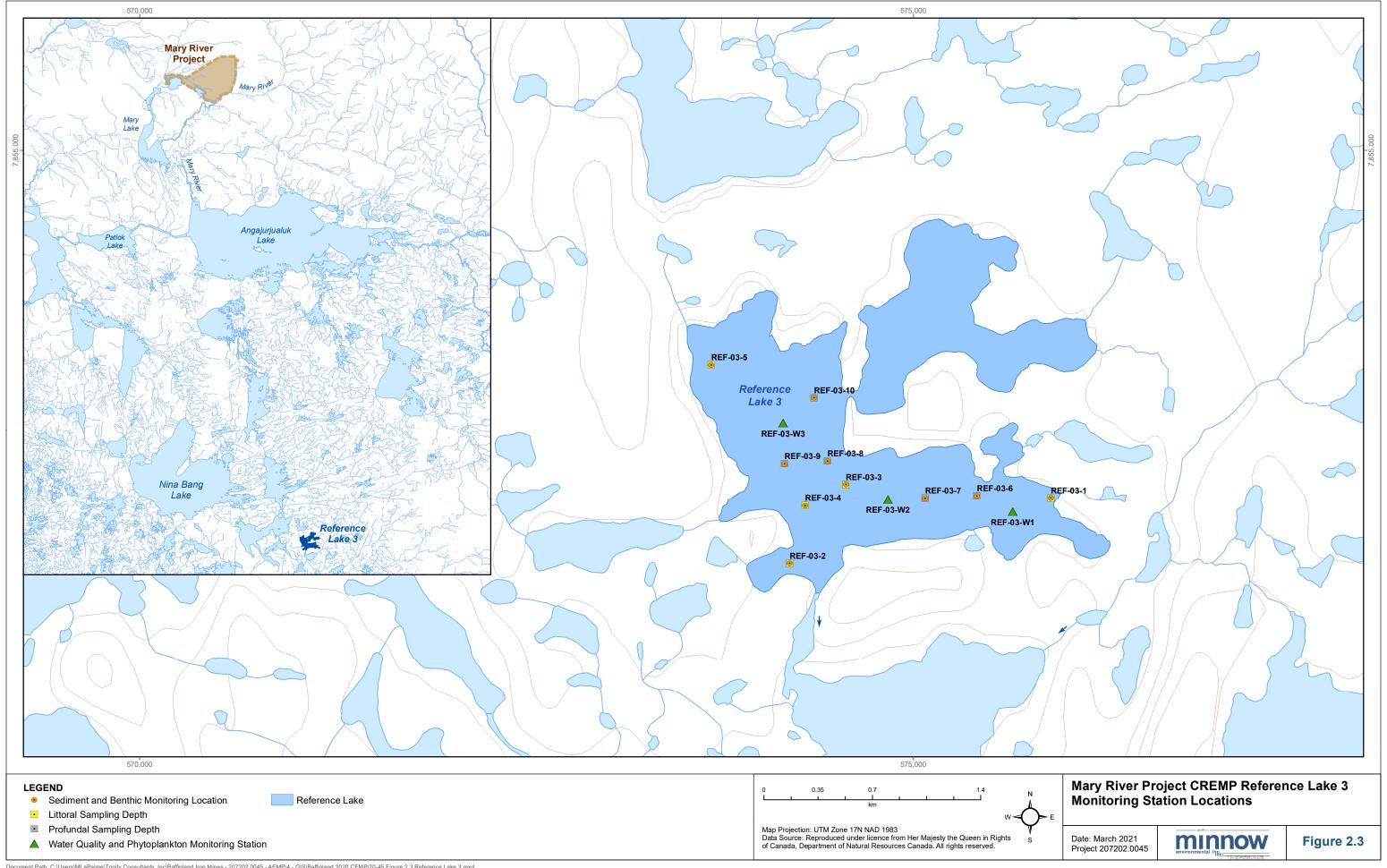

In situ measurements of water temperature, dissolved oxygen, pH, specific conductance (i.e., temperature standardized measurement of conductivity), and turbidity were taken at the bottom of the water column at all lotic (i.e., creek, river) stations and as a vertical profile at one metre (m) intervals at each lentic (i.e., lake) water quality monitoring station during routine monitoring conducted by Baffinland personnel. These in situ measurements were also collected at the surface and bottom (i.e., approximately 30 centimetres [cm] above the watersediment interface) at all lake benthic invertebrate community (benthic) stations during biological sampling conducted in August by TMAES personnel, except for turbidity measurements. The in situ measurements were collected using one of three YSI (Digital Sampling System) meters equipped with a 4-Port sensor (YSI Inc., Yellow Springs, OH). Meter readings for pH, specific conductance, and turbidity were checked against standard solutions and calibrated as necessary the morning of the day in which sampling was to be completed, prior to field sampling. Dissolved oxygen concentration readings were checked and calibrated at greater frequency through each sampling day in response to changing sampling conditions changes in elevation, barometric and/or (e.g., pressure, ambient temperature). During the winter ice-cover sampling event, a gas-powered, 15-cm (6-inch) diameter ice auger was used to access the water column at lake water quality monitoring stations. Ice shavings were removed from the auger hole prior to the collection of

Table 2.1: Mary River Project CREMP Water Quality and Phytoplankton Monitoring Station **Coordinates and Annual Sampling Schedule**

Chudu	Water		UTM Zone	17N, NAD83	Ref.	Sampling Season			
Study System	Body	Station ID	Easting	Northing	Data Set ^a	Winter (Apr May)	Spring (June)	Summer (July)	Fall (Aug Sept.)
		CLT-REF3	567004	7909174		(, tpr. may)	(ouno) ✓	(ou.y) ✓	(, rag. Copr.,)
	Creek	CLT-REF4	568533	7907874		_	✓	✓	√
as	Reference	MRY-REF3	585407	7900061	na	_	✓	✓	√
\re		MRY-REF2	570650	7905045		_	√	√	✓
e /	Deference	REF-03-W1	575642	7852666		_	-	✓	✓
) Sign	Reference Lake 3 Mary River Reference	REF-03-W2	574836	7852744	na	-	-	✓	✓
Reference Areas		REF-03-W3	574158	7853237		-	-	✓	✓
3ef		G0-09-A	571264	7917344		-	✓	✓	✓
		G0-09	571546	7916317	na	-	✓	✓	✓
	Reference	G0-09-B	571248	7914682		-	✓	✓	✓
		10-01	555470	7914139		-	✓	✓	✓
		J0-01	555701	7913773		-	✓	✓	✓
	_	K0-01	557390	7915030		-	✓	✓	✓
Ĕ	Camp	L0-01	557681	7914959		-	√	✓	✓
ste	Lake	L1-02	558765	7915121	а	-	√	✓	√
Ś	Tributaries	L1-05	558040	7914935		-	√	√	√
ş Ş		L1-08	561076	7915068		-	√	√	√
Camp Lake System		L1-09	558407	7914885 7914425		-	✓	✓ ✓	√
dμ		L2-03 JL0-01	559081 557108			-		∨	∨
Sar	Camp Lake	JL0-01 JL0-02	557615	7914369 7914750		✓	-	∨	∨
		JL0-02 JL0-07	556800	7914730	b	· ·	-	✓	✓
		JL0-09	556335	7913955		→	-	✓	→
		JL0-10	557346	7914562		· /		· ✓	· ·
	Sheardown	D1-00	560329	7913512		-	- ✓	✓ ·	· ✓
	Tributary 1	D1-05	561397	7913558	а	_	· ·	· ✓	· ·
Ę	Sheardown	DD-Hab9-Stn1	560259	7913455	b	-	-	→	→
ste		DL0-01-1	560080	7913433		✓	-	✓	▼
Sy		DL0-01-1	560353	7912924		· /	-	· /	·
Sheardown Lake System	Lake NW	DL0-01-2	560695	7913043		· /	_	· ✓	·
La	Lano IIII	DL0-01-5	559798	7913356		✓	_	√	√
₽		DL0-01-7	560525	7912609		✓	-	✓	✓
óp	Sheardown Lake SE	DL0-02-3	561046	7911915		√	-	✓	✓
ear		DL0-02-4	561511	7911832		✓	-	✓	✓
She		DL0-02-6	560756	7912167	b	✓	-	✓	✓
0,		DL0-02-7	560952	7912054		✓	-	✓	✓
		DL0-02-8	561301	7911846		✓	-	✓	✓
		G0-03	567204	7912587		-	✓	✓	\frac{\sqrt{\chi}}{\sqrt{\chi}}
		G0-01	564459	7912984		-	✓	✓	
		F0-01	564483	7913015		-	✓	✓	
Ε		E0-21	562444	7911724		-	✓	✓	
stem	Mary River	E0-20	561688	7911272	С	-	✓	✓	✓
Sys	mary ravor	E0-10	564405	7913004	Ĭ	-	√	✓	✓
e e		E0-03	562974	7912472		-	✓	✓	✓
[a		C0-10	560669	7911633		-	√	✓	√
Mary River and Mary Lake Sy		C0-05	558352	7909170		-	√	√	√
Ma		C0-01	556305	7906894		-	✓	√	√
P P	Mary Lake	BL0-01	554691	7913194	h	√	-	√	√
a.	(North Basin)	BL0-01-A	554300	7913378	b	✓ ✓	-	✓ ✓	✓ ✓
ver	,	BL0-01-B	554369	7913058	-	✓	<u> </u>	✓	✓
Έ		BL0-03	552680 553817	7906651 7904886	-	✓		∨ ✓	∨
JI.		BL0-04 BL0-05	553817 554632	7904886	-	✓	-	∨ ✓	∨ ✓
Μ̈́	Mary Lake	BL0-05	555924	7906031	b	✓	-	∨ ✓	∨ ✓
	(South Basin)	BL0-05-A	554530	7903760	٥ ا	✓	-	∨ ✓	∨ ✓
	, i	BL0-05-A BL0-05-B	555034	7905478	1	✓	-	✓	✓

^a Reference data applicable to indicated study area include a - lotic reference stations; b - lentic reference stations; and, c - Mary River upstream stations.

in situ measures. To avoid confounding influences associated with snow/ice melt in the auger hole, the *in situ* measurements were collected just below the ice layer. Additional supporting observations of water colour and clarity were recorded at the time of water quality and biological sampling at all benthic stations, and Secchi depth was measured at all lake stations using the methods outlined in Wetzel and Likens (2000).

In situ water quality data collected at the mine-exposed study streams, rivers, and lakes were compared to respective reference area data, applicable water quality guidelines (WQG¹; dissolved oxygen concentrations and pH only), and, for pH and conductivity, In situ water quality data were compared spatially within each system baseline data. (i.e., from upstreamto downstream-most stations) using both qualitative statistical approaches. For the statistical analysis, raw data and log-transformed data were assessed for normality and homogeneity of variance prior to conducting comparisons between (pair-wise) or among (multiple-group) applicable like-habitat mine-exposed and reference study area groups using Analysis-of-Variance (ANOVA). The selection of untransformed or log-transformed data was determined based on which data best met the assumptions of ANOVA. In instances where normality could not be achieved through data transformation, non-parametric Mann-Whitney U-tests and Kruskal-Wallis H-tests were used to conduct pair-wise and multiple-group comparisons, respectively, on rank transformed data. Similarly, in instances in which variances of normal data could not be homogenized by transformation. Student's t-tests assuming unequal variance were used for pair-wise comparisons. In cases in which multiple-group comparisons were conducted, normally distributed data were subject to Tukey's Honestly Significant Difference (HSD) and Tamhane's pair-wise post hoc tests for homogenous and non-homogenous data, respectively. All statistical comparisons were conducted using R programming (R Foundation for Statistical Computing, Vienna, Austria).

Vertical profiles of the *in situ* measurements taken from lake stations were plotted and visually assessed to evaluate potential thermal or chemical stratification and the corresponding depths associated with distinct layering. The occurrence of a thermocline was conservatively assessed as a ≥0.5°C change in temperature per 1 m change in depth². The vertical profile data collected at the mine-exposed study lakes were compared to those of the reference lake for each seasonal monitoring event using profile data averaged for each incremental depth below the water surface at each lake. At each study lake, spatial and seasonal differences in the vertical profile plots were

² Wetzel (2001) defines the thermocline as a ≥1°C change in temperature per 1 m change in depth. Through discussions regarding the CREMP in 2017, regulatory agencies requested that a ≥0.5°C change in temperature per 1 m change in depth be used to conservatively define a thermally stratified condition.

¹ Canadian Environmental Quality Guidelines (CCME 1999, 2019) were used as the primary source for WQG, including those for pH and dissolved oxygen concentrations.

evaluated to provide a better understanding of natural conditions and/or mine-related influences on within-lake water quality.

2.2.3 Water Chemistry Sampling and Data Analysis

Surface water chemistry samples were collected from both lotic and lentic environments (Table 2.1). At lotic stations, water chemistry samples were collected from approximately mid-water column by hand directly into pre-labeled sample bottles that were triple rinsed with ambient water. For samples requiring preservation, chemical preservatives were added to the samples before capping the bottles, or for sample bottles that were pre-dosed with chemical preservatives, the bottle was filled using a sample transferred from a separate bottle. At lentic stations, two water chemistry samples were collected, one approximately 1 m below the surface (or just below the ice layer for the winter sampling event) and the other from approximately 1 m above the bottom, using a non-metallic, vertically-oriented, 2.2 litre (L) TT Silicon Kemmerer bottle (Wildco Supply Co., Yulee, FL). During the winter sampling event, the water column was accessed at the same time and using the same methods as described above for the in situ measurements. Lake water collected using the Kemmerer bottle was transferred directly into sample bottles that had been pre-dosed with required chemical preservatives, where appropriate, except those requiring field filtration. In cases in which filtration of lotic and lentic station water samples was required (e.g., for dissolved metals), filtration was conducted in the field using methods consistent with AEMP standard operating procedures (Baffinland 2015).

Following collection, water chemistry samples were placed into coolers in the field and maintained at cool temperatures prior to shipment to the analytical laboratory. Water chemistry sampling QA/QC included trip blanks, field blanks, and the collection of equipment blanks and field duplicates at an approximate rate of 5% of the total number of samples collected for each CREMP sampling event (Appendix A). Water chemistry samples were shipped on ice to ALS Canada Ltd. (ALS; Waterloo, ON) for analysis of pH, conductivity, hardness, total suspended solids (TSS), total dissolved solids (TDS), anions (alkalinity, bromide, chloride, sulphate), nutrients (ammonia, nitrate, nitrite, total Kjeldahl nitrogen [TKN], total phosphorus), dissolved and total organic carbon (DOC and TOC, respectively), mercury, total and dissolved metals, and phenols using standard laboratory methods.

For parameters in which water chemistry AEMP benchmarks have been developed, data were compared: i) among mine-exposed and reference areas for each study lake catchment (Table 2.1); ii) spatially and seasonally at each mine-exposed waterbody; iii) to applicable WQG for the protection of aquatic life (Table 2.2) and/or to site-specific water quality benchmarks developed for the Mary River Project AEMP (Intrinsik 2014); and, iv) to baseline water quality data. For data screening, and to simplify discussion of results, parameter concentration

Table 2.2: Water Quality Guidelines Used for the Mary River Project 2015 to 2020 CREMP Studies

Parameters		Units	Water Quality Guideline (WQG) ^a	Criteria Source ^a	Supporting Information and/or Calculations Used to Derive Hardness Dependent Criteria
Conventionals	pH (lab)	рН	6.5 - 9.0	CWQG	-
	Nitrate	mg/L	3	CWQG	-
Nutrients and	Nitrite	mg/L	0.06	CWQG	-
Organics	Total Phosphorus	mg/L	0.020 or 0.030	PWQO	Total phosphorus objective is 0.030 mg/L for lotic (rivers, streams) environments, and 0.020 mg/L for lentic (lake) environments.
	Phenols	mg/L	0.001	PWQO	-
	Chloride (CI)	mg/L	120	CWQG	-
Anions	Sulphate (SO ₄)	mg/L	218	BCWQG	Sulphate guideline is hardness (mg/L CaCO ₃) dependent as follows: 128 mg/L at 0 to 30 hardness, 218 mg/L at 31 to 75 hardness, 309 mg/L at 76 to 180 hardness, and 429 mg/L at 181 to 250 hardness. Sample-specific (mean) hardness was used for screening purposes. Value presented applicable to water with 75 mg/L hardness.
	Aluminum (Al) mg/L 0.100 CWQG		CWQG	-	
	Antimony (Sb) mg/L 0.020 PWQO		PWQO	-	
	Arsenic (As)	mg/L	0.005	CWQG	-
	Beryllium (Be)	mg/L	0.011	PWQO	-
	Boron (B)	mg/L	1.5	CWQG	-
	Cadmium (Cd)	mg/L	0.00012	CWQG	Cadmium guideline is hardness (mg/L CaCO ₃) dependent. For hardness between 17 and 280 mg/L, the cadmium guideline is calculated using the equation Cd (ug/L) = 10 (0.83[log(hardness]-2.46). Sample-specific (mean) hardness was used for screening purposes. Value presented applicable to water with 75 mg/L hardness.
	Chromium (Cr)	mg/L	0.0089	CWQG	- Cample oposite (mean) naraness has used to selecting parposes. Value presented applicable to mater with 10 mg/2 haraness.
	Cobalt (Co)	mg/L	0.001	PWQO	_
	Copper (Cu)	mg/L	0.002	CWQG	Copper guideline is hardness (mg/L CaCO ₃) dependent. At hardness <82 mg/L and >180 mg/L, the copper guideline is 2 and 4 ug/L, respectively. For hardness ranging from 82 to 180 mg/L, the copper guideline (ug/L) = 0.2 * e (0.8545[ln(hardness] - 1.463). Sample-specific (mean) hardness was used for screening purposes. Value presented applicable to water with 75 mg/L hardness.
	Iron (Fe)	mg/L	0.30	CWQG	-
Total Metals	Lead (Pb)	mg/L	0.002	CWQG	Lead guideline is hardness (mg/L CaCO ₃) dependent. At hardness <60 mg/L and >180 mg/L, the lead guideline is 1 and 7 ug/L, respectively. For hardness ranging from 60 to 180 mg/L, the lead guideline (ug/L) = e (1.273[ln(hardness] - 4.705)]. Sample-specific (mean) hardness was used for screening purposes. Value presented applicable to water with 75 mg/L hardness.
	Manganese (Mn)	mg/L	0.935	BCWQG	Manganese guideline is hardness (mg/L CaCO ₃) dependent, and calculated using the equation Mn (ug/L) = 0.0044 * (hardness) + 0.605. Sample-specific (mean) hardness was used for screening purposes. Value presented applicable to water with hardness of 75 mg/L.
	Mercury (Hg)	mg/L	0.000026	CWQG	-
	Molybdenum (Mo)	mg/L	0.073	CWQG	-
	Nickel (Ni)	mg/L	0.077	CWQG	Nickel guideline is hardness (mg/L CaCO ₃) dependent. At hardness <60 mg/L and >180 mg/L, the nickel guideline is 25 and 150 ug/L, respectively. For hardness ranging from 60 to 180 mg/L, the nickel guideline (ug/L) = e (0.76[ln(hardness] + 1.06)). Sample-specific (mean) hardness was used for screening purposes. Value presented applicable to water with 75 mg/L hardness.
	Selenium (Se)	mg/L	0.001	CWQG	-
	Silver (Ag)	mg/L	0.00025	CWQG	<u>-</u>
	Thallium (TI)	mg/L	0.0008 0.030	CWQG PWQO	-
	Tungsten Uranium (U)	mg/L mg/L	0.030	CWQG	- -
	Vanadium (V)	mg/L	0.006	PWQO	- -
	Zinc (Zn)	mg/L	0.030	CWQG	

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME1999, 2019) was selected where a CCME guideline exists, the selected criteria is the lowest of either the Ontario Provincial Water Quality Objective (PWQO; OMOE 1994) or the British Columbia Water Quality Guideline (BCWQG; BCMOE 2019), as available.

enrichment factors were calculated as the mine-exposed area mean concentration divided by the respective reference station/area mean concentration. Similarly, for temporal comparisons, the parameter concentration enrichment factor was calculated by dividing the 2020 mean parameter concentration at a mine-exposed station/area by the baseline (2005 to 2013 data) mean concentration. The resulting enrichment factors were qualitatively assigned as slightly, moderately, or highly elevated compared to reference and/or baseline conditions using the categorization described in Table 2.3.

Table 2.3: Enrichment Factor Categories for Water and Sediment Chemistry Comparisons

Categories	Enrichment Factor Criterion
Slightly elevated	Concentration 3-fold to 5-fold higher at mine-exposed area versus the reference area or baseline data, as applicable.
Moderately elevated	Concentration 5-fold to 10-fold higher at mine-exposed area versus the reference area or baseline data, as applicable.
Highly elevated	Concentration ≥ 10-fold higher at effluent-exposed area versus the reference area or baseline data, as applicable.

Applicable WQG included the Canadian Water Quality Guidelines (CWQG; CCME 1999, 2019) or, for parameters with no CWQG, the most conservative (i.e., lowest) criterion available from established Ontario Provincial Water Quality Objectives (PWQO; OMOEE 1994) or British Columbia Water Quality Guidelines (BCWQG; BCMOE 2006, 2019). Water quality guidelines are abbreviated simply as 'WQG' in this report, although it is recognized that in certain cases the values presented may represent water quality 'objectives'. For WQGs that are hardness dependent, the hardness of the individual sample was used to calculate the WQG for the specific parameter according to established formulae (Table 2.2). Water chemistry data were also compared to site-specific water quality benchmarks developed for the Mary River Project AEMP (Intrinsik 2014). The AEMP water chemistry benchmarks were derived using an evaluation of background (i.e., baseline) water chemistry data together with existing generic WQGs that consider aquatic toxicity thresholds. These benchmarks were developed to inform management decisions under the AEMP assessment approach and management response framework (Baffinland 2015). An elevation in concentration of a parameter above the respective AEMP benchmark may trigger various actions (e.g., sampling design modifications, additional statistical assessment, considerations for mitigation, etc.) to better understand and potentially mitigate effects (Baffinland 2015). Water chemistry data for key parameters (i.e., parameters with AEMP benchmarks, or with concentrations that were higher at mine-exposed areas compared to reference areas) were plotted to evaluate changes in concentrations between baseline (2005 to 2013 data) and mine operational (2015 to 2020) years.

2.3 Sediment Quality

2.3.1 General Design

Sediment quality monitoring for the CREMP was designed to assess potential mine-related effects to the sediment of lake environments using a gradient-based approach (Baffinland 2015). Sediment quality sampling was conducted at five to ten stations per study lake for physical and chemical characterization as outlined under the CREMP, with additional characterization of physical sediment properties conducted at four to six stations per study lake to support the benthic invertebrate community analysis (Table 2.4; Figure 2.4). The lake sediment stations were designated as littoral or profundal based on a cut-off depth of 12 m, the value of which was used to define lake zonation during baseline characterization studies (KP 2014a, 2015). Sediment quality sampling was also conducted at three stations from each of the eight stream and five river study areas used to assess mine-related effects to benthic invertebrate communities (Table 2.5; Figure 2.4). Stream sediment sampling in the Camp Lake tributaries, Sheardown Lake tributaries, and Mary River is required every three years as outlined in the original CREMP design (KP 2014a; Baffinland 2015). All stream and river study areas were previously observed to contain limited depositional habitat and a general absence of substantial accumulation of fine sediments (KP 2015; Minnow 2016a,b, 2017, 2018). As a result, sediment sampling for chemical characterization was generally restricted to the shoreline and interstices of large, coarse substrate material (e.g., cobbles, boulders) within the applicable study areas. Similar to water quality, the evaluation of potential mine-related effects on sediments in Project area lakes focused on the use of established AEMP benchmarks to define Project-related effects.

2.3.2 Sample Collection and Laboratory Analysis

Sediment at the study lakes was collected for physical and chemical characterization using a gravity corer (Hoskin Scientific Ltd., Model E-777-00) outfitted with a clean 5.1 cm inside-diameter polycarbonate tube. From each retrieved core sample containing an intact, representative sediment-water interface, the top two cm of sediment was manually extruded upwards into a graded core collar, sectioned with a stainless-steel core knife, and placed into a pre-labeled plastic sample bag. Samples from three to four cores treated in this manner were composited to create a single sample at each station. Supporting measurements of total core sample length and depths of visually apparent redox boundaries/horizons, as well as notes regarding sediment texture and colour for each visible horizon, general sediment odour (e.g., hydrogen sulphide), and presence of algae or plants on or in the sediment, were recorded for each core sample. Sediment from stream/river (erosional) habitats was collected for chemical characterization using a stainless-steel spoon. Sediment sampling from erosional habitats focused on locations containing the finest grain sizes available, including channel margins and downstream of large

Table 2.4: Lake Sediment Quality and Benthic Invertebrate Community Monitoring Station Coordinates Used for the Mary River Project 2020 CREMP Study

Reference Lake 3 Camp Lake DD Sheardown Lake	REF-03-1 REF-03-2 REF-03-3 REF-03-4 REF-03-5 REF-03-6 REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-17 JLO-17 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-15 JLO-11 JLO-13 JLO-12 DLO-01-5	575889 574200 574564 574301 573694 575411 575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594 556896	Northing 7852752 7852330 7852840 7852705 7853613 7852766 7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914594 7914850 7914801 7914095 7914706 7914184	Sampling Habitat littoral littoral littoral littoral littoral profundal profundal profundal profundal profundal littoral profundal profundal profundal profundal profundal profundal profundal profundal littoral littoral littoral	Sediment Core	Sediment petite-Ponar ^a	Benthic Invertebrate
Reference Lake 3 Camp Lake DD Sheardown Lake	REF-03-2 REF-03-3 REF-03-4 REF-03-5 REF-03-6 REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-17 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-15 JLO-11 JLO-13 JLO-12	574200 574564 574301 573694 575411 575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852330 7852840 7852705 7853613 7852766 7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914594 7914801 7914801 7914095 7914470	littoral littoral littoral littoral littoral profundal profundal profundal profundal profundal littoral profundal profundal pittoral littoral littoral littoral	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reference Lake 3 Camp Lake DD Sheardown Lake	REF-03-3 REF-03-4 REF-03-5 REF-03-6 REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	574564 574301 573694 575411 575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852840 7852705 7853613 7852766 7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914470	littoral littoral littoral littoral profundal profundal profundal profundal littoral profundal profundal profundal profundal profundal profundal profundal littoral littoral littoral	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reference Lake 3 Camp Lake DD Sheardown Lake	REF-03-4 REF-03-5 REF-03-6 REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-17 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	574301 573694 575411 575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852705 7853613 7852766 7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914594 7914801 7914801 7914095 7914706 7914470	littoral littoral profundal profundal profundal profundal profundal littoral profundal profundal profundal profundal profundal profundal littoral littoral littoral			✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reference Lake 3 Camp Lake DD Sheardown Lake	REF-03-5 REF-03-6 REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-17 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	573694 575411 575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7853613 7852766 7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	littoral profundal profundal profundal profundal profundal littoral profundal profundal profundal profundal profundal littoral littoral littoral		- - - - - - - - - - - - - - - -	✓ ✓ ✓ ✓ ✓ ✓ ✓
Camp Lake DD Sheardown Lake	REF-03-6 REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	575411 575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852766 7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal profundal profundal profundal profundal littoral profundal profundal profundal littoral littoral littoral littoral	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - - - - - - - - - -	✓ ✓ ✓ ✓ ✓ ✓
Camp Lake DD Sheardown Lake	REF-03-7 REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	575076 574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852750 7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal profundal profundal profundal littoral profundal profundal profundal littoral littoral littoral profundal	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - - - - - - - - - -	✓ ✓ ✓ ✓ ✓ - ✓
Camp Lake DD Sheardown Lake	REF-03-8 REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	574445 574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852992 7852975 7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal profundal profundal littoral profundal profundal profundal littoral littoral littoral profundal	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - - - - - - - -	✓ ✓ ✓ ✓ - - ✓
Camp Lake DD Sheardown Lake	REF-03-9 REF-03-10 JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	574168 574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7852975 7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal profundal littoral profundal profundal profundal littoral littoral littoral profundal	✓ ✓ ✓ ✓ ✓ - -	- - - - - - - - -	✓ ✓ ✓ – – ✓
Camp Lake DD Sheardown Lake	REF-03-10 JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	574358 557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7853400 7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal littoral profundal profundal profundal littoral littoral littoral profundal	✓ ✓ ✓ ✓ – –	- - - - - -	✓ ✓ ✓ - - ✓
Camp Lake DD Sheardown Lake	JLO-02 JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	557627 557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7914748 7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	littoral profundal profundal profundal littoral littoral littoral profundal	✓ ✓ ✓ - -	- - - - - -	- - - -
DD Sheardown Lake	JLO-01 JLO-14 JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	557092 557246 556900 556926 556750 556587 556803 556357 556335 556542 556594	7914370 7914224 7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal profundal profundal littoral littoral profundal	- - -	- - - - -	- - - - -
DD Sheardown Lake	JLO-17 JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556900 556926 556750 556587 556803 556357 556335 556542 556594	7914594 7914911 7914850 7914801 7914095 7914706 7914470	profundal littoral littoral littoral profundal	- - -	- •	- ✓ ✓
DD Sheardown Lake	JLO-21 JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556926 556750 556587 556803 556357 556335 556542 556594	7914911 7914850 7914801 7914095 7914706 7914470	littoral littoral littoral profundal		✓	✓
DD Sheardown Lake	JLO-20 JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556750 556587 556803 556357 556335 556542 556594	7914850 7914801 7914095 7914706 7914470	littoral littoral profundal	-	✓	✓
DD Sheardown Lake	JLO-19 JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556587 556803 556357 556335 556542 556594	7914801 7914095 7914706 7914470	littoral profundal	-	·	
DD Sheardown Lake	JLO-07 JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556803 556357 556335 556542 556594	7914095 7914706 7914470	profundal	- ✓	✓	✓
DD Sheardown Lake	JLO-18 JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556357 556335 556542 556594	7914706 7914470		✓		
DD Sheardown Lake	JLO-16 JLO-15 JLO-11 JLO-13 JLO-12	556335 556542 556594	7914470	litt∩ral	1	-	✓
DD Sheardown Lake	JLO-15 JLO-11 JLO-13 JLO-12	556542 556594				√	√
DD Sheardown Lake	JLO-11 JLO-13 JLO-12	556594	7914184	profundal	√	-	✓
DD Sheardown Lake	JLO-13 JLO-12			profundal	✓ ✓	-	<u>-</u> ✓
DD Sheardown Lake	JLO-12	าวาทกษา	7913946	profundal	✓	-	
DD Sheardown Lake		556378	7913751 7913728	profundal profundal	∨	-	<u>-</u> ✓
DD Sheardown Lake	DEO-01-3	559806	7913728	profundal	· ·	-	<u> </u>
DD Sheardown Lake	DLO-01-14	559821	7913328	profundal	-	<u>-</u>	<u> </u>
Sheardown Lake	DLO-01-15	559884	7913340	profundal	_	✓	√
Sheardown Lake	-HAB 9-STN2	560325	7913400	littoral	✓	-	
	DLO-01-8	560338	7913192	littoral	√	-	
	DLO-01	560079	7913132	profundal	✓	-	-
Northwest (NW)	DLO-01-13	560151	7912997	profundal	✓	-	-
	DLO-01-2	560350	7912927	profundal	✓	-	✓
	DLO-01-12	560339	7912852	profundal	-	✓	✓
	DLO-01-9	560746	7913076	littoral	✓	-	✓
	DLO-01-4	560696	7913049	littoral	-	✓	✓
	DLO-01-3	560471	7912838	littoral	-	√	✓
	DLO-01-11	560482	7912563	littoral	-	✓	√
	DLO-01-10	560570	7912566	littoral	✓ ✓	-	√
	DLO-02-1	560807	7912099	littoral	✓ ✓	-	√
	DLO-02-11 DLO-02-10	561585	7911799	littoral	· ·	<u>-</u> ✓	√
	DLO-02-10 DLO-02-4	561602 561512	7911821 7911833	littoral littoral			✓
	DLO-02-4 DLO-02-12	561433	7911033	profundal	_	<u>-</u> ✓	<u> </u>
	DLO-02-9	561414	7911806	littoral	-	· ✓	<u>·</u>
` ′	DLO-02-8	561300	7911839	profundal	_	✓	✓
	DLO-02-13	561222	7911958	profundal	_	✓	✓
	DLO-02-2	561161	7911858	profundal	✓	-	✓
	DLO-02-3	561039	7911898	profundal	✓	-	✓
	BLO-01	554690	7913186	littoral	✓	-	✓
	BLO-16	553289	7908092	profundal	✓	-	-
	BLO-03	552679	7906660	profundal	✓	-	✓
	BLO-15	552723	7906419	profundal	-	✓	✓
	BLO-14	552688	7905282	profundal	✓	-	√
	BLO-05	554635	7906033	profundal	-	✓	√
M	BLO-11	554942	7906033	littoral	-	✓	✓
Mary Lake	BLO-12	554644	7905742	profundal	✓	-	-
	BLO-13	553879	7905094	profundal	-	✓	√
	BLO-04	553820	7904893	profundal	√	-	✓
	BLO-10	555033 554707	7905065	profundal	✓ ✓	-	
	BLO-09 BLO-08	554707 555424	7904486 7904239	profundal	✓	-	-
	BLO-08 BLO-07	555424	7904239	profundal littoral		<u>-</u> ✓	<u>-</u> ✓
	DEO-01	555925	7903563	littoral	- ✓	•	

^a Sediment core samples analyzed for particle size, TOC and total metals. Petite-ponar sediment grab samples analyzed for particle size only.

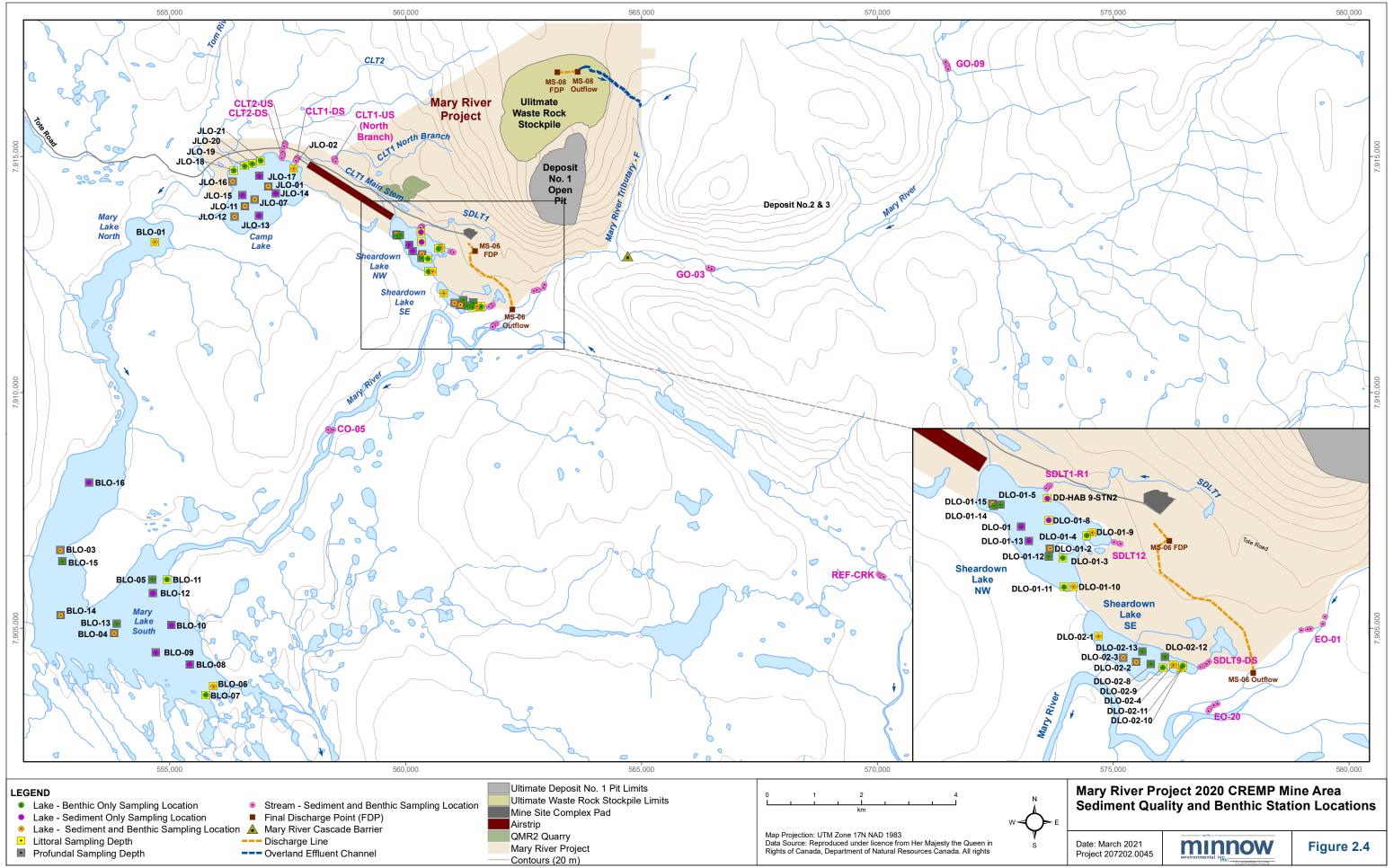


Table 2.5: Stream and River Sediment and Benthic Invertebrate Community Monitoring Station Identifiers and Coordinates Used for the Mary River Project CREMP 2020 Study

Lake System	Waterbody	Station Code	Station Type	UTM Zone '	17W, NAD83	Sediment	Benthic
	- Tatol Dody			Easting	Northing		Invertebrate
Angajurjualuk Lake		REF-CRK-B1	Reference	570025	7906148	✓	✓
	Unnamed	REF-CRK-B2	Reference	570060	7906115	-	✓
	Tributary	REF-CRK-B3	Reference	570093	7906110	✓	✓
	insutary	REF-CRK-B4	Reference	570121	7906099	-	✓
		REF-CRK-B5	Reference	570137	7906086	✓	✓
Camp Lake	Camp Lake Tributary 1	CLT1-US-B1	Lightly Mine-Exposed	558502	7914967	✓	✓
		CLT1-US-B2	Lightly Mine-Exposed	558488	7914963	-	✓
		CLT1-US-B3	Lightly Mine-Exposed	558494	7914930	✓	✓
		CLT1-US-B4	Lightly Mine-Exposed	558509	7914903	-	✓
		CLT1-US-B5	Lightly Mine-Exposed	558517	7914890	✓	✓
		CLT1-DS-B1	Mine-Exposed	557710	7914978	✓	✓
		CLT1-DS-B2	Mine-Exposed	557693	7914957	-	✓
		CLT1-DS-B3	Mine-Exposed	557686	7914944	✓	✓
		CLT1-DS-B4	Mine-Exposed	557678	7914932	_	✓
		CLT1-DS-B5	Mine-Exposed	557672	7914917	✓	✓
	Camp Lake Tributary 2	CLT2-US-B1	Lightly Mine-Exposed	557441	7915291	✓	✓
		CLT2-US-B2	Lightly Mine-Exposed	557451	7915275	_	✓
		CLT2-US-B3	Lightly Mine-Exposed	557450	7915251	√	✓
		CLT2-US-B4	Lightly Mine-Exposed	557441	7915237	_	√
		CLT2-US-B5	Lightly Mine-Exposed	557423	7915237	<u>-</u> ✓	→
		CLT2-DS-B1	Mine-Exposed	557392	7915215	√	✓
		CLT2-DS-B1	Mine-Exposed	557398	7915104	<u>, , , , , , , , , , , , , , , , , , , </u>	∨ ✓
		CLT2-DS-B3	Mine-Exposed	557400	7915033	<u>-</u> ✓	✓
		CLT2-DS-B4	Mine-Exposed		7915032	•	▼
		CLT2-DS-B5		557997	7913008	<u>-</u> ✓	✓
			Mine-Exposed	557377		✓	∨ ✓
Sheardown Lake Northwest (NW)	Sheardown Lake Tributary 1 (Reach 1)	SDLT1-R1-B1	Mine-Exposed	560352	7913522	· ·	
		SDLT1-R1-B2	Mine-Exposed	560338	7913520	-	√
		SDLT1-R1-B3	Mine-Exposed	560328	7913507	✓	√
		SDLT1-R1-B4	Mine-Exposed	560320	7913497	-	√
		SDLT1-R1-B5	Mine-Exposed	560313	7913493	✓	✓
	Sheardown Lake Tributary 12	SDLT12-B1	Mine-Exposed	560953	7912988	✓	✓
		SDLT12-B2	Mine-Exposed	561003	7912975	✓	✓
		SDLT12-B3	Mine-Exposed	561016	7912971	✓	✓
Sheardown Lake Southeast (SE)	Sheardown Lake Tributary 9	SDLT9-DS-B1	Mine-Exposed	561848	7911860	✓	✓
		SDLT9-DS-B2	Mine-Exposed	561825	7911838	-	✓
		SDLT9-DS-B3	Mine-Exposed	561798	7911824	✓	✓
		SDLT9-DS-B4	Mine-Exposed	561785	7911816	-	✓
		SDLT9-DS-B5	Mine-Exposed	561767	7911812	✓	✓
Mary Lake	Mary River	GO-09-B1	Reference	571447	7917010	✓	✓
		GO-09-B2	Reference	571479	7916946	-	✓
		GO-09-B3	Reference	571489	7916919	✓	✓
		GO-09-B4	Reference	571499	7916883	-	✓
		GO-09-B5	Reference	571503	7916858	✓	✓
		GO-03-B1	Mine-Exposed	566489	7912626	✓	✓
		GO-03-B2	Mine-Exposed	566509	7912616	-	✓
		GO-03-B3	Mine-Exposed	566491	7912605	✓	✓
		GO-03-B4	Mine-Exposed	566425	7912630	-	✓
		GO-03-B5	Mine-Exposed	566425	7912642	✓	✓
		EO-01-B1	Mine-Exposed	562944	7912281	√	√
		EO-01-B2	Mine-Exposed	562922	7912214	-	✓
		EO-01-B3	Mine-Exposed	562806	7912171	✓	✓
		EO-01-B4	Mine-Exposed	562778	7912171	_	√ ·
		EO-01-B5	Mine-Exposed	562717	7912158	√	· ✓
		EO-20-B1	Mine-Exposed	561930	7912130	→	→
		EO-20-B1	Mine-Exposed	561895	7911400		→
		EO-20-B3	Mine-Exposed	561858	7911447	<u>-</u> ✓	✓
			· ·			· ·	∨ ✓
		EO-20-B4	Mine-Exposed	561848	7911408	- ✓	
		EO-20-B5	Mine-Exposed	561841	7911393		√
		CO-05-B1	Mine-Exposed	558465	7909208	✓	√
		CO-05-B2	Mine-Exposed	558387	7909183	-	√
		CO-05-B3	Mine-Exposed	558365	7909214	✓	✓
		CO-05-B4	Mine-Exposed	558355	7909224	-	✓
	ļ l	CO-05-B5	Mine-Exposed	558359	7909209	✓	✓

boulders within the active channel. One sample, representing a composite of a variable number of spoonfuls, was collected directly into a pre-labelled plastic sample bag at each station. Following collection, all sediment samples were placed into a cooler, transported to the mine, and stored under cool conditions until shipment to the analytical laboratory.

Upon completion of the field program, sediment samples were shipped to ALS (Waterloo, ON) for analysis using standard laboratory methods. Physical characterization of samples included percent moisture and particle size analyses, and chemical characterization included analyses of TOC and total metals (including mercury).

2.3.3 Data Analysis

Sediment quality data from the mine-exposed lakes, creeks, and rivers were compared to like-habitat reference area data, applicable sediment quality guidelines/AEMP benchmarks and, when available, baseline sediment quality data. Sediment physical characteristics (i.e., moisture, particle size) and TOC data collected at study area lakes were summarized based on calculation of mean, standard deviation, standard error, minima, and maxima for littoral and profundal habitat. The data from the mine-exposed lakes were compared to the reference lake data using the same statistical tests, data transformations, test assumptions, and statistical software described previously for the statistical evaluation of *in situ* water quality (see Section 2.2.3).

The sediment chemistry data from the mine-exposed lakes were initially assessed to identify potential gradients in metal concentrations with distance from known or suspected sources of mine-related deposits to the lake. For each mine-exposed lake, creek, or river study area, data for each sediment chemistry parameter were separately averaged for each habitat type (e.g., littoral and profundal habitat in lakes) and then compared between like-habitat mine-exposed and reference areas using enrichment factors calculated and compared as described previously for evaluation of water chemistry (Section 2.2.3; Table 2.3). Sediment chemistry data collected at lake environments were compared to applicable Canadian Sediment Quality Guidelines (CSQG; CCME 1999) probable effect levels (PEL) or, for parameters with no CSQG, to Ontario Provincial Sediment Quality Guidelines (PSQG; OMOE 1993) severe effect levels (SEL), collectively referred to as 'SQG' throughout this document. The 2020 lake sediment chemistry data analyses included comparisons to Mary River Project AEMP sediment quality benchmarks that were derived using baseline sediment chemistry data for each mine-exposed lake and existing generic CSQG interim or PSQG lowest effect level sediment quality guidelines (Intrinsik 2014, 2015). As indicated previously, the AEMP benchmarks were developed to inform management decisions under the AEMP assessment approach and management response framework (Baffinland 2015). An increase in concentration above the

AEMP benchmark may trigger various actions to better understand and potentially mitigate effects (Baffinland 2015).

Sediment chemistry data for key parameters (i.e., parameters with concentrations that were notably higher at mine-exposed areas compared to the reference area, that have been identified as site-specific parameters of concern in previous studies, and/or those with concentrations above SQG and/or AEMP benchmarks) were plotted to evaluate potential changes in concentrations from 2020 relative to baseline (2005 to 2013) and earlier in the period of mine operation (2015 to 2019). In addition, as described previously, enrichment factors were calculated between the 2020 and baseline data for each individual study lake using the same calculation (and categorization description) as described previously (Section 2.2.3; Table 2.3).

The applicability of lotic sediment chemistry data to the interpretation of lotic benthic invertebrate community data was considered minimal given the fact that fine sediment composes much less than 5% of available substrate at the lotic environments (extrapolation of the data suggests that silt and clay compose less than 0.5% of available habitat) and that benthic invertebrates collected for the CREMP do not inhabit these fine sediments. By extension, because fish species inhabiting lotic environments largely rely on benthic invertebrates as a food source, the applicability of sediment chemistry monitoring data to understanding effects on fish was also considered minimal. Because sufficient amounts of fine sediment were able to be collected at only 3 of 23 lotic stations during the baseline period (KP 2014a,b), no temporal comparison of the stream/river sediment chemistry data was conducted.

2.4 Biological Assessment

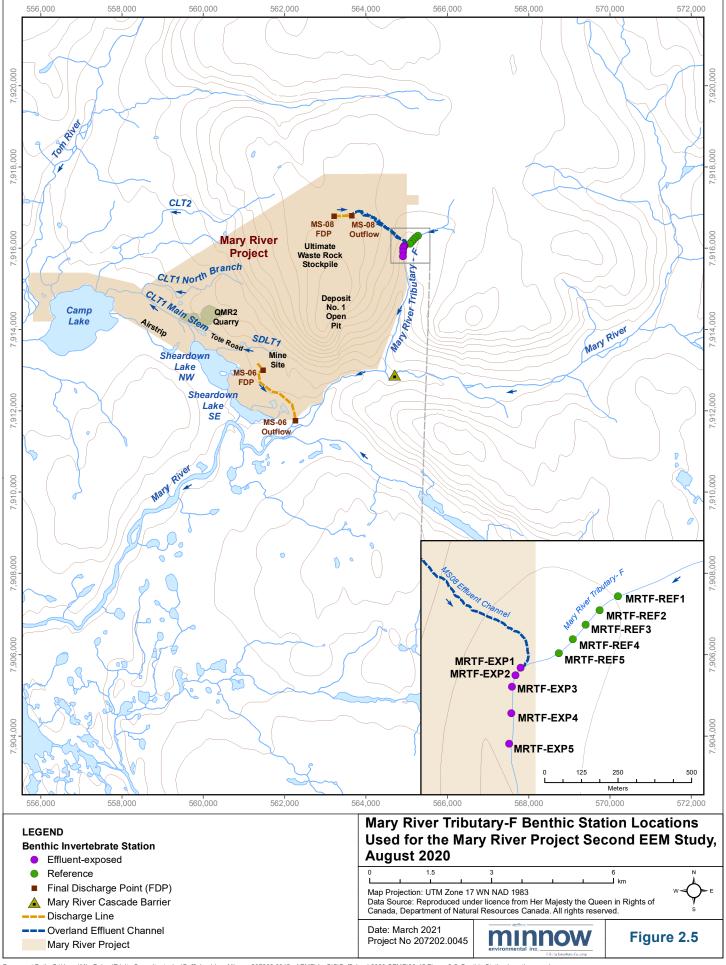
2.4.1 Phytoplankton

The CREMP uses measures of aqueous chlorophyll-a concentrations to assess potential mine-related influences on phytoplankton. Because chlorophyll-a is the primary pigment of phytoplankton (i.e., algae and other photosynthetic microbiota suspended in the water column), aqueous chlorophyll-a concentrations are often used as a surrogate for evaluating the amount of photosynthetic microbiota in aquatic environments (Wetzel 2001). Chlorophyll-a samples were collected by Baffinland environmental department staff at the same stations and same time, using the same methods and equipment, as described for the collection of water chemistry samples (Table 2.1; Figures 2.2 and 2.3; Section 2.2.3). The chlorophyll-a samples were collected into 1 L glass amber bottles and maintained in a cool and dark environment prior to submission to ALS (Mary River On-Site Laboratory, NU). On the same day of collection, the on-site laboratory filtered the samples through a 0.45 micron cellulose acetate membrane filter assisted by a vacuum pump. Following filtration, the membrane filter was wrapped in aluminum foil, inserted into a labelled

envelope, and then frozen. At the completion of field collections for the seasonal sampling event, the filters were shipped frozen to ALS in Waterloo, ON for chlorophyll-a analysis using standard methods. The field QA/QC applied during chlorophyll-a sampling was similar to that described for water chemistry sampling (see Section 2.2.3).

The CREMP study design also stipulates the collection of phytoplankton community samples for archiving (Baffinland 2015). If water quality, chlorophyll-a, and/or other biological components indicate potential mine-related effects on primary productivity at a specific mine-exposed waterbody, the phytoplankton community samples may be processed to further investigate the nature of potential mine-related effects on phytoplankton biomass and community structure (e.g., taxonomic composition, richness, density). To date, none of the archived phytoplankton community samples have been processed (2006 to 2019). In 2020, phytoplankton community samples were collected using the same methods described in the CREMP (Baffinland 2015) and, as in the past, these samples were not processed, but were archived for potential future use.

The analysis of aqueous chlorophyll-a concentrations closely mirrored the approach used to evaluate the water quality data. Chlorophyll-a concentrations were compared: i) between respective mine-exposed and reference areas; ii) spatially and seasonally at each mine-exposed waterbody; iii) to AEMP benchmarks; and, iv) to baseline data. Comparisons of chlorophyll-a concentrations between the mine-exposed and reference areas were based on both qualitative and statistical approaches, the latter of which was based on the same statistical tests, data transformations, test assumptions, statistical software, and alpha (p-value) for defining differences as described previously for statistical analysis of *in situ* water quality data (Section 2.2.2). An AEMP benchmark chlorophyll-a concentration of 3.7 µg/L was established for the Mary River Project (Baffinland 2015). The 2020 chlorophyll-a concentration data were compared to this benchmark to assist with the determination of potential mine-related enrichment effects at waterbodies influenced by mine operations. A mine-related effect on the productivity of a waterbody was defined as a chlorophyll-a concentration above the AEMP benchmark, the concentration measured in a representative reference area, and/or the respective waterbody baseline condition.


2.4.2 Benthic Invertebrate Community

2.4.2.1 General Design

The CREMP benthic invertebrate community (benthic) survey design outlines a habitat-based approach for characterizing potential mine-related effects to benthic biota of lotic (stream/river) and lentic (lake) environments (Baffinland 2015). Lotic areas sampled for benthic invertebrates included Camp Lake Tributaries 1 and 2 at historically established areas located upstream and

downstream of the Milne Inlet Tote Road, Sheardown Lake Tributaries 1, 9, and 12 near their respective outlets, and Mary River upstream (two areas) and downstream (three areas) of the Mine Site (Table 2.5; Figure 2.4). Benthic samples were also collected at a reference creek located within the same unnamed tributary to Angajurjualuk Lake that is used for reference water quality sampling (Stations CLT-REF4 and MRY-REF2) as part of the 2020 CREMP to augment the original study design (Table 2.5; Figure 2.4). This reference creek, referred to as Unnamed Reference Creek herein, was initially sampled as part of the benthic invertebrate community assessment in the 2016 CREMP (see Minnow 2017). Environmental Effects Monitoring (EEM) benthic invertebrate community data collected at an unnamed tributary to Mary River (referred to as Mary River Tributary-F [MRTF]) downstream (effluent-exposed) and upstream (reference) of the primary mine effluent discharge have also been included in this CREMP report to consolidate all available benthic information for the mine receiving environment (Figure 2.5). Consistent with the federal EEM program, the CREMP incorporated sampling at five benthic stations at each lotic study area except for Sheardown Lake Tributary 12, where only three stations were sampled due to limited habitat available for sampling using conventional gear suitable for erosional habitat. As in studies conducted from 2015 to 2019, the level of replication used for lotic benthic sampling in 2020 was greater than specified under the original CREMP design to provide consistency with EEM standards (Minnow 2016a). To the extent possible, the same station locations used in previous studies were sampled in 2020 to provide continuity among historical baseline and recent studies.

In lentic environments, benthic sampling was conducted at the 40 previously established stations described in the CREMP study design among the four mine-exposed study lakes (i.e., ten stations in each of Camp, Sheardown NW, Sheardown SE and Mary lakes), as well as at the same ten stations established at Reference Lake 3 during the 2015 study (Table 2.4; Figures 2.3 and 2.4). Analysis of benthic data collected at Reference Lake 3 from 2015 to 2019 indicated that, similar to temperate lakes (Ward 1992), depth-related influences on benthic invertebrate community structure (e.g., density and richness) occur naturally in lakes of the study region (Minnow 2016a, 2017, 2018, 2019, 2020). Analysis of benthic data collected from Reference Lake 3 in 2020 provided on-going confirmation of the occurrence of natural depth-related influences on benthic invertebrate community structure in area lakes (Appendix B). Because of the occurrence of natural depth-related differences in benthic invertebrate communities, the benthic stations at each mine-exposed and reference lake were categorized as littoral zone (2-12 m depth) or profundal zone (>12 m depth) stations based on station depth (Table 2.4). To the extent possible, five littoral and five profundal stations were designated for each study lake

based on the previously established suite of CREMP lentic benthic stations³ to provide temporal continuity with the baseline studies and the original CREMP design (Table 2.4; Figure 2.4), as well as to allow data analysis in accordance with EEM standards. The sampling of five stations from each zone at each study area ensured adequate statistical power to detect ecologically meaningful differences in benthic metrics of \pm two standard deviations (SDs) of a comparable reference area mean using an equal α and β of 0.10 (Environment Canada 2012).

2.4.2.2 Sample Collection and Laboratory Analysis

Two types of equipment and methods were used during the 2020 CREMP benthic survey to sample the different types of habitat encountered as follows:

- at lotic (stream/river) stations (i.e., predominantly cobble and/or gravel substrate in flowing waters), benthic samples were collected using a Surber sampler (0.0929 m² sampling area) outfitted with 500-µm mesh. At each erosional station, one sample representing a composite of three Surber sampler grabs (i.e., 0.279 m² area) was collected to ensure adequate representation of the habitat. A concerted effort was made to ensure that water velocity and substrate characteristics were comparable among respective mine-exposed and reference study area stations to minimize natural influences on community variability. Once all three sub-samples were collected at each station, all material gathered in the Surber sampler net was transferred to a plastic sampling jar which was labelled with both an external and internal station identifier.
- at lentic (lake) stations (i.e., predominantly soft silt-sand, silt, and/or clay substrates with variable amounts of organics), benthic sampling was conducted using a petite-Ponar grab sampler (15.24 x 15.24 cm; 0.023 m² sampling area). A single sample, consisting of a composite of five grabs (i.e., 0.115 m² sampling area) was collected at each station with care taken to ensure that each grab was acceptable (i.e., that the grab captured sufficient surface material and was full to each edge). Incomplete grabs were discarded. For each acceptable grab, the petite-Ponar was thoroughly rinsed and the material then field-sieved through 500-µm mesh. Following sieving of all five grabs, the retained material was carefully transferred into a plastic sampling jar which was labelled with both an external and internal station identifier.

Following collection, benthic samples were preserved to a level of 10% buffered formalin in ambient water. Supporting measurements and information collected at each replicate grab

³ At Sheardown Lake SE, depths greater than 12 m are spatially limited, and thus the five deepest CREMP stations were designated as profundal despite one of the five being less than 12 m deep. At Mary Lake, six of the CREMP stations occurred at depths greater than 12 m and thus were all designated as profundal, with the four remaining stations designated as littoral.

location for lotic stations included sampling depth, water velocity, and description of aquatic vegetation/algae presence. In addition, *in situ* water quality at the bottom of the water column and collection/recording of global positioning system (GPS) coordinates was conducted at each lotic benthic station. Supporting information recorded at each lake benthic station included substrate description, presence of aquatic vegetation/algae, sampling depth, *in situ* water quality near the water column surface and bottom, and GPS coordinates. All GPS coordinates were collected in Universal Transverse Mercator (UTM) units using a hand-held portable Garmin GPS72 (Garmin International Inc., Olathe, KS) device based on 1983 North American Datum (NAD 83).

Benthic samples were submitted to and processed by Zeas Inc. (Nobleton, ON) using standard sorting methods. Upon arrival at the laboratory, a biological stain was added to each benthic sample to facilitate greater sorting accuracy. The samples were washed free of formalin in a 500 µm sieve and the remaining sample material was examined under a stereomicroscope at a magnification of at least ten times by a technician. Benthic invertebrates were removed from the sample debris and placed into vials containing 70% ethanol according to major taxonomic groups (i.e., order or family levels). A senior taxonomist later enumerated and identified the benthic organisms to the lowest practical level (typically genus or species) utilizing up-to-date taxonomic keys. The QA/QC conducted during the laboratory processing of benthic samples included organism recovery and sub-sampling checks on as many as 10% of the total samples collected for the 2020 CREMP (Appendix A).

2.4.2.3 Data Analysis

Benthic data were evaluated separately for lotic, lentic littoral, and lentic profundal habitat data sets. Benthic invertebrate communities were evaluated using summary metrics of mean "density"; average invertebrate abundance (or number of organisms m^2), mean taxonomic richness (number of taxa, as identified to lowest practical level), Simpson's Evenness Index, and the Bray-Curtis Index of Dissimilarity. Simpson's Evenness was calculated using the Krebs method (Smith and Wilson 1996). Additional comparisons were conducted using percent composition of dominant/indicator taxa, functional feeding groups (FFG), and habit preference groups (HPG; percent composition of taxa and groups were calculated as the abundance of each respective group relative to the total number of organisms in the sample). Dominant/indicator taxonomic groups were defined as those groups representing, on average, greater than 5% of total organism abundance for a study area or any groups considered important indicators of environmental stress. The FFG and HPG were assigned based on Pennak (1989), Mandaville (2002), and/or Merritt et al. (2008) descriptions/designations for each taxon.

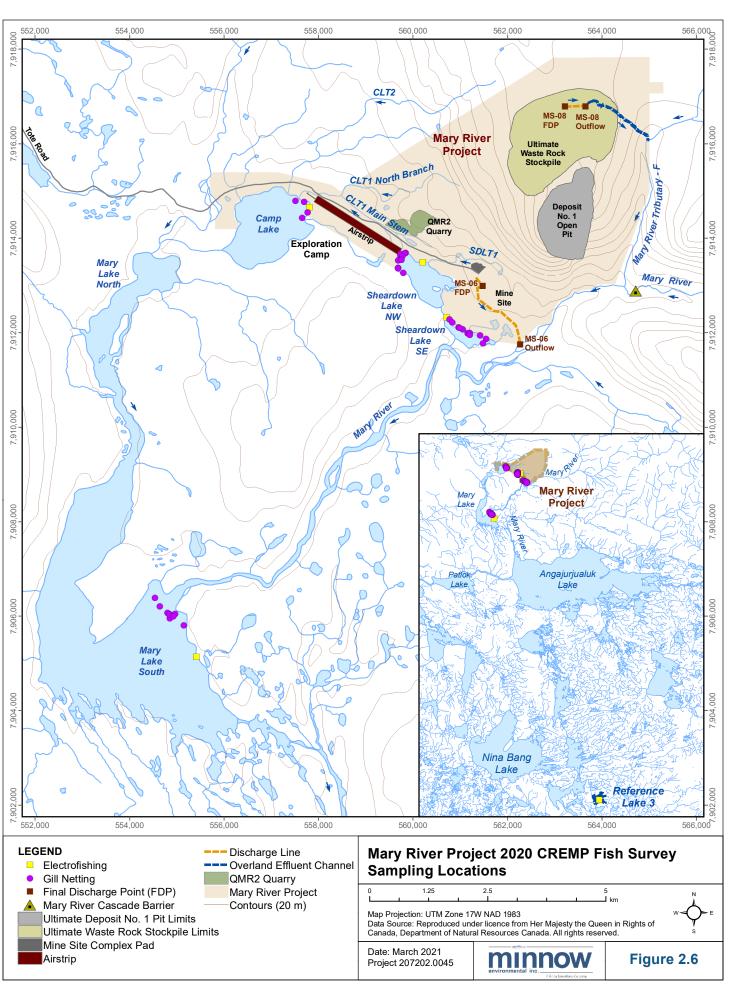
Statistical comparisons of benthic invertebrate community metrics and community composition endpoints, with the exception of Bray-Curtis Index, were conducted using the same tests described for the in situ water quality comparisons (see Section 2.2.2). Pair-wise differences between the mine-exposed and reference areas were preferentially tested using Student's t-tests on untransformed, normally distributed data. However, if data were determined to be non-normal, transformations including log₁₀ and log₁₀(x+1) were applied to the data and evaluated for normality. The transformation that resulted in normal data with lowest skew and kurtosis values was then used for statistical testing using Students t-tests. In instances where normality could not be achieved through data transformation, non-parametric Mann-Whitney U-tests were used for the pair-wise comparisons on rank transformation. Statistical comparisons were conducted using R programming (R Foundation for Statistical Computing, Vienna, Austria). An effect on benthic invertebrate communities was defined as a significant difference between any paired mine-exposed and reference areas at a p-value of 0.10. For each endpoint that differed significantly, a magnitude of difference was calculated between study area means. Because the benthic survey was designed to have sufficient power to detect a difference (effect size) of ± two SD, the magnitude of the difference was calculated to reflect the number of reference mean standard deviations (SD_{REF}) using equations provided by Environment Canada (2012). A Critical Effect Size for the benthic invertebrate community study (CES_{BIC}) of ± 2 SD_{REF} was used to define ecologically relevant 'effects', which is analogous to differences beyond those expected to occur naturally between two areas that are uninfluenced by anthropogenic inputs (i.e., between pristine reference areas; see Munkittrick et al. 2009; Environment Canada 2012).

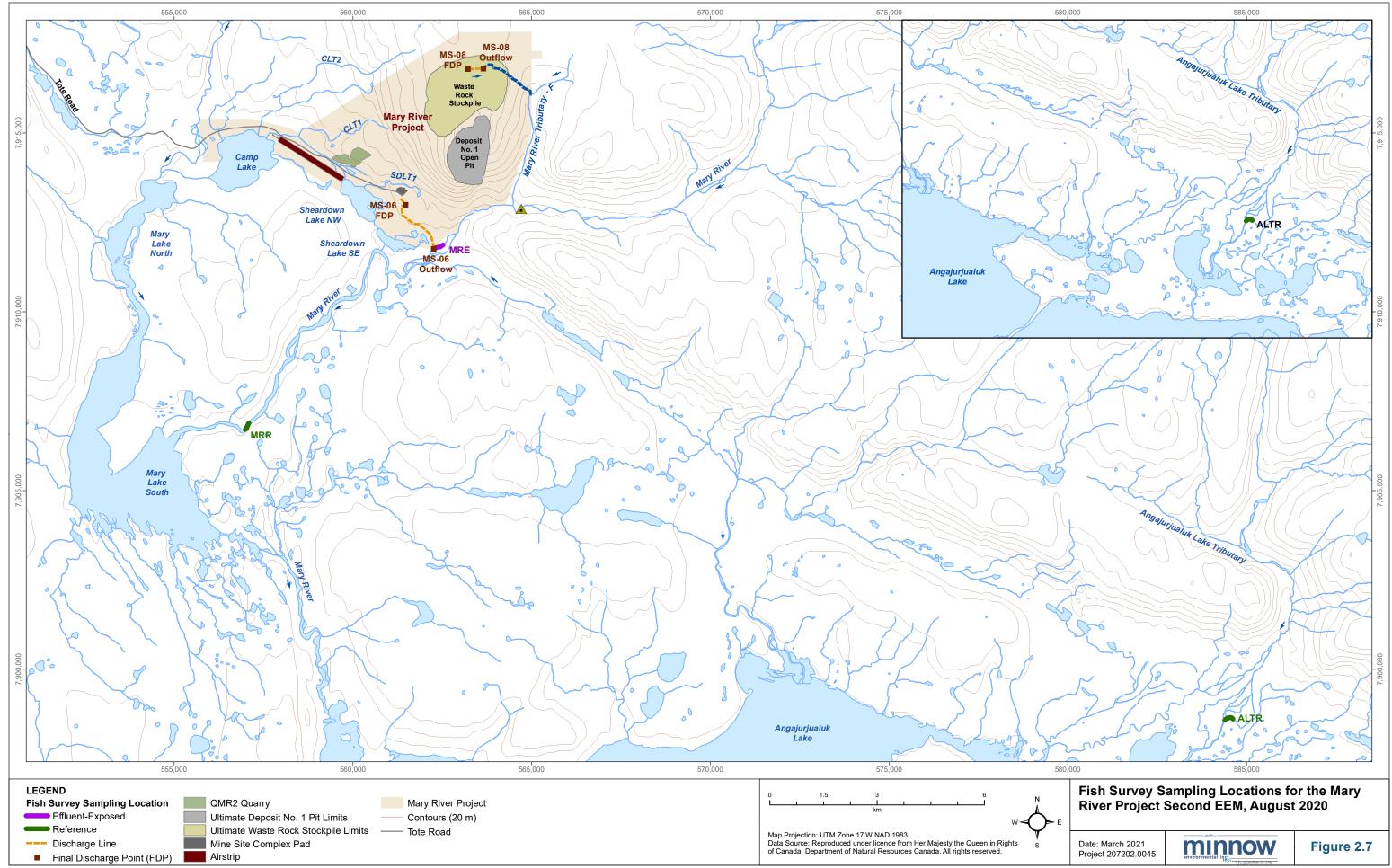
The Bray-Curtis Index was used to evaluate community level differences between study areas, and was computed and assessed statistically using procedures recommended for federal EEM studies (i.e., Borcard and Legendre 2013). Specifically, community level differences between study areas were assessed in a pairwise fashion using In-transformed abundance data, and with homogeneity of group variance calculated according to the PERMDISP2 procedure provided by Anderson (2006). A Mantel Test and distance-based Redundancy Analysis (dbRDA) was then used to determine potential differences in community structure between study areas using R statistical software (as per Borcard and Legendre 2013).

Temporal comparisons included statistical evaluations among the baseline and 2015 to 2020 data for primary benthic metrics (i.e., density, richness, Simpson's Evenness), dominant invertebrate groups, and FFG using univariate tests (e.g., ANOVA) and pair-wise *post hoc* tests. The temporal statistical comparisons were conducted using the same tests, transformations, assumptions, and software described above for the *in situ* water quality comparisons based on a multiple group analysis (see Section 2.2.2). Tukey's HSD *post hoc* tests were used in instances where normal data showed equal variance, and Tamhane's *post hoc* tests were used in instances where

normal data showed unequal variance (for the multiple group temporal comparisons). Similar to the 2020 within-year statistical analyses, the magnitude of difference was calculated for endpoints that differed significantly between years in the *post hoc* tests, which was then compared to the benthic survey CES_{BIC} of within SDs of the baseline year mean (abbreviated as ±2 SD_{BL-year}).

2.4.3 Fish Population


2.4.3.1 General Design


The CREMP fish population survey outlines a non-lethal sampling design to evaluate potential mine-related effects on the fish population (e.g., age structure, condition) at the The fish population survey targeted arctic charr mine-exposed lakes (Baffinland 2015). (Salvelinus alpinus) primarily because this species is the most abundant in the mine's regional lakes and sufficient baseline catch and measurement data exist to allow application of a before-after statistical evaluation. Arctic charr are also important as an Inuit subsistence food source. The approach employed for the CREMP fish population survey closely mirrored the recommended EEM approach for non-lethal sampling (Environment Canada 2012). Specifically, the fish population survey targeted the collection of approximately 100 arctic charr from nearshore lake habitat and 100 arctic charr from littoral/profundal lake habitat. The four mine-exposed study lakes used for the fish population survey were the same as those used to document baseline conditions, namely Camp, Sheardown NW, Sheardown SE, and Mary lakes (Figure 2.6). Unlike CREMP studies conducted from 2015 to 2017, enough arctic charr were captured at Reference Lake 3 nearshore and littoral/profundal areas to allow statistical evaluation of potential health effects on arctic charr populations at the mine-exposed lakes. Therefore, the 2020 CREMP fish population survey included separate comparisons of arctic charr collected at nearshore and littoral/profundal habitats between the mine-exposed lakes and reference lake, as well as comparisons of fish from nearshore and littoral/profundal zones of individual mine-exposed lakes before and after the commencement of the Mary River Project commercial mine operations. In addition to the CREMP data, EEM fish population survey and fish tissue data collected from Mary River near- and far-field mine-exposed areas, as well as an unnamed tributary to Angajurjualuk Lake in 2020 (Figure 2.7; Minnow 2020) have been summarized in this CREMP report to consolidate all available fish population information applicable to the mine receiving environment.

2.4.3.2 Sample Collection

Nearshore areas of study lakes used for the CREMP study and streams/rivers used for the EEM study were sampled for arctic charr using a battery powered backpack electrofishing unit (Model LR-24, Smith-Root Inc., Vancouver, WA). An electrofishing team, consisting of the

backpack electrofisher operator and a single netter, conducted a single fishing pass at up to two shoreline reaches of each study lake and each lotic study area (Figure 2.6). The number of passes conducted at each lake/lotic study area was dependent upon catch success, with an additional pass required in instances where target sample numbers were not cumulatively attained. All fish captured during each pass were retained in buckets containing aerated water. At the conclusion of each pass, total fishing effort (i.e., electrofishing seconds) was recorded to allow calculation of time-standardized catch. All captured fish were identified to species and enumerated, following which any non-target species were released alive at the area of capture. All captured arctic charr were temporarily retained for processing using methods described in Section 2.4.3.3. For each electrofishing pass, GPS coordinates were recorded at the boundaries of each electrofishing reach.

Littoral/profundal areas of the study lakes were sampled for arctic charr using experimental (gang index) gill nets. Multiple-panel, 2 m high gill nets with total lengths ranging from 61 to 91 m (200' to 300') and bar mesh sizes ranging from 38 to 76 mm (1.5" to 3") were set on the bottom for short durations (range from 0.5 to 2.9 hours per set; average of 1.4 hours) during daylight hours. Upon retrieval of each net, all captured fish were identified to species, enumerated, and processed (see below) separately for each individual gill net panel mesh size. For each gill net set, information including mesh size, duration of sampling, and GPS coordinates were recorded.

2.4.3.3 Field and Laboratory Processing

Following completion of each electrofishing pass and retrieval of each individual gill net panel, all captured arctic charr were subject to processing in the field. For all live captures, the external condition of each fish was assessed visually for the presence of any deformities, erosions, lesions, and tumors (DELT), in addition to evidence of external and/or internal parasites. All observations were recorded on field sheets, with supporting photographs taken as appropriate. Each fish was then subject to measurement of fork and total length to the nearest millimetre using a standard measuring board. Following length measurements, fish captured by electrofisher were individually weighed to the nearest milligram using an Ohaus Model 123 Scout-Pro analytical balance (Ohaus Corp., Pine Brook, NJ) with a surrounding draft shield. For arctic charr captured by gill net, individuals were weighed using Pesola™ spring scales (Pesola AG, Baar Switzerland) demarcated at intervals of 1 to 2% of the total scale range and providing accuracy of ±0.3% of the fish mass. The Pesola™ spring scale for individual weight measurement of gill-net captured fish was selected so that the fish weight was near the top of the scale's range to ensure that measurements achieved a resolution near 1%. All live arctic charr that were not

selected for the collection of aging structures were released near the location of capture following measurements.

As specified for EEM non-lethal fish population surveys (see Environment Canada 2012), approximately 10% of the targeted number of arctic charr captured using electrofishing methods were sacrificed for collection of age structures. Otoliths were removed from all sacrificed individuals for age determination. Upon removal, otoliths were wrapped separately in wax paper, placed inside envelopes labelled with the fish identification, and then dried for storage. Otoliths were shipped to North Shore Environmental Services (NSES; Thunder Bay, ON) for age determination. At the laboratory, otoliths were prepared for aging using a "crack and burn" method. The prepared samples were mounted on a glass slide using a mounting medium and examined under a compound microscope using transmitted light to determine fish age. For each otolith, the age and edge condition were recorded along with a confidence rating for the age determination.

2.4.3.4 Data Analysis

Fish community data from the mine-exposed and reference study areas were compared based on total catch and catch-per-unit-effort (CPUE) for each sampling method. Electrofishing CPUE was calculated as the number of fish captured per electrofishing minute for each lake nearshore or lotic study area, and gill netting CPUE was calculated as the number of fish captured per 100 metre·hours of net used for each study lake. Temporal comparison of fish community assemblage was conducted qualitatively using electrofishing CPUE and gill netting CPUE to evaluate relative changes in fish catches at mine area lakes between mine baseline and individual years of mine operation from 2015 to 2020.

Arctic charr population health was assessed separately for electrofishing and experimental gill netting data sets. Initial data analysis included the plotting of length frequency distributions so that, together with appropriate age data, young-of-the-year (YOY) individuals could be distinguished from the older juvenile/adult life stages (electrofishing data set), or various size/age classes could be distinguished from one another (gill netting data set). Where sample sizes allowed, the YOY age class was assessed separately from the older juvenile/adult age classes for lake nearshore fish survey endpoints. Fish size endpoints of fork length and fresh body weight were summarized by separately reporting mean, median, minimum, maximum, standard deviation, standard error, and sample size by age class (if possible) for each study area. Measurement endpoints were used as the basis for evaluating four response categories (survival, growth, reproduction, and energy storage; Table 2.6) according to the procedures outlined for EEM by Environment Canada (2012). Length-frequency distributions were compared between the mine-exposed lakes and the reference lake or between lotic study areas using data

Table 2.6: Fish Population Survey Endpoints Examined for the Mary River Project CREMP 2020 Study

Response Category	Endpoint	Statistical Procedure ^{c,d,e}	Critical Effect Size
Survival	Length-frequency distribution ^a	K-S Test	not applicable
Energy Use	Size (fresh body weight) ^b	ANOVA	25%
(size)	Size (fork length) ^b	ANOVA	25%
Energy Use (reproduction)	Relative abundance of YOY (% composition) ^b	K-S Test	not applicable
Energy Storage	Condition (body weight against length) ^a	ANCOVA	10%

^a Endpoints used for determining "effects" as designated by statistically significant difference between mine-exposed and reference areas (Environment Canada 2012).

^b These analyses are for informational purposes and significant differences between exposure and reference areas are not necessarily used to designate an effect (Environment Canada 2012).

^c ANOVA (Analysis of Variance) used except for non-normal data, where Mann Whitney U-tests were used.

^d ANCOVA (Analysis of Covariance). For the ANCOVA analyses, the first term in parentheses is the endpoint (dependent variable Y) that is analyzed for an effluent effect. The second term in parentheses is the covariate, X (age, weight, or length).

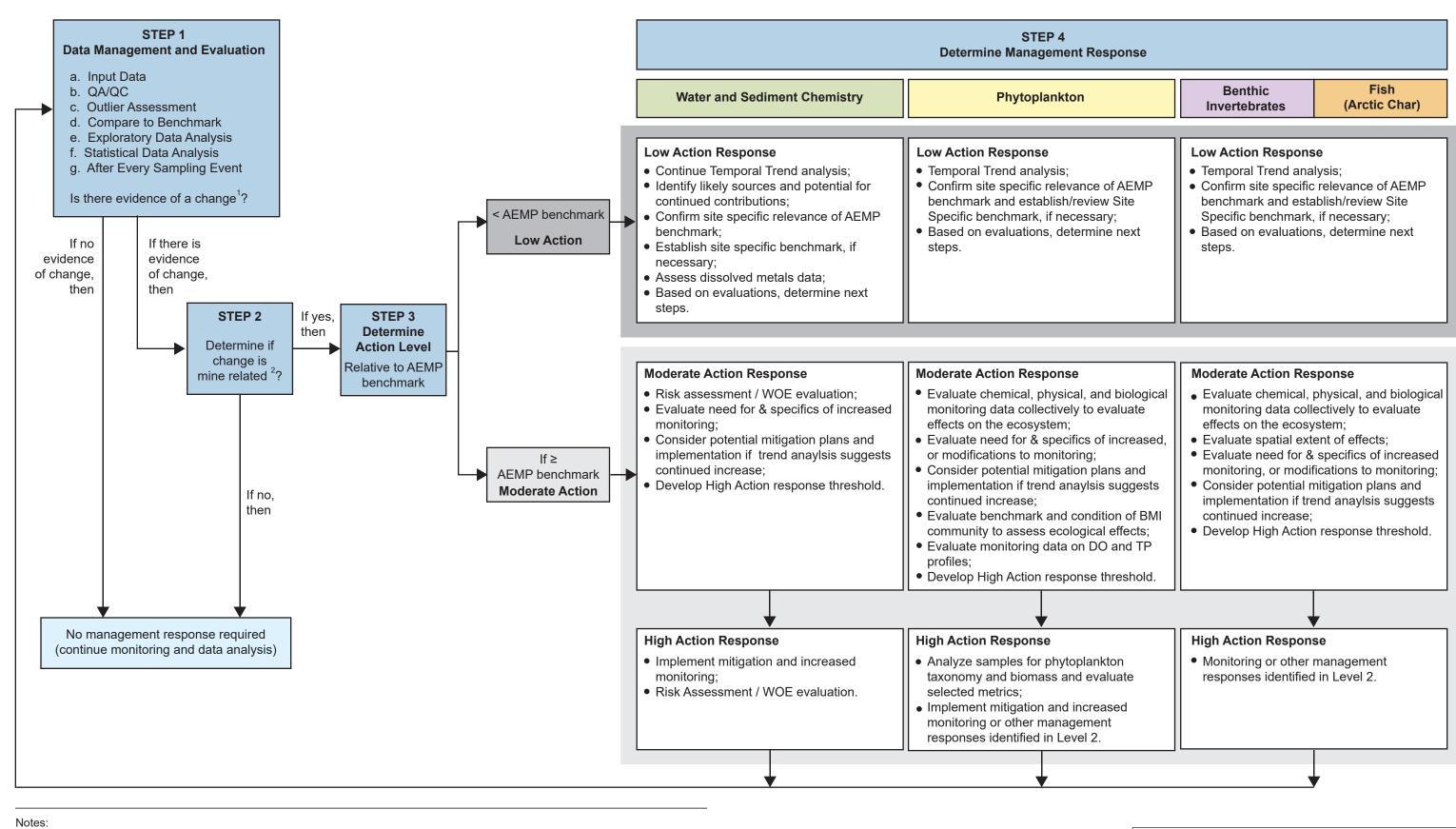
^e K-S Test (Kolmogorov-Smirnov test).

collected in 2020, and between the combined baseline period and 2020 for individual lakes (i.e., before-after analysis), using a non-parametric two-sample Kolmogorov-Smirnov (KS) test. Potential differences in reproductive success between paired study areas were based on evaluation of the relative proportion of arctic charr YOY between the mine-exposed and reference areas, and by comparing the results of KS tests conducted with and without YOY individuals included in the data sets.

Mean fork length and body weight were compared between mine-exposed and reference study areas using data collected in 2020, and between the mine baseline period and 2020. Data were evaluated for normality and homogeneity of variance before applying parametric statistical tests such as ANOVA. In cases where data did not meet the assumptions of ANOVA despite log-transformation, a non-parametric Mann-Whitney U-test was used to test for differences between study areas or study periods. Body weight at fork length (condition) was compared using Analysis-of-Covariance (ANCOVA). Prior to conducting the ANCOVA tests, scatter plots of all variable and covariate combinations were examined to identify outliers, leverage values, or other unusual data. The scatter plots were also examined to ensure that there was adequate overlap between the 2020 mine-exposed and reference area data, or between the 2020 mine-exposed and baseline data, and that there was a linear relationship between the variable and the covariate. To verify the existence of a linear relationship, each relationship was tested using linear regression analysis by area and evaluated at an alpha level of 0.05. If it was determined that there was no significant linear regression relationship between the variable and covariate for the 2020 mine-exposed area and the reference data or mine-exposed area baseline data, then the ANCOVA was not performed.

Once it was determined that ANCOVA could be used for statistical analysis, the first step in the ANCOVA was to test whether the slopes of the regression lines between data sets were equal. This was accomplished by including an interaction term (dependent × covariate) in the ANCOVA model and evaluating if the interaction term was significantly different, in which case the regression slopes would not be equal between data sets and the resulting ANCOVA would provide spurious results. In such cases, the options considered to determine if a full ANCOVA could proceed included 1) removal of influential points using Cook's distance and re-assessment of equality of slopes; and/or, 2) Coefficients of Determination that considered slopes equal regardless of an interaction effect (Environment Canada 2012). For the Coefficients of Determination, the full ANCOVA was completed to test for main effects, and if the r² value of both the parallel regression model (interaction term) and full regression model were greater than 0.8 and within 0.02 units in value, the full ANCOVA model was considered valid (Environment Canada 2012). If both methods proved unacceptable, a statistically significant interaction effect (slopes are not equal) was noted, and the magnitude of effect was estimated at

both the minimum and maximum overlap of covariate variables between areas (Environment Canada 2012). If the interaction term was not significant (i.e., homogeneous slopes between the two populations), then the full ANCOVA model was run without the interaction term to test for differences in adjusted means between the two data sets. The adjusted mean was then used as an estimate of the population mean based on the value of the covariate in the ANCOVA model.


For endpoints showing significant differences, the magnitude of difference between 2020 mine-exposed and reference data or between 2020 and baseline data was calculated as described by Environment Canada (2012) using mean (ANOVA), adjusted mean (ANCOVA with no significant interaction), or predicted values (ANCOVA with significant interaction). The anti-log of the mean, adjusted mean, or predicted value was used in the equations for endpoints that were log₁₀-transformed. If there was no significant difference between data sets, the minimum detectable effect size was calculated as a percent difference from the reference mean/mine-exposed baseline mean for ANOVA or adjusted reference mean/mine-exposed baseline mean for ANCOVA at alpha = beta = 0.10 using the square root of the mean square error (generated during either the ANOVA or ANCOVA procedures) as a measure of variability in the sample population based on formula provided by Environment Canada (2012). Finally, if outliers or leverage values were observed in a data set (or sets) upon examination of scatter plots and residuals, then the values were removed and ANOVA or ANCOVA tests were repeated and presented for both the complete and reduced data sets. Similar to the CES applied to the benthic invertebrate community survey, a magnitude of difference of \pm 10% was applied for condition (CES_C), to define ecologically relevant differences consistent with those recommended for EEM (Table 2.6; Munkittrick et al. 2009; Environment Canada 2012).

Finally, an *a priori* power analysis was completed to determine appropriate fish sample sizes for future surveys as recommended by Environment Canada (2012). These analyses were completed based on the mean square error values generated during the ANOVA or ANCOVA procedures and were calculated with alpha and beta set equally at 0.10. Two main assumptions served as the basis for the power analysis. The first assumption was that the fish caught in each of the mine-exposed and reference areas in 2020, or at mine-exposed areas in 2020 and baseline, were representative of the population at large (i.e., similar distribution and variance with respect to the parameters examined). The second assumption was that the characteristics of the populations would not change substantially prior to the next study. The power analysis results were reported as the minimum sample size (number of fish/area) required to detect a given magnitude of difference (effect size) between the mine-exposed and reference area/baseline populations for each endpoint. The magnitude of difference was presented as a percentage decrease or increase of the reference area/baseline mean for each endpoint as measured during

the fish population study using the observed pooled standard deviation of the residuals from ANOVA or parallel slope ANCOVA model.

2.5 Effects Assessment

The objective of the Mary River Project 2020 CREMP was to evaluate potential mine-related influences on chemical and biological conditions at aquatic environments located near the mine following the sixth full year of mine operation. The 2020 CREMP incorporated an effects-based approach that included standard EEM techniques to provide rigorous evaluation of potential minerelated effects at key waterbodies that receive mine-related deposits from various mine effluents. surface runoff, and aerial deposition of dust originating from mine operations. Under this approach, water quality and sediment quality data were used to support the interpretation of phytoplankton, benthic invertebrate community, and fish population survey data collected at mine-exposed areas of the Camp Lake, Sheardown Lake, Mary River, and Mary Lake systems. The evaluation of potential mine-related effects within these systems was based upon comparisons of the 2020 data to applicable reference data, to available baseline data, and to guidelines that included site-specific AEMP benchmarks. The latter were developed to guide management response decisions within a four-step Assessment Approach and Management Response Framework as outlined in the Mary River Project AEMP (Figure 2.8; Baffinland 2015). An effects determination was conducted for all key waterbodies located within each of the Camp Lake, Sheardown Lake, Mary River, and Mary Lake systems which included summarization of instances in which the Mary River Project AEMP benchmarks for water quality and sediment quality were exceeded at waterbodies examined under the CREMP. Based on weight-ofevidence that considered incidences in which the AEMP benchmarks were exceeded and corroboration of adverse influences on aquatic biota based on the results of biological monitoring, the effects determination identified potential biological effects at these waterbodies in 2020 and, where appropriate, provided recommendation(s) for future study to assist Baffinland with decisions regarding appropriate management actions.

- 1. Statistical or qualitative change when compared to:
- a) benchmark,
- b) baseline values.
- c) temporal or spatial trends
- 2. Mine related changes are a result of the mine and associated facilities including but not limited to effects from effluent discharges and dust deposition that are distinguished from natural causes or variation.

Baffinland Mary River Project AEMP Data Assessment Approach and Response Framework

Date: March 2021 Project 207202.0045

Figure 2.8

3 CAMP LAKE SYSTEM

3.1 Camp Lake Tributary 1 (CLT1)

3.1.1 Water Quality

Camp Lake Tributary 1 (CLT1) dissolved oxygen was consistently near full saturation at the north branch and main stem stations during all spring, summer, and fall monitoring events, and were comparable to, or slightly higher than, concentrations at the reference creeks (Appendix Tables C.1 to C.3; Figure 3.1). In addition, dissolved oxygen concentrations at CLT1 north branch and lower main stem stations were above the WQG lowest acceptable concentration for early life stages of cold-water biota (i.e., 9.5 mg/L) at the time of biological sampling in August 2020 (Figure 3.1; Appendix Table C.12). No consistent spatial patterns in pH were shown with progression downstream through the CLT1 north branch (Stations L1-08 to L1-02) and main stem (Stations L2-03 to L0-01) stations for each of the spring, summer, and fall monitoring events (Appendix Tables C.1 to C.3). Although pH was significantly higher at CLT1 compared to Unnamed Reference Creek during the fall sampling event in August 2020, the pH at all CLT1 stations was consistently within WQG limits in 2020 in all spring, summer, and fall sampling events (Figure 3.1; Appendix Tables C.1 to C.3). No significant difference in pH was indicated between CLT1 north branch and lower main stem in August 2020, indicating no substantial influence of the Milne Inlet Tote Road on in-stream pH (Figure 3.1; Appendix Table C.12).

Specific conductance at CLT1 was generally highest in the upper main stem (Station L2-03) and lowest in the north branch (Stations L1-02 and L1-08), with intermediate values observed at the lower main stem stations reflecting mixing of these two branches and suggesting a potential mine-related source affecting water quality of the CLT1 upper main stem (Appendix Tables C.1 to C.3, and C.12). Specific conductance was consistently higher at CLT1 compared to the reference creek stations over the spring, summer, and fall sampling events in 2020 (Appendix Tables C.1 to C.3, and C.13), and was also significantly higher at CLT1 compared to Unnamed Reference Creek during the August 2020 biological study (Figure 3.1). No significant difference in specific conductance was indicated between the CLT1 north branch and lower main stem in August 2020 (Appendix Table C.12), suggesting that the source of elevated specific conductance was unrelated to the Milne Inlet Tote Road but rather was associated with the upper portion of the CLT1 system.

At the CLT1 north branch stations (L1-08 and L1-02), water chemistry met AEMP benchmarks and WQG in 2020 except for copper concentrations, which were elevated relative to one or both criteria during the spring, summer, and fall sampling events (Table 3.1; Appendix Table C.14). However, like most parameters, copper concentrations at the CLT1 north branch were not

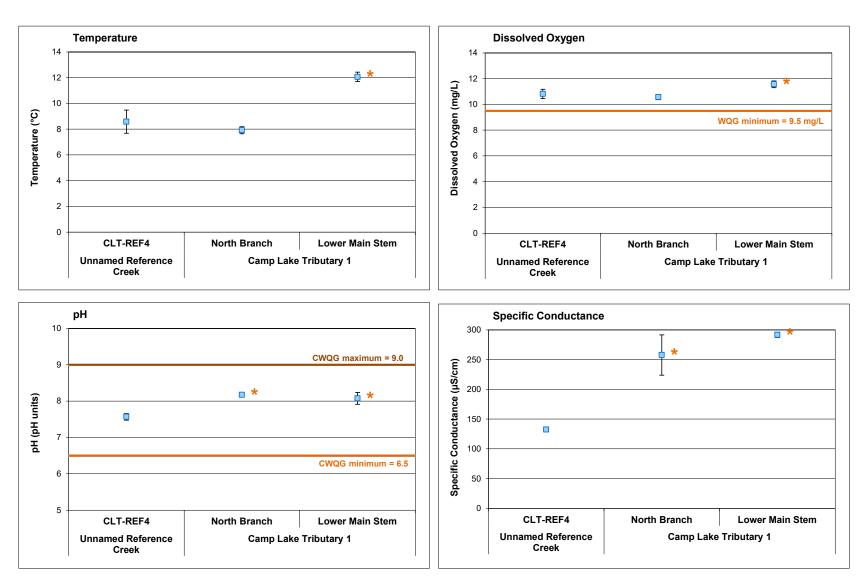


Figure 3.1: Comparison of In Situ Water Quality Variables (mean \pm SD; n = 5) Measured at Camp Lake Tributary 1 Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Note: An asterisk (*) next to data point indicates mean value differs significantly from the Unnamed Reference Creek mean.

Table 3.1: Mean Water Chemistry at Camp Lake Tributary 1 (CLT1) Monitoring Stations During Spring, Summer, and Fall, Mary River Project CREMP, 2020

					Reference Creeks (n=4)				North Branch		Upp	er Main Stem (L2	2-03)	Lower Main Stem		
	Parameters	Units	Water Quality Guideline (WQG) ^a	AEMP Benchmark ^b	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall
a	Conductivity (lab)	umho/cm	-	-	55	134	175	111	192	216	258	393	449	155	282	300
ntionals ^b	pH (lab)	рН	6.5 - 9.0	-	7.63	8.01	8.05	8.04	8.14	8.14	8.16	8.01	8.11	8.19	8.23	8.23
Ö	Hardness (as CaCO ₃)	mg/L	-	-	23.6	57.05	82.6	52.2	90.5	112.5	103	147	191	70	128	149
nti	Total Suspended Solids (TSS)	mg/L	-	-	3.2	2.7	2	2.35	2	2	9.9	<2.0	<2.0	2.2	2.0	2.0
	Total Dissolved Solids (TDS)	mg/L	•	-	85	85	99	86	101	54	158	191	236	110	132	110
Sonv	Turbidity	NTU	1	-	1.87	6.62	2.49	1.21	0.19	0.18	15.80	2.38	2.62	2.31	0.79	0.88
0	Alkalinity (as CaCO ₃)	mg/L	•	-	24	61	69	53	94	101	93	138	156	69	122	133
	Total Ammonia	mg/L	•	0.855	0.01	0.01225	0.01	0.01	0.01	0.016	0.064	0.024	0.036	0.010	0.010	0.013
ᅙ	Nitrate	mg/L	3	3	0.020	0.062	0.076	0.051	0.074	0.075	1.03	1.520	1.710	0.149	0.280	0.350
an Ss	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.005	0.005	0.005	0.0089	0.0099	0.0124	0.005	0.005	0.005
lts ini	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.02	0.15	0.15	0.05	0.15	0.15	1.04	0.32	0.54	0.15	0.16	0.18
ras ras	Dissolved Organic Carbon	mg/L	-	-	1.93	3.44	2.31	2.65	3.01	2.51	4.79	6.01	8.00	3.41	4.76	3.79
불이	Total Organio Garbon	mg/L	-	-	2.23	3.05	2.14	3.50	3.85	2.86	5.87	7.48	6.86	4.68	5.51	4.08
2	Total Phosphorus	mg/L	0.030 ^a	-	0.0045	0.0065	0.0039	0.0037	0.0030	0.003	0.0197	0.0093	<0.0030	0.0082	0.0031	0.0030
	Phenols	mg/L	0.004 ^a	-	0.0010	0.0010	0.0021	0.0010	0.0013	0.0010	<0.0010	0.0012	0.0018	0.0010	0.0010	0.0013
ns	Bromide (Br)	`	-	-	0.10	0.1	0.1	0.1	0.1	0.1	<0.10	<0.10	<0.10	0.1	0.1	0.1
Anions	Chloride (CI)	mg/L	120	120	1.2	4.07	7.09	1.42	3.01	4.53	16.4	27.70	34.4	4.4	11.2	14.7
¥	Sulphate (SO ₄)	mg/L	218 ^β	218	1.31	5.52	9.25	2.57	5.17	7.25	8.22	16.40	19.60	3.48	7.97	11.13
	Aluminum (AI)	mg/L	0.100	0.179	0.0775	0.3106	0.0593	0.0194	0.0087	0.0080	0.2700	0.0495	0.0979	0.0566	0.0154	0.0124
	Antimony (Sb)	mg/L	0.020 ^a	-	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	<0.00010	<0.00010	<0.00010	0.0001	0.0001	0.0001
	Arsenic (As)	mg/L	0.005	0.005	0.00010	0.00013	0.00010	0.00010	0.00010	0.00010	0.00018	0.00015	0.00014	0.00010	0.00010	0.00010
	Barium (Ba)	mg/L	-	-	0.00362	0.00948	0.01031	0.00758	0.01215	0.01365	0.01240	0.01510	0.01800	0.00889	0.01470	0.01620
	Beryllium (Be)	mg/L	0.011 ^a	-	0.0005	0.0004	0.0005	0.0005	0.0005	0.0005	<0.00050	<0.00050	<0.00050	0.0005	0.0005	0.0005
	Bismuth (Bi)	mg/L	-	-	0.0005	0.0003875	0.0005	0.0005	0.0005	0.0005	<0.00050	<0.00050	<0.00050	0.0005	0.0005	0.0005
	Boron (B)	mg/L	1.5	-	0.01	0.01	0.01	0.010	0.010	0.010	0.017	0.025	0.023	0.010	0.012	0.012
	Cadmium (Cd)	mg/L	0.00012	0.00008	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	<0.000010	<0.000010	<0.000010	0.00001	0.00001	0.00001
	Calcium (Ca)	mg/L	-	-	4.9	11.8	16.5	10.2	17.8	21.8	20.6	29.4	35.7	14.1	25.3	28.1
	Chromium (Cr)	mg/L	0.0089	0.0089	0.00050	0.00082	0.00050	0.00050	0.00050	0.00050	0.00059	<0.00050	<0.00050	0.00050	0.00050	0.00050
	Cobalt (Co)	mg/L	0.0009^{α}	0.0040	0.00010	0.00016	0.00010	0.00010	0.00010	0.00010	0.00027	0.00019	0.00024	0.00010	0.00010	0.00010
	Copper (Cu)	mg/L	0.002	0.0022	0.00071	0.00115	0.00102	0.00206	0.00222	0.00216	0.00164	0.00134	0.00159	0.00185	0.00194	0.00196
	Iron (Fe)	mg/L	0.30	0.326	0.077	0.2425	0.06625	0.030	0.030	0.030	0.420	0.423	0.522	0.080	0.123	0.100
S	Lead (Pb)	mg/L	0.001	0.001	0.000107	0.000226	0.000092	0.000053	0.000050	0.000050	0.000987	0.000092	0.000222	0.000102	0.000050	0.000050
Metals	Lithium (Li)	mg/L	-	-	0.0010	0.0011	0.0010	0.0010	0.0013	0.0013	0.0033	0.0042	0.0042	0.0015	0.0026	0.0026
Me	Magnesium (Mg)	mg/L	-	-	2.86	6.7	9.6	6.4	11.2	13.9	13.1	19.1	24.2	8.8	15.7	18.2
<u>10</u>	Manganese (Mn)	mg/L	0.935^{β}	-	0.00136	0.00300	0.00102	0.00078	0.00063	0.00061	0.01970	0.03230	0.03820	0.00338	0.00846	0.00766
Total	Mercury (Hg)	mg/L	0.000026	-	0.0000050	0.000005	0.000005	0.000005	0.000005	0.000005	<0.000050	<0.0000050	<0.000050	0.000005	0.000005	0.000005
'	Molybdenum (Mo)	mg/L	0.073	-	0.00015	0.00045	0.00057	0.00050	0.00116	0.00127	0.00199	0.00361	0.00385	0.00073	0.00132	0.00148
	Nickel (Ni)	mg/L	0.025	0.025	0.00050	0.00070	0.00057	0.00055	0.00057	0.00057	0.00711	0.00139	0.00165	0.00082	0.00108	0.00100
	Potassium (K)	mg/L	-	-	0.45	0.93	1.04	1.43	2.30	2.56	2.85	4.05	4.40	1.67	2.64	2.80
	Selenium (Se)	mg/L	0.001	-	0.0010	0.0007625	0.001	0.001	0.001	0.001	<0.0010	<0.0010	<0.0010	0.001	0.001	0.001
	Silicon (Si)	mg/L	-	-	0.62	1.25	0.87	0.67	0.92	0.96	1.23	0.94	1.08	0.80	1.12	1.11
	Silver (Ag)	mg/L	0.00025	0.0001	0.000010	0.00002	0.00001	0.00001	0.00001	0.00001	<0.000010	<0.000010	<0.000010	0.00001	0.00001	0.00001
	Sodium (Na)	mg/L	-	-	0.83	2.76	3.97	0.68	1.52	1.84	9.30	16.00	19.00	2.43	5.82	7.00
	Strontium (Sr)	mg/L	-	-	0.00488	0.01391	0.01850	0.00630	0.01185	0.01465	0.02020	0.03110	0.03850	0.01100	0.02310	0.02707
	Thallium (TI)	mg/L	0.0008	0.0008	0.00010	0.00008	0.00010	0.00010	0.00010	0.00010	<0.00010	<0.00010	<0.00010	0.00010	0.00010	0.00010
	Tin (Sn)	mg/L	-	-	0.00010	0.0001	0.0001	0.0001	0.0001	0.0001	<0.00010	<0.00010	<0.00010	0.0001	0.0001	0.0001
	Titanium (Ti)	mg/L	-	-	0.011	0.0241	0.0100	0.0100	0.0100	0.0100	<0.010	<0.010	<0.010	0.0100	0.0100	0.0100
	Uranium (U)	mg/L	0.015	-	0.00045	0.00405	0.00737	0.00091	0.00454	0.00781	0.01500	0.02470	0.03320	0.00265	0.00736	0.01022
	Vanadium (V)	mg/L	0.006 ^α	0.006	0.0010	0.0012	0.0010	0.0010	0.0010	0.0010	<0.0010	<0.0010	<0.0010	0.0010	0.0010	0.0010
	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.003	0.003	0.003	0.003	0.003	0.0034	<0.0030	<0.0030	0.003	0.003	0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

Indicates parameter concentration above the AEMP benchmark.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake tributary system.

particularly elevated compared to the reference creek stations, with only total molybdenum and potassium concentrations showing slight elevation (i.e., 3- to 5-fold) at the CLT1 north branch but only during the spring sampling event in 2020 (Table 3.1; Appendix Tables C.14 and C.15). Total copper concentrations at the CLT1 north branch were, on average, higher in the spring of 2019 and 2020 compared to baseline, and in fall of all years of commercial mine production from 2015 to 2020 compared to baseline, but concentrations during summer were comparable between years of mine production from 2015 to 2020 and baseline (Appendix Figure C.2). Therefore, only a minor influence on water quality, reflected mainly by a slight elevation in copper concentrations, was indicated at the CLT1 north branch since commercial mine production commenced at the project in 2015.

At the CLT1 upper main stem (Station L2-03), mean concentrations of aluminum and iron were above their respective AEMP benchmarks in the spring sampling event and all spring, summer, and fall sampling events, respectively, in 2020 (Table 3.1). The total concentration of uranium was also elevated above WQG at the upper main stem in both summer and fall 2020 (Table 3.1). In addition to iron and uranium concentrations, chloride, nitrate, and total and dissolved manganese, molybdenum, and sodium concentrations were moderately (i.e., 5-fold to 10-fold) to highly (i.e., ≥10-fold) elevated at the CLT1 upper main stem compared to average concentrations at the reference creeks in two or more seasonal sampling events in 2020 (Table 3.1; Appendix Table C.15). Although total concentrations of aluminum and several other parameters were elevated at the CLT1 upper main stem during the spring sampling event compared to AEMP benchmarks and/or concentrations at the reference creeks, the elevation in these parameters appeared to be related to suspended minerals in the water column as indicated by elevated turbidity at the time of sampling (Appendix Table C.14).4 In contrast, dissolved concentrations of iron, manganese, molybdenum, sodium, and uranium were moderately to highly elevated at the upper main stem in two or more seasonal sampling events in 2020, and thus elevations of these metals (and chloride and nitrate) appeared to reflect a mine-related source. Of those parameters with AEMP benchmarks, only iron, manganese, nitrate, and sulphate concentrations were elevated at the CLT1 upper main stem in 2020 compared to baseline, of which only the concentration of iron was above site-specific AEMP benchmarks (Appendix Figure C.2). Molybdenum and uranium concentrations, which do not have AEMP

⁴ Total aluminum and iron concentrations were also above AEMP benchmarks and/or WQG at the MRY-REF3 lotic reference station in 2020, where higher turbidity typically occurs compared to the other reference creek stations (Appendix Table B.2). This suggested natural elevation of these metals in regional watercourses as a result, in part, of naturally greater amount of mineral/particulate matter suspended in the water at this station. Evaluation of dissolved concentrations of aluminum showed similar average concentrations between CLT1 stations and the reference creek stations, corroborating that total aluminum concentrations were associated with turbidity and suggesting that mine operations were not a key source of aluminum to the system (Appendix Tables C.4, C.16, and C.17).

benchmarks, also showed elevated concentrations at the CLT1 upper main stem in 2020 compared to baseline (Appendix Figure C.2).

At the CLT1 lower main stem (Stations L1-09, L1-05, and L0-01), water chemistry met all AEMP benchmarks and WQG over the duration of spring, summer, and fall sampling events in 2020, including for copper and iron concentrations which were elevated above the AEMP benchmarks at the north branch and upper main stem, respectively (Table 3.1; Appendix Table C.14). Nevertheless, manganese, nitrate, and uranium concentrations were moderately elevated at the CLT1 lower main stem compared to the reference creeks in one of the three seasonal sampling events in 2020 (Appendix Table C.15). Of those parameters with AEMP benchmarks, only copper, nitrate, and sulphate showed elevated concentrations in 2020 compared to baseline at the lower main stem (Appendix Figure C.2), of which the elevation in copper likely reflected a north branch source. Similar to the upper main stem, molybdenum and uranium concentrations, which do not have applicable AEMP benchmarks, were also elevated at the CLT1 lower main stem in 2020 compared to baseline (Appendix Figure C.2).

Higher iron, manganese, molybdenum, nitrate, and uranium concentrations at the CLT1 main stem and/or lower stem stations following the initiation of commercial mine operation potentially reflected blasting/excavating activity (including associated dust generation) at the Mine Site QMR2 Quarry⁵, as well as fugitive dust generation from increased truck usage on the Milne Inlet Tote Road, compared to the baseline period. The relatively high concentrations of nitrate over years of mine operation at CLT1 were consistent with the deposition of explosives residue from blasting at the QMR2 Quarry as the source of these compounds. Concentrations of total molybdenum and uranium were highest at CLT1 main stem stations in 2019 and 2020 compared to all previous years of mine operation, but concentrations of these parameters generally remained well below WQG suggesting low potential for biological effects (Appendix Figure C.2). Overall, mine-related influences on water quality of the CLT1 were primarily reflected as elevated conductivity and concentrations of copper at the north branch, and elevated concentrations of nitrate, chloride, sulphate, and total metals including manganese, molybdenum, sodium, and uranium, at the upper main stem station. Despite elevation of parameter concentrations at the CLT1 north branch and upper main stem, none were elevated above applicable AEMP benchmarks or WQG at the lower main stem prior to discharge to Camp Lake.

3.1.2 Sediment Quality

In-stream substrate at CLT1 upstream (north branch; CLT1-US) and downstream (lower main stem; CLT1-DS) study areas was composed mainly of cobble material (i.e., substrate with

⁵ The QMR2 quarry is used to provide material for mine infrastructure projects (e.g., road construction).

diameters of 6 to 25 cm), with sand constituting only a trace amount (i.e., <1%) of the material observed at the sediment surface (Minnow 2018). Sediment sampled for chemistry analysis at both CLT1 study areas was predominantly composed of medium-sized coarse sand (Appendix Table D.7). The TOC content of the sampled sediment was generally low (i.e., <2%) at both CLT1 study areas, but was elevated (i.e., 7.5 and 13.5-fold higher at CLT1-US and CLT1-DS, respectively) compared to average lotic reference conditions suggesting a slightly more depositional environment at CLT1 (Table 3.2; Appendix Tables D.8 to D.10).

Metal concentrations in sediment from CLT1-US and CLT1-DS were generally elevated compared to those measured at lotic reference areas (Appendix Table D.10). This was particularly the case for aluminum, barium, copper, magnesium, manganese, molybdenum, nickel, potassium, and zinc, for which mean concentrations were five-fold or greater at one or both of CLT1-US and CLT1-DS compared to the average at reference areas (Table 3.2; Appendix Table D.10). Of these metals, only manganese, molybdenum, and potassium, together with uranium and zirconium, occurred at concentrations 1.5 times or greater at the downstream area compared to the upstream area (Table 3.2), potentially reflecting an influence of the Milne Inlet Tote Road or other mine sources on metal concentrations in sediment at CLT1-DS. Despite higher metal concentrations in sediment at CLT1-DS compared to average lotic reference conditions, concentrations of all metals were well below applicable SQG at both CLT1 study areas (Table 3.2; Appendix Tables D.8 and D.9).

3.1.3 Phytoplankton

Chlorophyll-a concentrations at the upper-most CLT1 north branch station (Station L1-08) were lower than the mean concentration among reference creeks for spring, summer, and fall sampling events in 2020 (Figure 3.2). However, chlorophyll-a concentrations farther downstream within the north branch (i.e., Station L1-02) were generally comparable to chlorophyll-a concentrations at the reference creeks for all seasonal sampling events, suggesting no marked differences in phytoplankton abundance between the CLT1 north branch and the reference creek stations (Figure 3.2).

Within the CLT1 main stem, chlorophyll-a concentrations were generally highest at upstream-most Station L2-03 during spring, summer, and fall sampling events in 2020 (Figure 3.2). On average, chlorophyll-a concentrations were higher, but did not differ significantly, between the CLT1 main stem and reference creek stations during the spring and fall sampling events, but were significantly lower at the CLT1 main stem during the summer sampling event (Appendix Table E.2). Relatively high chlorophyll-a concentrations at Station L2-03 and in the CLT1 lower main stem during spring and summer sampling events potentially reflected higher nutrient (e.g., nitrate) concentrations compared to the reference creeks (Appendix Tables

Table 3.2: Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 1 (CLT1) and Lotic Reference Area Sediment Monitoring Stations, Mary River Project CREMP, August 2020

			Lotic Refere	ence Stations	Camp Lake Tributary 1				
Parameter	Units	SQGª	Unnamed Reference Creek (REFCRK; n = 3)	Mary River Reference (GO-09; n = 3)	Upstream CLT1-US (n = 3)	Downstream CLT1-DS (n = 3)			
			Average ± SD	Average ± SD	Average ± SD	Average ± SD			
TOC	%	10 ^α	0.12 ± 0.035	0.11 ± 0.012	0.88 ± 0.20	1.57 ± 1.72			
Aluminum (Al)	mg/kg	-	584 ± 185	2,757 ± 1,141	7,390 ± 537	5,847 ± 1,242			
Antimony (Sb)	mg/kg	-	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0			
Arsenic (As)	mg/kg	17	0.22 ± 0.11	0.38 ± 0.10	0.69 ± 0.12	0.67 ± 0.17			
Barium (Ba)	mg/kg	-	2.72 ± 0.722	12.6 ± 5.05	17.8 ± 3.22	26.2 ± 5.97			
Beryllium (Be)	mg/kg	-	<0.10 ± 0	0.14 ± 0.040	0.28 ± 0.032	0.23 ± 0.045			
Bismuth (Bi)	mg/kg	-	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0			
Boron (B)	mg/kg	-	<5.0 ± 0	5.4 ± 0.75	9.3 ± 0.85	5.5 ± 0.81			
Cadmium (Cd)	mg/kg	3.5	<0.020 ± 0	<0.020 ± 0	0.047 ± 0.0078	0.049 ± 0.0042			
Calcium (Ca)	mg/kg	-	494 ± 249	2,750 ± 894	2,660 ± 230	3,703 ± 948			
Chromium (Cr)	mg/kg	90	7.79 ± 5.39	13.6 ± 4.34	26.7 ± 2.40	21.2 ± 6.39			
Cobalt (Co)	mg/kg	-	0.953 ± 0.558	2.40 ± 0.758	6.40 ± 0.864	5.27 ± 1.42			
Copper (Cu)	mg/kg	110 ^α	1.21 ± 0.899	4.45 ± 2.50	23.9 ± 11.1	11.6 ± 4.95			
Iron (Fe)	mg/kg	40,000 ^α	12,493 ± 9,700	11,063 ± 2,423	22,833 ± 5,773	26,533 ± 9,287			
Lead (Pb)	mg/kg	91	1.49 ± 0.546	3.07 ± 0.857	4.13 ± 0.654	5.73 ± 2.39			
Lithium (Li)	mg/kg	-	<2.0 ± 0	5.0 ± 2.3	11.2 ± 0.462	7.8 ± 1.4			
Magnesium (Mg)	mg/kg	-	444 ± 165	2,810 ± 1,212	8,297 ± 274	6,910 ± 1,790			
Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	27.4 ± 14.6	76 ± 29.4	167 ± 34	247 ± 73			
Mercury (Hg)	mg/kg	0.486	<0.0050 ± 0	<0.0050 ± 0	0.0051 ± 0.00017	0.0059 ± 0.0015			
Molybdenum (Mo)	mg/kg	-	<0.10 ± 0	0.11 ± 0.023	0.29 ± 0.080	1.07 ± 0.436			
Nickel (Ni)	mg/kg	75 ^{α,β}	1.76 ± 0.920	6.11 ± 1.99	18.9 ± 1.55	23.4 ± 9.28			
Phosphorus (P)	mg/kg	2,000 ^α	167 ± 98	350 ± 118	261 ± 27.8	235 ± 84.7			
Potassium (K)	mg/kg	-	133 ± 42	750 ± 320	1,260 ± 120	2,127 ± 738			
Selenium (Se)	mg/kg	-	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0			
Silver (Ag)	mg/kg	-	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0			
Sodium (Na)	mg/kg	-	<50 ± 0	68 ± 21	78 ± 6.51	75 ± 22			
Strontium (Sr)	mg/kg	-	2.00 ± 0.544	4.72 ± 1.01	2.85 ± 0.195	4.0 ± 1.13			
Sulphur (S)	mg/kg	-	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0			
Thallium (TI)	mg/kg	-	<0.050 ± 0	0.068 ± 0.023	0.097 ± 0.021	0.122 ± 0.0321			
Tin (Sn)	mg/kg	-	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0			
Titanium (Ti)	mg/kg	-	83 ± 47	353 ± 123	442 ± 58	400 ± 60			
Uranium (U)	mg/kg	-	0.479 ± 0.247	0.922 ± 0.298	0.898 ± 0.0956	1.52 ± 0.510			
Vanadium (V)	mg/kg	-	16.8 ± 12.8	19.5 ± 5.06	24.3 ± 2.54	15.8 ± 4.95			
Zinc (Zn)	mg/kg	315	3.0 ± 1.2	10.3 ± 4.31	18.9 ± 2.22	26.3 ± 6.40			
Zirconium (Zr)	mg/kg	-	2.1 ± 0.91	5.8 ± 2.0	2.7 ± 0.10	4.7 ± 1.3			

Indicates parameter concentration above SQG.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

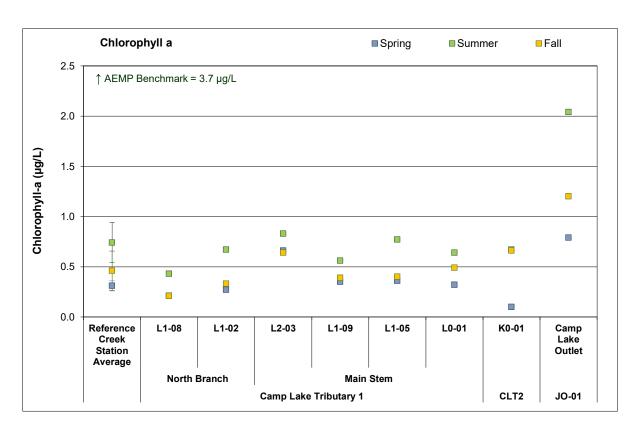


Figure 3.2: Chlorophyll-a Concentrations at Camp Lake Tributary 1 (CLT1) and Tributary 2 (CLT2) Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020

C.14 and C.15). Nevertheless, chlorophyll-a concentrations at all CLT1 north branch and main stem monitoring stations were well below the AEMP benchmark of 3.7 µg/L for all seasonal sampling events in 2020 (Figure 3.2). Similar to the reference creek stations, chlorophyll-a concentrations at all CLT1 stations in 2020 suggested (i.e., oligotrophic) low phytoplankton productivity based on Dodds et al. (1998) trophic status classification for stream environments (i.e., chlorophyll-a < 10 µg/L). This trophic status classification was also consistent with an 'ultra-oligotrophic' to 'oligotrophic' WQG categorization (CCME 2020) for CLT1 based on aqueous total phosphorus concentrations typically less than 10 µg/L at each CLT1 north branch and main stem station during all spring, summer, and fall sampling events (Appendix Table C.14).

Chlorophyll-a concentrations at the CLT1 north branch in fall 2020 were similar to, or lower than, those observed in the fall during the baseline period (i.e., 2005 to 2013; Figure 3.3). At the CLT1 main stem, chlorophyll-a concentrations were higher in mine operational years from 2015 to 2020 than during the mine baseline period except for at the CLT1 mouth (Station L0-01; Figure 3.3). However, no pattern of increasing chlorophyll-a concentrations was indicated among the years of mine operation at any of the CLT1 north branch or lower main stem stations, and concentrations were continuously lower than the AEMP benchmark of 3.7 µg/L from 2015 to 2020 (Figure 3.3). Overall, the spatial and temporal analyses of chlorophyll-a concentrations suggested that the mine operation may have contributed to slightly higher phytoplankton abundance at CLT1 main stem stations during spring and fall sampling events, but not at the north branch or at the mouth of the main stem compared to reference conditions. As indicated above, higher phytoplankton abundance within the CLT1 main stem was consistent with the occurrence of higher aqueous nutrient concentrations (e.g., nitrate) compared to water quality at the reference creeks. This suggested that slightly greater phytoplankton abundance at the CLT1 main stem was the result of current mine operations and specifically, the introduction of nutrients to the system because of active quarrying at the QMR2 pit. Despite slightly greater phytoplankton abundance at the CLT1 main stem stations than at the reference creeks in spring and fall of 2020, the CLT1 north branch and main stem have remained 'oligotrophic' since the commencement of commercial mine operation in 2015.

3.1.4 Benthic Invertebrate Community

3.1.4.1 Upstream North Branch (CLT1 US)

Benthic invertebrate density at the CLT1 upstream (north branch) was significantly greater than at the reference creek, and no significant differences in richness and Simpson's Evenness were indicated between the CLT1 north branch and Unnamed Reference Creek study areas (Table 3.3; Appendix Figure F.1). Differences in benthic invertebrate community assemblage between the

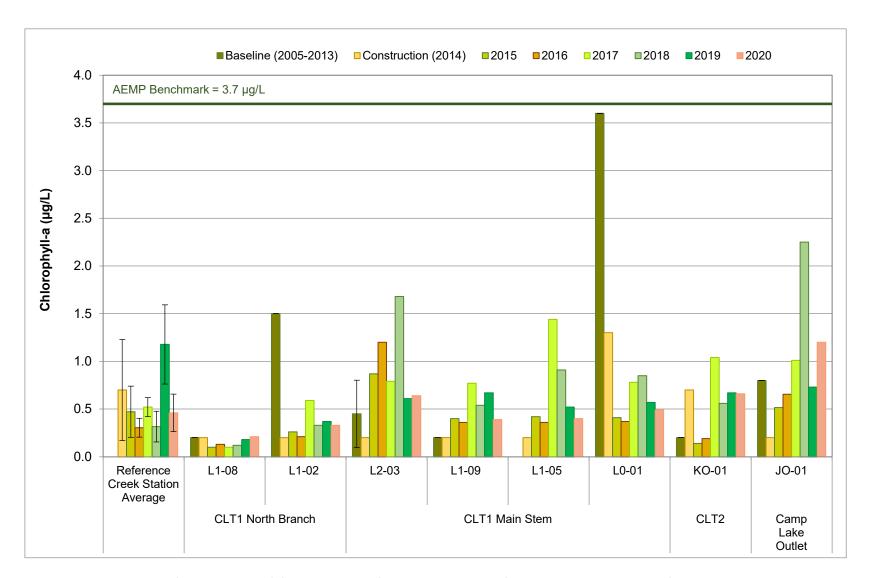


Figure 3.3: Temporal Comparison of Chlorophyll-a Concentrations at Camp Lake Tributary 1 (CLT-1) and Tributary 2 (CLT-2) for Mine Baseline (2005 to 2013), Construction (2014), and Operational (2015 to 2020) Periods during Fall

Note: Reference creek data represented by average (± SD; n = 4) calculated from CLT-REF and MRY-REF stations.

Table 3.3: Benthic Invertebrate Community Metric Statistical Comparison Results among Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

		Overall 3-Area	Comparison		Pair-wise, post hoc comparisons						
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Areas?	P-value	Study Area	Mean	Standard Deviation (SD)	Magnitude of Difference (Ref SD)	Pairwise Comparison		
,					Reference Creek	713	296	-	а		
Density (No. per m²)	ANOVA	none	YES	0.009	CLT1 Upstream	1,635	711	3.1	b		
(No. per m ²)					CLT1 Downstream	626	261	-0.3	а		
					Reference Creek	16.0	4.4	-	а		
Richness (No. of Taxa)	ANOVA	none	NO	0.358	CLT1 Upstream	19.2	2.5	0.7	а		
(NO. OF Taxa)					CLT1 Downstream	17.4	3.1	0.3	а		
					Reference Creek	0.840	0.043	-	а		
Simpson's Evenness	ANOVA	none	NO	0.216	CLT1 Upstream	0.884	0.032	1.0	а		
					CLT1 Downstream	0.828	0.067	-0.3	а		
					Reference Creek	0.7	1.3	-	а		
Nemata	ANOVA	log10(x+1)	NO	0.235	CLT1 Upstream	1.3	1.1	0.4	а		
(% of community)					CLT1 Downstream	2.1	1.0	1.0	а		
					Reference Creek	1.9	1.5	-	а		
Oligochaeta	ANOVA	log10	YES	0.004	CLT1 Upstream	4.4	1.3	1.6	b		
(% of community)	7.1.10.77				CLT1 Downstream	11.5	8.4	6.5	b		
					Reference Creek	4.5	3.7	-	a		
Hydracarina	ANOVA	log10(x+1)	NO	0.286	CLT1 Upstream	3.0	2.5	-0.4	а		
(% of community)	71140 771	10g 10(x · 1)	110	0.200	CLT1 Downstream	1.6	1.6	-0.4	a		
					Reference Creek	30.6	11.7	-0.0			
Ostracoda	K-W	rank	YES	0.005				2.6	a		
(% of community)	17-44	Tank	120	0.003	CLT1 Upstream	0.5	0.6	-2.6	b		
					CLT1 Downstream	0.1	0.2	-2.6	b		
Chironomidae	ANOVA	110	VEC	40.004	Reference Creek	48.3	12.9	-	a		
(% of community)	ANOVA	log10	YES	<0.001	CLT1 Upstream	81.7	7.9	2.6	b		
					CLT1 Downstream	75.8	7.1	2.1	b		
Metal Sensitive	41101/4		\/=0	0.004	Reference Creek	0.8	1.2	-	a		
Chironomids (% of community)	ANOVA	log10(x+1)	YES	<0.001	CLT1 Upstream	13.8	4.7	10.5	b		
(70 or community)					CLT1 Downstream	3.6	1.6	2.2	а		
Simuliidae					Reference Creek	9.8	8.6	-	а		
(% of community)	K-W	rank	YES	0.074	CLT1 Upstream	0.3	0.3	-1.1	b		
					CLT1 Downstream	0.2	0.2	-1.1	b		
Tipulidae					Reference Creek	1.5	2.3	-	а		
(% of community)	K-W	rank	YES	0.048	CLT1 Upstream	7.4	6.2	2.6	b		
					CLT1 Downstream	6.2	2.0	2.0	b		
Collector-Gatherer					Reference Creek	80.7	8.8	-	а		
FFG	ANOVA	none	YES	<0.001	CLT1 Upstream	58.5	8.9	-2.5	b		
(% of community)					CLT1 Downstream	81.6	4.5	0.1	а		
Filterer FFG					Reference Creek	9.9	8.9	-	а		
(% of community)	ANOVA	log10(x+1)	YES	0.099	CLT1 Upstream	4.4	5.3	-0.6	ab		
(11)					CLT1 Downstream	0.9	1.2	-1.0	b		
Chuaddau FFC					Reference Creek	2.8	2.7	-	а		
Shredder FFG (% of community)	ANOVA	log10(x+1)	YES	<0.001	CLT1 Upstream	32.8	6.8	11.3	b		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					CLT1 Downstream	14.1	4.2	4.3	С		
					Reference Creek	15.8	7.7	-	а		
Clinger HPG (% of community)	ANOVA	log10	YES	0.001	CLT1 Upstream	33.2	11.6	2.3	b		
(70 or sommanity)					CLT1 Downstream	10.3	2.9	-0.7	а		
					Reference Creek	79.4	6.6	-	а		
Sprawler HPG	ANOVA	none	YES	<0.001	CLT1 Upstream	52.6	9.7	-4.1	b		
(% of community)					CLT1 Downstream	69.1	4.8	-1.6	а		
					Reference Creek	4.8	3.3	-	а		
Burrower FFG	ANOVA	log10	YES	0.001	CLT1 Upstream	13.5	4.8	2.6	b		
(% of community)					CLT1 Downstream	20.6	7.4	4.8	b		

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Blue shaded values indicate significant difference (ANOVA p-value ≤ 0.10) that was also outside of a Critical Effect Size of ±2 SD_{REF}, indicating that the difference between the mine-exposed area and reference area was ecologically meaningful.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

CLT1 north branch and Unnamed Reference Creek, as indicated by significantly differing Bray-Curtis Index (Appendix Table F.7), included ecologically significant⁶ greater relative abundance of Chironomidae and Tipulidae dominant groups, and lower relative abundance of Ostracoda, at the CLT1 north branch (Table 3.3). Within the Chironomidae, an ecologically significantly higher relative abundance of metal-sensitive taxa was indicated at the CLT1 north branch than at the reference creek, indicating no adverse influences on biota related to metals within the watercourse. Key differences in FFGs and HPGs, including significantly higher relative abundance of the shredder FFG, clinger HPG, and burrower HPG at the CLT1 north branch, were consistent with greater amounts of in-stream vegetation (e.g., bryophyte mosses) than at the reference creek as reported in previous CREMP studies (e.g., Minnow 2020). No consistent ecologically significant differences in density, richness, Simpson's Evenness, dominant taxonomic groups, or FFGs were indicated at the CLT1 north branch in 2020 compared to baseline studies conducted in 2007 and 2011 (Appendix Tables F.8 and F.9; Appendix Figure F.2). Collectively, the 2020 data suggested that differences in benthic invertebrate community assemblage between the CLT1 north branch and Unnamed Reference Creek reflected differences in the types and/or abundance of in-stream vegetation between these study areas. This was supported by comparisons to baseline, which indicated no ecologically significant changes in benthic invertebrate community metrics at the CLT1 north branch since the commencement of commercial mine operations in 2015.

3.1.4.2 Downstream Lower Main Stem (CLT1 DS)

The benthic invertebrate community at the lower main stem of Camp Lake Tributary 1 (CLT1 DS), downstream of the Milne Inlet Tote Road crossing, did not differ significantly in density, richness, or Simpson's Evenness compared to Unnamed Reference Creek in 2020 (Table 3.3; Appendix Figure F.1). Differences in benthic invertebrate community assemblage between CLT1 DS and the reference creek, as indicated by significantly differing Bray-Curtis Index (Appendix Table F.7), included ecologically significant greater relative abundance of Oligochaeta, Chironomidae, and Tipulidae dominant groups, and lower relative abundance of Ostracoda, at CLT1 DS (Table 3.3). However, similar to the CLT1 north branch, no significant difference in the relative abundance of metal-sensitive Chironomidae and ecologically significant higher relative abundance of the shredder FFG and the burrower HPG occurred at CLT1 DS compared to the reference creek

⁶ Ecological significance is defined as a magnitude of difference between the mine-exposed and reference area that is outside of a CES (CES_{BIC}) of ±2 reference area SDs (SD_{REF}) for the benthic invertebrate community metric. Differences outside of the CES_{BIC} are greater than those that would be expected to occur naturally (i.e., between two pristine reference areas), and thus require additional evaluation to determine whether the difference is mine-related considering the direction of response and taking a weight-of-evidence approach that considers the results from other study components (e.g., water chemistry) and benthic invertebrate community endpoints.

in 2020 (Table 3.3). This indicated that the differences in community features between CLT1 DS and Unnamed Reference Creek were unlikely associated with metal concentrations, but rather due to naturally differing habitat (e.g., food resources and/or substrate properties) between study areas. No consistent ecologically significant differences in density, richness, Simpson's Evenness, or dominant taxonomic groups, including the proportion of metal-sensitive chironomids, were indicated at the CLT1 lower main stem in 2020 compared to both of the 2007 and 2011 baseline studies (Appendix Table F.10; Appendix Figure F.2). A significantly higher relative abundance of the collector-gatherer FFG was generally shown at CLT1 DS since 2015 compared to baseline, potentially indicating a shift in food resources available to benthic invertebrates at the lower main stem area over time (Appendix Table F.11). However, the absence of consistent ecologically significant differences in the relative abundance of metal-sensitive taxa in years of mine operation compared to baseline suggested that the FFG differences over time were unrelated to differing metal concentrations.

Between the CLT1 study areas, benthic invertebrate density, shredder FFG relative abundance, and clinger HPG relative abundance were significantly lower downstream than upstream of the Milne Inlet Tote Road crossing, but no significant differences in richness, evenness, or dominant taxonomic groups were indicated between the downstream and upstream areas in 2020 (Table 3.3; Appendix Figure F.1). Similar to differences in community features between the CLT1 north branch and reference creek, these differences in community features between CLT1 study areas reflected lower abundance of in-stream vegetation (e.g., mosses), which serves as a key food resource and habitat for the shredder FFG and clinger HPG, respectively, at the downstream area compared to upstream of the Milne Inlet Tote Road crossing. Therefore, in-stream vegetation was the key contributor to differences in benthic invertebrate density and FFG and HPG composition between the CLT1 lower main stem and upstream study areas in 2020 rather than influences associated with the Milne Inlet Tote Road.

3.1.5 Effects Assessment and Recommendations

3.1.5.1 Upstream North Branch (CLT1 US)

At the CLT1 north branch, the following AEMP benchmarks were exceeded in 2020:

 Aqueous total copper concentration greater than the benchmark of 0.0022 mg/L in spring and summer (0.00221 mg/L and 0.00226 mg/L, respectively) at Station L1-08.

Copper concentrations at the CLT1 north branch in spring of 2019 and 2020, and in fall from 2015 to 2020, were slightly higher than concentrations in respective seasonal sampling events during baseline. However, copper concentrations at the CLT1 north branch during summer sampling events from 2015 to 2020 were comparable to baseline, but were also shown to be

above the AEMP benchmark in 29% of samples taken (Appendix Figure C.2). In addition, copper concentrations in spring and fall during years of mine commercial production from 2015 to 2020 were comparable to those shown in summer during baseline. No substantial mine development has occurred in the CLT1 north branch watershed, and thus mine-related sources of copper to this portion of the watercourse potentially included fugitive dust. However, because copper concentrations farther downstream at the CLT1 main stem, closer to sources of dust generation, were below AEMP benchmarks, the source of copper to the CLT1 north branch was likely related natural minerology of the bedrock/overburden in the region of the mine. Metal concentrations in sediment of the CLT1 north branch were well below SQG. In addition, no adverse effects on phytoplankton (chlorophyll-a) or benthic invertebrates of the CLT1 north branch were indicated in 2020, nor during studies conducted since the commencement of commercial mine production in 2015, indicating that copper concentrations above the AEMP benchmark at the CLT1 north branch may not have been biologically available.

Following application of the Mary River Project AEMP Management Response Framework (Figure 2.8), uncertainty in whether a change in copper concentrations has occurred at the CLT1 north branch between the period of commercial mine production and baseline results in a low action response related to copper concentrations above the AEMP benchmark at this watercourse. An expanded spatial water quality sampling program implemented at the CLT1 north branch as a special investigation to identify whether the source(s) of copper to the watercourse reflect natural minerology of the bedrock/overburden within the watershed is recommended as an initial low action response.

3.1.5.2 Downstream Main Stem (CLT1 DS)

At the CLT1 main stem, the following AEMP benchmarks were exceeded in 2020:

- Aqueous total aluminum concentration was greater than the benchmark of 0.179 mg/L in spring at the upper main stem Station L2-03 (0.270 mg/L); and,
- Aqueous total iron concentration was greater than the benchmark of 0.326 mg/L at upper main stem Station L2-03 in spring, summer, and fall (0.420 mg/L, 0.423 mg/L, and 0.522 mg/L, respectively).

Concentrations of all parameters were below AEMP water quality benchmarks at all stations within the lower main stem (i.e., Stations L1-09, L0-05, and L0-01), and metal concentrations in sediment were below SQG at the CLT1 downstream area (CLT1 DS), in 2020. Elevation of total aluminum concentrations above the AEMP water quality benchmark at the upper main stem in spring 2020 was related to suspended mineral material in the water column as reflected by high turbidity in these samples. Because total aluminum concentrations at the CLT1 main stem in

2020 were not elevated compared to the reference creek nor to concentrations at the upper main stem during baseline, the source of aluminum to the CLT1 main stem was likely related to background minerology of material entering the system during spring runoff events. In contrast, iron concentrations at the CLT1 upper main stem in 2020 were elevated compared to concentrations at the reference creek and at CLT1 during baseline, suggesting a mine-related source of iron to the system. Relatively high iron concentrations at the CLT1 main stem following the initiation of commercial mine operation potentially reflected blasting/excavating activity (including associated dust generation) at the Mine Site QMR2 Quarry, as well as fugitive dust generation from increased truck usage on the Milne Inlet Tote Road, compared to the baseline period. Despite elevated iron concentrations at the CLT1 upper main stem, no adverse effects on phytoplankton and benthic invertebrates were indicated at the CLT1 downstream in 2020, suggesting that potential biological effects from elevated iron concentrations were likely limited only to the CLT1 upper main stem and did not extend to the lower main stem or Camp Lake.

Under the Mary River Project AEMP Data Management Response Framework (Figure 2.8), the determination of a mine-related change to a parameter concentration above the AEMP benchmark necessitates a management response (Steps 2 and 3). Because a mine-related elevation in iron concentrations occurred at the CLT1 upper main stem in 2020, but the spatial extent was limited and no biological effects were observed a short distance downstream, consideration for the establishment of benthic invertebrate community sampling stations at the CLT1 upper main stem, close to water quality Station L2-03, is recommended to evaluate possible effects on biota in this portion of the CLT1 system as a low action response.

3.2 Camp Lake Tributary 2 (CLT2)

3.2.1 Water Quality

Camp Lake Tributary 2 (CLT2) dissolved oxygen was consistently near full saturation at the time of spring, summer, and fall monitoring events, and concentrations were comparable to or slightly higher than those at the reference creeks (Appendix Tables C.1 to C.3; Figure 3.4). In addition, dissolved oxygen concentrations at CLT2 were well above the WQG lowest acceptable concentration for early life stages of cold-water biota (i.e., 9.5 mg/L) at the time of biological sampling in August 2020 (Figure 3.4; Appendix Table C.12). Aqueous pH at the CLT2 upstream and downstream study areas was generally slightly higher (i.e., more alkaline) than at the reference creeks but consistently well within WQG limits during the spring, summer, and fall sampling events in 2020 (Appendix Tables C.1 to C.3; Figure 3.4). No significant difference in pH was indicated between CLT2 study areas located downstream and upstream of the Milne Inlet Tote Road suggesting that this road crossing did not markedly influence the pH of CLT2 (Appendix Table C.19). *In situ* specific conductance was consistently higher at CLT2 compared

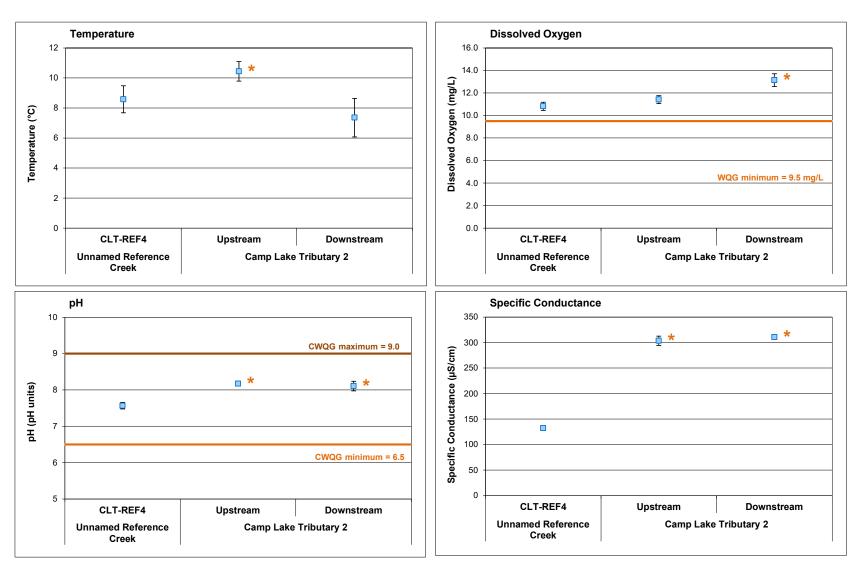


Figure 3.4: Comparison of *In Situ* Water Quality Variables (mean ± SD; n = 5) Measured at Camp Lake Tributary 2 Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Note: An asterisk (*) next to data point indicates mean value differs significantly from the Unnamed Reference Creek mean.

to the reference creeks in 2020, and was also significantly higher downstream compared to upstream of the Milne Inlet Tote Road at CLT2 during August 2020 biological sampling (Figure 3.4; Appendix Table C.19), suggesting a slight influence of the road on water quality at CLT2.

Water chemistry at CLT2 (Station KO-01) met all AEMP benchmarks and WQG in spring, summer, and fall sampling events of 2020 (Table 3.4). Among those parameters with established AEMP benchmarks, nitrate and sulphate concentrations showed moderate elevation (i.e., 5--to 10-fold) at CLT2 compared to mean concentrations at the reference creeks, but only during the spring sampling event in 2020 (Appendix Table C.15).⁷ Chloride and sulphate concentrations were the only parameters with established AEMP benchmarks that were higher at CLT2 in 2020 compared to baseline, but concentrations of both of these parameters remained well below the AEMP benchmarks since the commencement of commercial mine operations in 2015 (Appendix Figure C.3). In addition, concentrations of chloride and sulphate at CLT2 were similar to those observed at the reference creeks in 2020, suggesting a natural factor may have accounted for higher concentrations of these parameters at CLT2 since baseline. For those parameters without AEMP benchmarks, only sodium and total and dissolved uranium concentrations showed elevation at CLT2 in 2020 compared to baseline. In consideration of all spatial and temporal (baseline) comparisons, no marked mine-related influence on water quality was indicated within the CLT2 system in 2020.

3.2.2 Sediment Quality

Sediment from CLT2 upstream (CLT2-US) and downstream (CLT2-DS) study areas was visually characterized as medium-sized coarse sand (Appendix Table D.7). The in-stream substrate at both CLT2 study areas was composed mainly of cobble material (i.e., substrate diameter 6 to 25 cm), with sand constituting a trace amount (i.e., <1%) and approximately 5% of the material observed at the sediment surface of the upstream and downstream areas, respectively (Minnow 2018). Mean sediment TOC content was low (i.e., <0.5%) at both CLT2 study areas, but approximately 2 to 3 times greater than the mean TOC content in sediment sampled at the lotic reference areas (Table 3.5; Appendix Table D.10).

Similar to CLT1, mean concentrations of metals in sediment from CLT2 were generally elevated compared to those measured at the lotic reference areas (Appendix Table D.10). This was particularly the case for calcium, copper, magnesium, nickel, and potassium, for which mean concentrations were five-fold or greater at one or both of CLT2-US and CLT2-DS study areas compared to mean concentrations at the lotic reference areas (Table 3.5; Appendix Table D.10).

⁷ This statement includes the evaluation of both total and dissolved metal concentrations.

Table 3.4: Mean Water Chemistry at Camp Lake Tributary 2 (CLT2) Monitoring Stations During Spring, Summer, and Fall, Mary River Project CREMP, 2020

			W (0 III			Reference Creeks (n=4)			Camp Lake Tributary 2	
	Parameters	Units	Water Quality Guideline (WQG) ^a	AEMP Benchmark ^b	Spring	Summer	Fall	Spring	Summer	Fall
ے م	Conductivity (lab)	umho/cm	- 1	-	55	134	175	154	300	345
Conventionals ^b	pH (lab)	рН	6.5 - 9.0	-	7.63	8.01	8.05	8.18	8.34	8.43
Ö	Hardness (as CaCO ₃)	mg/L	-	-	23.6	57.05	82.6	70	147	167
ij	Total Suspended Solids (TSS)	mg/L	-	-	3.2	2.7	2	<2.0	<2.0	<2.0
Š	Total Dissolved Solids (TDS)	mg/L	-	-	85	85	99	120	153	192
5	Turbidity	NTU	-	-	1.87	6.62	2.49	0.55	0.20	0.23
0	Alkalinity (as CaCO ₃)	mg/L	-	-	24	61	69	62	134	136
	Total Ammonia	mg/L	-	0.855	0.01	0.01225	0.01	<0.010	<0.010	<0.010
5	Nitrate	mg/L	3	3	0.020	0.062	0.076	0.135	0.047	0.148
an	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	<0.0050	<0.0050	<0.0050
ts nic	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.02	0.15	0.15	0.14	<0.15	<0.15
ien	Dissolved Organic Carbon	mg/L	-	-	1.93	3.44	2.31	2.81	3.88	3.08
돌	Total Organic Carbon	mg/L	-	-	2.23	3.05	2.14	3.86	4.36	3.50
Ž	Total Phosphorus	mg/L	0.030^{α}	-	0.0045	0.0065	0.0039	0.0075	<0.0030	<0.0030
	Phenols	mg/L	0.004 ^a	-	0.0010	0.0010	0.0021	<0.0010	<0.0010	0.0017
2	Bromide (Br)	, i	-	-	0.10	0.1	0.1	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	1.2	4.07	7.09	2.4	9.1	13.6
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	1.31	5.52	9.25	11.80	14.90	26.20
	Aluminum (Al)	mg/L	0.100	0.179	0.0775	0.3106	0.0593	0.0229	0.0094	0.0089
	Antimony (Sb)	mg/L	0.020 ^α	-	0.0001	0.0001	0.0001	<0.00010	<0.00010	<0.0009
	Arsenic (As)		0.020	0.005	0.0001	0.0001	0.0001	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	0.003	0.00362	0.00013	0.01031	0.00856	0.01550	0.01840
	Beryllium (Be)	mg/L		-	0.00302	0.00948	0.0005	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L mg/L	0.011 ^α	-	0.0005	0.0004	0.0005	<0.00050	<0.00050	<0.00050
	Boron (B)		1.5		0.003	0.0003873	0.003	<0.00030	<0.010	<0.000
		mg/L	0.00012	0.00008	0.0001	0.0001	0.0001	<0.00010	<0.00010	<0.00010
	Cadmium (Cd)	mg/L	0.00012	0.00006	4.9	11.8	16.5	13.9	27.6	31.8
	Calcium (Ca)	mg/L	0.0000	- 0.000		0.00082	0.00050	<0.00050	<0.00050	<0.00050
	Chromium (Cr)	mg/L	0.0089	0.0089 0.0040	0.00050 0.00010	0.00082	0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^α							
	Copper (Cu)	mg/L	0.002	0.0022	0.00071	0.00115	0.00102	0.00116	0.00159	0.00152
	Iron (Fe)	mg/L	0.30	0.326	0.077	0.2425	0.06625	<0.030	<0.030	<0.030
<u> </u>	Lead (Pb)	mg/L	0.001	0.001	0.000107	0.000226	0.000092	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	-	-	0.0010	0.0011	0.0010	0.0012	0.0021	0.0019
	Magnesium (Mg)	mg/L	- 0.005 ^β	-	2.86	6.7	9.6	8.9	16.6	20.3
Total	Manganese (Mn)	mg/L	0.935 ^β	-	0.00136	0.00300	0.00102	0.00093	0.00230	0.00077
₽	Mercury (Hg)	mg/L	0.000026	-	0.000050	0.000005	0.000005	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)	mg/L	0.073	- 0.005	0.00015	0.00045	0.00057	0.00031	0.00059	0.00073
	Nickel (Ni)	mg/L	0.025	0.025	0.00050	0.00070	0.00057	0.00052	0.00074	0.00065
	Potassium (K)	mg/L	-	-	0.45	0.93	1.04	1.20	2.10	2.45
	Selenium (Se)	mg/L	0.001	-	0.0010	0.0007625	0.001	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	- 0.0004	0.62	1.25	0.87	0.67	0.86	0.72
	Silver (Ag)	mg/L	0.00025	0.0001	0.000010	0.00002	0.00001	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	-	0.83	2.76	3.97	1.85	5.68	7.36
	Strontium (Sr)	mg/L	- 0.0000	- 0.000	0.00488	0.01391	0.01850	0.00886	0.01950	0.02210
	Thallium (TI)	mg/L	0.0008	0.0008	0.00010	0.00008	0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	0.00010	0.0001	0.0001	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	- 0.045	-	0.011	0.0241	0.0100	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00045	0.00405	0.00737	0.00063	0.00326	0.00460
	Vanadium (V)	mg/L	0.006 ^α	0.006	0.0010	0.0012	0.0010	<0.0010	<0.0010	<0.0010
<u></u>	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.003	0.003	<0.0030	<0.0030	<0.0030

Indicates parameter concentration above applicable Water Quality Guideline. Indicates parameter concentration above the AEMP benchmark.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake tributary system.

Table 3.5: Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 2 (CLT2) and Lotic Reference Area Sediment Monitoring Stations, Mary River Project CREMP, August 2020

	Units		Lotic Refere	ence Stations	Camp Lake Tributary 2				
Parameter		SQGª	Unnamed Reference Creek (REFCRK; n = 3)	Mary River Reference (GO-09; n = 3)	Upstream CLT2-US (n = 3)	Downstream CLT2-DS (n = 3)			
			Average ± SD	Average ± SD	Average ± SD	Average ± SD			
TOC	%	10 ^α	0.12 ± 0.035	0.11 ± 0.012	0.33 ± 0.11	0.26 ± 0.19			
Aluminum (Al)	μg/g	-	584 ± 185	2,757 ± 1,141	4,483 ± 2,188	3,057 ± 1,592			
Antimony (Sb)	μg/g	-	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0			
Arsenic (As)	μg/g	17	0.22 ± 0.11	0.38 ± 0.10	0.74 ± 0.28	0.47 ± 0.16			
Barium (Ba)	μg/g	•	2.72 ± 0.722	12.6 ± 5.05	15.9 ± 6.70	9.64 ± 4.36			
Beryllium (Be)	μg/g	1	<0.10 ± 0	0.14 ± 0.040	0.19 ± 0.072	0.16 ± 0.056			
Bismuth (Bi)	μg/g	•	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0			
Boron (B)	μg/g	1	<5.0 ± 0	5.4 ± 0.75	5.3 ± 0.52	<5.0 ± 0			
Cadmium (Cd)	μg/g	3.5	<0.020 ± 0	<0.020 ± 0	0.030 ± 0.0071	0.026 ± 0.0067			
Calcium (Ca)	μg/g	-	494 ± 249	2,750 ± 894	5,277 ± 1,911	2,190 ± 851			
Chromium (Cr)	μg/g	90	7.79 ± 5.39	13.6 ± 4.34	21.6 ± 7.03	15.2 ± 9.49			
Cobalt (Co)	μg/g	•	0.953 ± 0.558	2.40 ± 0.758	4.45 ± 1.67	2.70 ± 1.41			
Copper (Cu)	μg/g	110 ^α	1.21 ± 0.899	4.45 ± 2.50	11.9 ± 4.15	7.46 ± 0.930			
Iron (Fe)	μg/g	40,000 ^α	12,493 ± 9,700	11,063 ± 2,423	18,067 ± 8,528	13,590 ± 8,265			
Lead (Pb)	μg/g	91	1.49 ± 0.546	3.07 ± 0.857	3.49 ± 1.51	3.05 ± 0.879			
Lithium (Li)	μg/g	-	<2.0 ± 0	5.0 ± 2.3	6.6 ± 2.6	4.1 ± 1.9			
Magnesium (Mg)	μg/g	-	444 ± 165	2,810 ± 1,212	7,047 ± 2,826	4,073 ± 2,065			
Manganese (Mn)	μg/g	$1,100^{\alpha,\beta}$	27.4 ± 14.6	75.7 ± 29.4	143 ± 40	102 ± 50.8			
Mercury (Hg)	μg/g	0.486	<0.0050 ± 0	<0.0050 ± 0	<0.0050 ± 0	<0.0050 ± 0			
Molybdenum (Mo)	μg/g	-	<0.10 ± 0	0.11 ± 0.023	0.34 ± 0.18	0.47 ± 0.41			
Nickel (Ni)	μg/g	$75^{\alpha,\beta}$	1.76 ± 0.920	6.11 ± 1.99	15.3 ± 7.14	10.2 ± 4.79			
Phosphorus (P)	μg/g	2,000 ^α	167 ± 98	350 ± 118	254 ± 64	177 ± 68.0			
Potassium (K)	μg/g	-	133 ± 42	750 ± 320	1,313 ± 881	1,077 ± 677			
Selenium (Se)	μg/g	•	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0			
Silver (Ag)	μg/g	•	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0			
Sodium (Na)	μg/g	•	<50 ± 0	68 ± 21	63 ± 21	60 ± 17			
Strontium (Sr)	μg/g	•	2.00 ± 0.544	4.72 ± 1.01	3.86 ± 1.018	2.51 ± 0.633			
Sulphur (S)	μg/g	-	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0			
Thallium (TI)	μg/g	1	<0.050 ± 0	0.068 ± 0.023	0.082 ± 0.043	0.070 ± 0.021			
Tin (Sn)	μg/g	•	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0			
Titanium (Ti)	μg/g	1	83.3 ± 47.4	353 ± 123	336 ± 147	248 ± 111			
Uranium (U)	μg/g	-	0.5 ± 0.25	0.922 ± 0.298	0.743 ± 0.474	1.09 ± 0.332			
Vanadium (V)	μg/g	1	16.8 ± 12.8	19.5 ± 5.06	16.5 ± 4.03	12.7 ± 8.70			
Zinc (Zn)	μg/g	315	3.0 ± 1.2	10.3 ± 4.31	13.9 ± 7.48	17.7 ± 8.30			
Zirconium (Zr)	μg/g	1	2.1 ± 0.91	5.8 ± 2.0	3.7 ± 1.3	3.4 ± 1.6			

Indicates parameter concentration above SQG.

Notes: TOC = total organic carbon; SQG = sediment quality guideline; n = number of samples; SD = standard deviation.

^a Canadian SQG for the protection of aquatic life, probable effects level (PEL; CCME 2020), except those indicated by reference mark. α = Ontario Provincial Sediment Quality Objective (PSQO), severe effect level (SEL; OMOE 1993). β = British Columbia Working SQG, PEL (BC ENV 2020).

Despite higher concentrations than at the lotic reference areas, no metals were present at concentrations 1.5 times or greater at the downstream area compared to the upstream area of CLT2 (Table 3.5), suggesting minimal influence of the Milne Port Tote Road on sediment quality at CLT2-DS. Concentrations of all metals were also well below applicable SQG at all CLT2 stations (Table 3.5; Appendix Tables D.11 and D.12). Notably, metal concentrations in sediment from CLT2 were almost always lower than those from CLT1, potentially indicating reduced mine-influence with increasing distance from the mine.

3.2.3 Phytoplankton

Chlorophyll-a concentrations at CLT2 (Station KO-01) were within the range observed at the reference creeks during summer and fall sampling events, but were lower than concentrations at the reference creeks during the spring sampling event in 2020 (Figure 3.2). Concentrations of nutrients, including total ammonia, nitrate, and total phosphorus, were similar or higher at CLT2 compared to the reference creek stations during the spring sampling event (Appendix Tables C.14 and C.15), and therefore the occurrence of lower chlorophyll-a concentrations at CLT2 in spring 2020 did not appear to be related to differing nutrient concentrations. In addition, concentrations of all parameters were below WQG at CLT2 in spring 2020, and thus the lower chlorophyll-a concentrations at CLT2 compared to the reference creeks may have reflected natural variability (Appendix Table C.14). Notably, chlorophyll-a concentrations were well below the AEMP benchmark of 3.7 µg/L for all sampling events in 2020 at CLT2 (Figure 3.2). Low phytoplankton productivity, indicative of oligotrophic conditions, was also suggested at CLT2 based on comparison of chlorophyll-a concentrations to Dodds et al (1998) trophic status classification for creek environments. This productivity classification was supported by CCME (2020) WQG categorization of oligotrophic based on mean aqueous total phosphorus concentrations below 10 µg/L at CLT2 during all spring, summer, and fall sampling events (Table 3.4; Appendix Table C.14). Higher chlorophyll-a concentrations occurred at CLT2 from 2017 to 2020 compared to the mine baseline period for the fall sampling event, but no increasing trend over time was suggested (Figure 3.3). For the reasons indicated above, higher chlorophyll-a concentrations at CLT2 in spring 2020 compared to the baseline period did not appear to be associated with a mine-related change in nutrient concentrations over time, and thus likely reflected natural seasonal/temporal variation in chlorophyll-a concentrations.

3.2.4 Benthic Invertebrate Community

Benthic invertebrate density and richness at both the upstream and downstream study areas of CLT2 did not differ significantly from Unnamed Reference Creek (Table 3.6; Appendix Figure F.3). Evenness at the CLT2 downstream area differed from the reference creek, but the magnitude of this difference was within the CES_{BIC} of ±2 SD_{REF} and positive (Table 3.6), indicating that this

Table 3.6: Benthic Invertebrate Community Metric Statistical Comparison Results among Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

		Overall 3-Area	Comparison		Pair-wise, post hoc comparisons						
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Areas?	P-value	Study Area	Mean	Standard Deviation (SD)	Magnitude of Difference (Ref SD)	Pairwise Comparison		
					Reference Creek	713	296	-	а		
Density	ANOVA	log10	NO	0.941	CLT2 Upstream	679	325	-0.1	а		
(No. per m ²)					CLT2 Downstream	881	672	0.6	а		
Richness					Reference Creek	16.0	4.4	-	а		
Richness (No. of Taxa)	ANOVA	none	NO	0.615	CLT2 Upstream	17.4	2.2	0.3	а		
(No. or ruxu)					CLT2 Downstream	18.6	5.1	0.6	а		
					Reference Creek	0.840	0.043	-	а		
Simpson's Evenness	K-W	rank	YES	0.039	CLT2 Upstream	0.879	0.058	0.9	ab		
					CLT2 Downstream	0.921	0.033	1.9	b		
					Reference Creek	0.7	1.3	-	а		
Nemata (% of community)	K-W	rank	NO	0.215	CLT2 Upstream	0.5	0.7	-0.2	а		
(% or community)					CLT2 Downstream	8.2	15.8	5.9	а		
					Reference Creek	1.9	1.5	-	а		
Oligochaeta	ANOVA	log10(x+1)	NO	0.181	CLT2 Upstream	15.3	19.0	9.0	а		
(% of community)					CLT2 Downstream	4.4	5.0	1.7	а		
					Reference Creek	4.5	3.7	-	а		
Hydracarina	ANOVA	log10	NO	0.844	CLT2 Upstream	3.0	1.3	-0.4	а		
(% of community)					CLT2 Downstream	4.7	4.8	0.1	а		
	K-W		YES		Reference Creek	30.6	11.7	-	а		
Ostracoda		rank		0.007	CLT2 Upstream	0.4	0.5	-2.6	b		
(% of community)					CLT2 Downstream	0.3	0.5	-2.6	b		
					Reference Creek	48.3	12.9	-	a		
Chironomidae	ANOVA	log10	YES	0.024	CLT2 Upstream	70.4	14.2	1.7	b		
(% of community)		9.0			CLT2 Downstream	75.2	16.5	2.1	b		
					Reference Creek	0.8	1.2	2.1	а		
Metal Sensitive Chironomids	ANOVA	log10(x+1)	YES	<0.001	CLT2 Upstream	5.7	3.5	3.9	b		
(% of community)	ANOVA	10910(X11)	120	40.001	CLT2 Downstream	11.5	4.2	8.7	С		
					Reference Creek	9.8	8.6	0.7	a		
Simuliidae	ANOVA	log10(x+1)	YES	0.068	CLT2 Upstream	1.9	1.7	-0.9	b		
(% of community)	ANOVA	10910(X11)	123	0.000	CLT2 Opstream	3.1	1.7	-0.9	ab		
					Reference Creek	1.5	2.3	-0.0			
Tipulidae	K-W	rank	NO	0.482	CLT2 Upstream	1.8	1.0	0.1	а		
(% of community)	rx-vv	Talik	NO	0.402	CLT2 Opstream	1.8	2.2	0.1	а		
					Reference Creek	80.7	8.8	0.1	а		
Collector-Gatherer FFG	ANOVA	nono	NO	0.849		80.7	11.6	0.0	а		
(% of community)	ANOVA	none	NO	0.049	CLT2 Upstream CLT2 Downstream				а		
(11 11 1 3)						77.5	8.7	-0.4	a		
Filterer FFG	A NIO) / A	1 40(4)	VEO	0.000	Reference Creek	9.9	8.9	-	а		
(% of community)	ANOVA	log10(x+1)	YES	0.069	CLT2 Upstream	1.7	1.5	-0.9	b		
					CLT2 Downstream	3.1	2.1	-0.8	ab		
Shredder FFG	44101/4	1 40(.4)	\/F0	0.007	Reference Creek	2.8	2.7	- 0.4	а		
(% of community)	ANOVA	log10(x+1)	YES	0.037	CLT2 Upstream	8.5	3.1	2.1	ab		
					CLT2 Downstream	11.2	7.0	3.2	b		
Clinger HPG	ANOV44	140	NO	0.570	Reference Creek	15.8	7.7	-	a		
(% of community)	ANOVA	log10	NO	0.573	CLT2 Upstream	12.0	4.2	-0.5	а		
					CLT2 Downstream	16.6	7.1	0.1	а		
Sprawler HPG	44.00				Reference Creek	79.4	6.6	-	а		
(% of community)	ANOVA	none	NO	0.222	CLT2 Upstream	65.1	17.6	-2.2	а		
					CLT2 Downstream	66.3	14.1	-2.0	а		
Burrower FFG					Reference Creek	4.8	3.3	-	а		
(% of community)	ANOVA	log10	YES	0.044	CLT2 Upstream	22.9	16.2	5.5	b		
					CLT2 Downstream	17.1	19.0	3.7	ab		

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Blue shaded values indicate significant difference (ANOVA p-value ≤ 0.10) that was also outside of a Critical Effect Size of ±2 SD_{REF}, indicating that the difference between the mine-exposed area and reference area was ecologically meaningful.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

difference was not ecologically significant nor indicative of an adverse response, respectively. Differences in community composition were indicated between CLT2 and Unnamed Reference Creek based on differing Bray-Curtis Index (Appendix Table F.7), of which the only ecologically significant differences included significantly higher and lower relative abundance of Chironomidae and Ostracoda dominant groups, respectively, at one or both CLT2 study areas compared to the reference creek (Table 3.6; Appendix Figure F.3). Ecologically significant higher relative abundance of metal-sensitive chironomids was indicated at CLT2 study areas compared to the reference creek (Table 3.6), suggesting that the community composition differences between watercourses were not likely related to metal concentrations. In addition, no ecologically significant differences in benthic invertebrate FFG and HPG were shown at both CLT2 study areas compared to the reference creek (Table 3.6), indicating no substantial differences in food resources and habitat conditions available to benthic invertebrates between CLT2 and Unnamed Reference Creek. No consistent ecologically significant differences in any benthic invertebrate community endpoints were indicated at either of the CLT2 upstream and downstream study areas over years of mine operation (2015 to 2020) compared to 2007 baseline data with the exception of routinely higher evenness at CLT2 (Appendix Tables F.15 and F.16; Appendix Figure F.4). Because high evenness is normally associated with a healthy distribution of benthic invertebrate taxa, the occurrence of significantly higher evenness at CLT2 on a routine basis from 2015 to 2020 compared to baseline was not consistent with an adverse influence related to recent mine operations. Overall, greater evenness and relative abundance of metal-sensitive taxa at CLT2 compared to the reference creek in 2020, as well as no consistent differences in density, richness, and relative abundance of dominant groups and FFG at the CLT2 study areas between mine operational and baseline periods indicated no adverse mine-related effects to benthic invertebrates at CLT2.

Between the CLT2 study areas, no significant differences in benthic invertebrate density, richness, evenness, and relative abundance of dominant taxonomic groups, FFGs, or HPGs were indicated between study areas located downstream and upstream of the Milne Inlet Tote Road crossing in 2020 (Table 3.6; Appendix Figure F.3). Therefore, no effects to benthic invertebrates were evident at CLT2 in 2020 as a result of potential influences associated with the Milne Inlet Tote Road.

3.2.5 Effects Assessment and Recommendations

Water chemistry at CLT2 met all AEMP benchmarks in 2020. In addition, sediment quality met all SQG, and no adverse effects on phytoplankton or benthic invertebrates were indicated at CLT2 in 2020. Under the Mary River Project AEMP Management Response Framework, the absence of a mine-related change in AEMP benchmark parameters over time (or compared to background)

requires no further management response (Figure 2.8). Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no adjustment to the existing AEMP need be applied at CLT2 as part of the next monitoring program.

3.3 Camp Lake (JLO)

3.3.1 Water Quality

In situ water quality profiles conducted at Camp Lake showed no substantial spatial differences in water temperature, dissolved oxygen, pH or specific conductance with progression from the CLT1 inlet to the lake outlet during any of the winter, summer, or fall seasonal sampling events in 2020 (Appendix Figures C.4 to C.7). The 2020 Camp Lake water column profiles indicated a slight increase in temperature from surface to bottom (i.e., approximately 2°C) during the winter sampling event, and a distinctly warmer surface layer extending to a depth of approximately 6 metres during the summer sampling event (Figure 3.5). The average temperature profiles at Camp Lake in summer and fall sampling events roughly mirrored those at Reference Lake 3 in 2020 (Figure 3.5). Water temperature near the bottom of the water column was significantly lower at littoral stations of Camp Lake than Reference Lake 3, but did not differ significantly between lakes at profundal stations sampled during August 2020 biological monitoring (Figure 3.6; Appendix Tables C.25).

Dissolved oxygen profiles conducted at Camp Lake in 2020 showed declining saturation levels with increased depth beginning at approximately 10 m below surface in the winter, but otherwise showed relatively minor changes from surface to bottom during the summer and fall that closely reflected the dissolved oxygen profiles observed at Reference Lake 3 (Figure 3.5). Although dissolved oxygen at the bottom of the water column was near full saturation at littoral and profundal sampling depths of Camp Lake, dissolved oxygen concentrations were significantly lower at Camp Lake than at Reference Lake 3 at the time of biological sampling in August 2020 (Figure 3.6; Appendix Table C.25). Dissolved oxygen concentrations at Camp Lake were well above the WQG minimum for the protection of sensitive stages of cold-water biota (i.e., 9.5 mg/L) during all seasonal sampling events in 2020 except at water depths greater than approximately 25 m in winter (Figure 3.6; Appendix Tables C.20 to C.22). This suggested that dissolved oxygen concentrations were not likely to be limiting to biota at Camp Lake for most of the year, except for the portion of the water column greater than 25 m deep during the winter.

In situ profiles showed decreasing pH with increased depth at Camp Lake and Reference Lake 3, with the changes in pH through the water column at both lakes appearing to coincide with changes in water temperature and, to a lesser extent, dissolved oxygen levels (Figure 3.5). Although pH

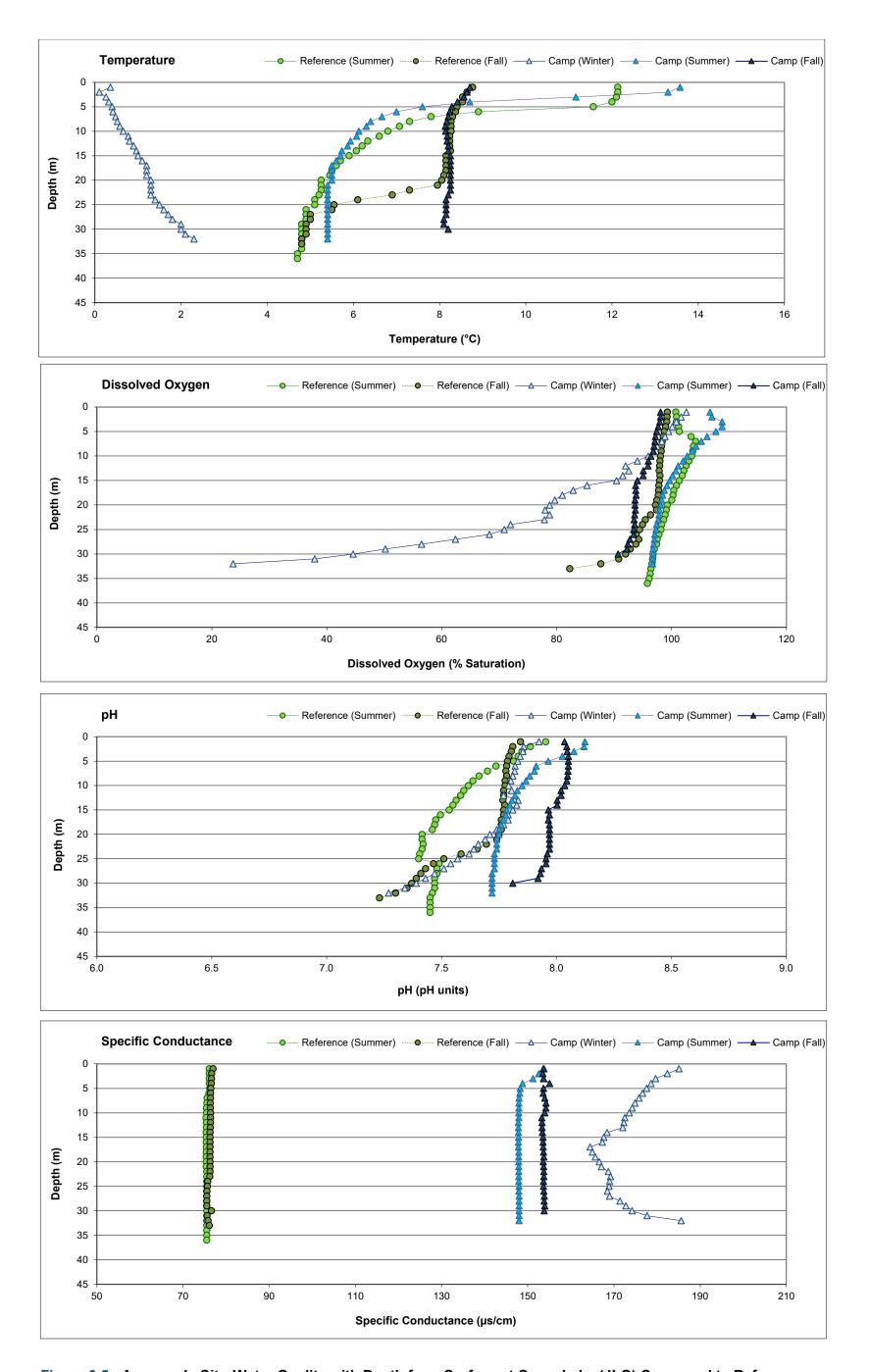


Figure 3.5: Average *In Situ* Water Quality with Depth from Surface at Camp Lake (JLO) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020



Figure 3.6: Comparison of *In Situ* Water Quality Variables (mean ± SD; n = 5) Measured at Camp Lake (JLO) and Reference Lake 3 (REF3) Littoral and Profundal Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Note: An asterisk (*) next to data point indicates mean value differs significantly from the Reference Lake 3 mean for the respective littoral or profundal station type.

near the bottom at littoral and profundal stations of Camp Lake were significantly higher than at the reference lake during the August 2020 biological study, the mean incremental difference in pH between lakes was small (i.e., 0.6 pH units) and all pH values were consistently within WQG limits (Figure 3.6, Appendix Table C.26), suggesting that the pH difference between lakes was not ecologically meaningful. Specific conductance profiles showed no marked step changes from the surface to bottom of the Camp Lake water column, indicating the absence of chemical stratification (Figure 3.5). Specific conductance was consistently higher at Camp Lake than at Reference Lake 3 in summer and fall 2020 (Figure 3.5), the difference of which was shown to be significant during the August 2020 biological study (Figure 3.6) and possibly reflected a mine-related influence on water quality. Secchi depth readings, which serve as a proxy for water clarity, were significantly lower at Camp Lake than at Reference Lake 3 during the August 2020 biological study (Appendix Figure C.8) indicating more suspended particulate material in waters of Camp Lake.

Water chemistry at Camp Lake met all AEMP benchmarks and WQG over the duration of spring, summer, and fall sampling events in 2020 (Table 3.7). Among those parameters with established AEMP benchmarks, aluminum and chloride concentrations were moderately (i.e., 5- to 10-fold) and slightly (i.e., 3- to 5-fold) elevated, respectively, at Camp Lake compared to the reference lake (Table 3.7; Appendix Table C.27). Of those parameters without AEMP benchmarks, only total and dissolved manganese, molybdenum, and uranium concentrations were slightly elevated at Camp Lake compared to the reference lake during summer and/or fall sampling events in 2020 (Appendix Tables C.27 and C.29). Concentrations of chloride, sulphate, and total aluminum were elevated at Camp Lake in 2020 compared to baseline, though only during winter and/or summer sampling events (Appendix Figure C.9; Appendix Tables C.27 and C.29). concentrations of each of these parameters were consistently well below AEMP benchmarks since commercial mine operations commenced in 2015 (Appendix Overall, comparisons to Reference Lake 3 water chemistry in 2020 and to Camp Lake baseline water chemistry suggested slightly elevated concentrations of chloride, manganese, molybdenum, and uranium at Camp Lake in 2020 which reflected a slight mine-related influence on water quality of the lake. However, because concentrations of all parameters remained well below AEMP benchmarks and WQG since commercial mine operations commenced in 2015, including in 2020, no adverse effects on biota were expected at Camp Lake.

3.3.2 Sediment Quality

Surficial sediment (i.e., top 2 cm) collected at the Camp Lake coring stations in 2020 was primarily composed of silt and sand with low (i.e., 0.3 to 3.4%) TOC content (Figure 3.7; Appendix Table D.15). Surficial sediment at littoral stations of Camp Lake contained significantly more sand

Table 3.7: Mean Water Chemistry at Camp Lake (JLO) and Reference Lake 3 (REF3) Monitoring Stations During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

D	4	Heita	Water Quality Guideline	AEMP	Reference	Lake 3 (n = 3)		Camp Lake Stations (n = 5)	
Paran	neters	Units	(WQG) ^b	Benchmark ^c	Summer	Fall	Winter	Summer	Fall
	Conductivity (lab)	umho/cm	-	-	79	79	179	154	142
Conventionals	pH (lab)	рН	6.5 - 9.0	-	7.66	7.75	7.73	8.05	7.98
o	Hardness (as CaCO ₃)	mg/L	-	-	35	38	96	71	71
Έ	Total Suspended Solids (TSS)	mg/L	-	-	2.0	2.0	2.0	2.0	2.0
ĕ	Total Dissolved Solids (TDS)	mg/L	-	-	41	51	115	85	84
Ď	Turbidity	NTU	-	-	0.15	0.15	0.13	0.78	0.31
U	Alkalinity (as CaCO ₃)	mg/L	-	-	46	34	80	67	64
	Total Ammonia	mg/L	-	0.855	0.010	0.014	0.019	0.005	0.011
-	Nitrate	mg/L	3	3	0.020	0.020	0.054	0.043	0.030
an	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.001	0.005
ts	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.15	0.16	0.19	0.11	0.16
en ga	Dissolved Organic Carbon	mg/L	-	-	3.3	3.5	2.4	2.4	2.3
Nutrier Orga	Total Organic Carbon	mg/L	-	-	4.6	3.8	2.7	2.0	2.8
ž	Total Phosphorus	mg/L	0.020 ^α	-	0.0041	0.0031	0.0044	0.0034	0.0039
	Phenols	mg/L	0.004 ^a	-	0.0010	0.0011	0.0021	0.0028	0.0013
2	Bromide (Br)	mg/L	-	_	0.1	0.1	0.1	0.05	0.1
Anions	Chloride (CI)	mg/L	120	120	1.4	1.4	5.8	4.5	4.5
A	Sulphate (SO ₄)	mg/L	218 ^β	218	3.6	3.6	5.1	4.6	4.6
	Aluminum (Al)	mg/L	0.100	0.179	0.0031	0.0032	0.0119	0.0162	0.0049
	Antimony (Sb)	mg/L	0.020 ^a	-	0.0001	0.0001	0.0001	0.0001	0.0001
	Arsenic (As)	mg/L	0.005	0.005	0.0001	0.0001	0.0001	0.0001	0.0001
	Barium (Ba)	mg/L	-	-	0.0064	0.0070	0.0089	0.0074	0.0068
	Beryllium (Be)	mg/L	0.011 ^α	_	0.0005	0.0005	0.0005	0.0001	0.0005
	Bismuth (Bi)	mg/L	-	_	0.0005	0.0005	0.0005	0.00005	0.0005
	Boron (B)	mg/L	1.5	_	0.01	0.01	0.01	0.01	0.01
	Cadmium (Cd)	mg/L	0.00012	0.00008	0.00001	0.00001	0.00001	0.000005	0.00001
	Calcium (Ca)	mg/L	0.00012	-	7.2	7.2	18.6	14.0	13.7
	Chromium (Cr)	mg/L	0.0089	0.0089	0.0005	0.0005	0.0005	0.000117	0.0005
	Cobalt (Co)	mg/L	0.0009°	0.004	0.0001	0.0001	0.0001	0.0001	0.0001
	Copper (Cu)	mg/L	0.0009	0.0022	0.0007	0.00075	0.00130	0.0001	0.0001
	Iron (Fe)	mg/L	0.30	0.326	0.03	0.03	0.03	0.03	0.03
	Lead (Pb)	mg/L	0.001	0.001	0.0005	0.0005	0.00068	0.0005	0.00005
<u>s</u>	Lithium (Li)	mg/L	-		0.00003	0.00003	0.0016	0.0003	0.00003
Metals	` '	_		-					
	Magnesium (Mg)	mg/L	- 0.935 ^β	-	4.2 0.00080	4.7 0.00068	11.9 0.00168	8.6 0.00290	8.5 0.00109
otal	Manganese (Mn)	mg/L		-					
ĭ	Mercury (Hg)	mg/L	0.000026 0.073	-	0.000005 0.00013	0.000005 0.00015	0.000005 0.00048	0.000005 0.00041	0.000005 0.00037
	Molybdenum (Mo)	mg/L		- 0.005					
	Nickel (Ni)	mg/L	0.025	0.025	0.00050	0.00050	0.00082	0.00055	0.00059
	Potassium (K)	mg/L	- 0.004	-	0.9	0.9	1.5	1.3	1.2
	Selenium (Se)	mg/L	0.001	-	0.001	0.001	0.001	0.0000516	0.001
	Silicon (Si)	mg/L	0.00025	- 0.0001	0.50	0.50	0.54	0.46	0.32
	Silver (Ag)	mg/L	0.00025	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001
	Sodium (Na)	mg/L	-	-	0.9	1.0	2.6	1.9	1.9
	Strontium (Sr)	mg/L	- 0.000	-	0.0084	0.0082	0.0152	0.0113	0.0102
	Thallium (TI)	mg/L	0.0008	0.0008	0.0001	0.0001	0.0001	0.00001	0.0001
	Tin (Sn)	mg/L	-	-	0.0001	0.0001	0.000104	0.0001	0.0001
	Titanium (Ti)	mg/L	-	-	0.01	0.01	0.01	0.000763	0.01
	Uranium (U)	mg/L	0.015	-	0.00032	0.00033	0.00128	0.00125	0.00120
	Vanadium (V)	mg/L	0.006α	0.006	0.0010	0.001	0.001	0.0005	0.001
	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.003	0.00582	0.00529	0.003

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the applicable AEMP benchmark.

^a Values presented are averages from samples taken from the surface and the bottom of the water column at each lake for the indicated season.

b Canadian Water Quality Guideline (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

^c AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data (2006 to 2013) specific to Camp Lake.

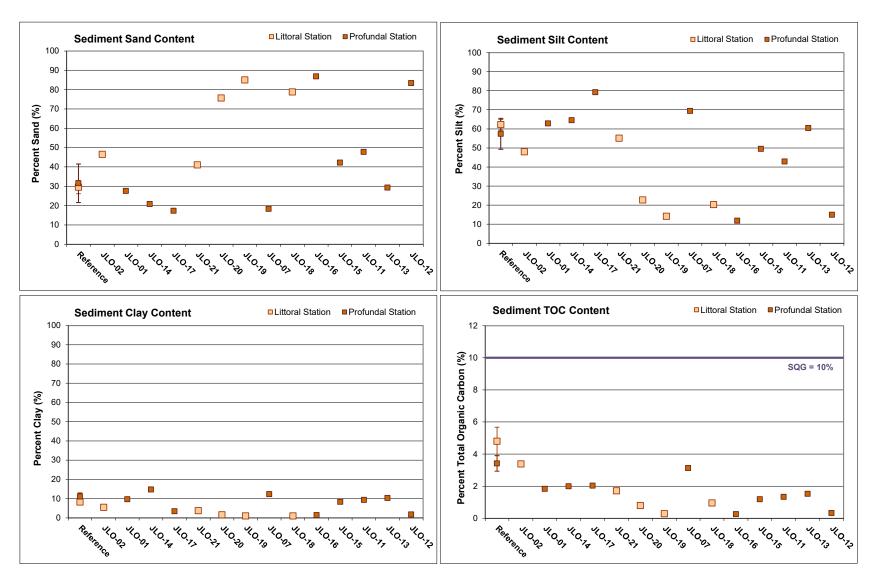


Figure 3.7: Sediment Particle Size and Total Organic Carbon (TOC) Content Comparisons among Camp Lake (JLO) Sediment Monitoring Stations and to Reference Lake 3 Averages (mean ± SE), Mary River Project CREMP, August 2020

and less silt and clav compared to Reference Lake 3 whereas the particle size of sediment from profundal areas of both lakes did not differ (Appendix Table D.16). The TOC in sediment at littoral and profundal stations of Camp Lake was significantly lower, and sediment was significantly more compact (i.e., lower moisture content), than at the reference lake (Figure 3.7; Appendix Table D.16). A surficial and/or sub-surface layer of oxidized material (likely iron hydroxide or oxy-hydroxides), visible as reddish-orange to orange-brown substrate, was observed in sediments at some Camp Lake stations (Appendix Tables D.13 and D.14). Similar observations of oxidized material were made at Reference Lake 3 (Appendix Tables D.3 and D.4), suggesting the natural occurrence of iron (oxy)hydroxides in the sediment of lakes within the mine local study area. Substrates of Camp Lake exhibited minor, sporadic blackening at sediment depths greater than 2 cm and sulphidic odour was detected in sediment from some stations, suggesting occasional incidence of reducing conditions within substrates of the lake. However, no strongly defined redox boundaries were identified visually in Camp Lake sediments in 2020 (Appendix Table D.14). Qualitative observations suggestive of reducing conditions in sediment were similar between Camp Lake and Reference Lake 3 in 2020 (Appendix Tables D.3. D.4, D.13, and D.14), which indicated that factors leading to these conditions were comparable between lakes.

Evidence of slightly higher concentrations of some metals (e.g., arsenic, copper, iron, molybdenum, nickel, uranium) in sediment at stations located closer to the CLT1 inlet were indicated compared to those located near the outlet of Camp Lake in 2020 (Appendix Table D.15). However, these spatial differences in metal concentrations were most likely attributable to higher TOC and smaller particle size in sediments from stations closest to the CLT1 inlet (Appendix Table D.15) as supported by observations of no spatial changes in water chemistry within Camp Lake. Metal concentrations in littoral and profundal sediment of Camp Lake were comparable (i.e., less than a factor of 3-fold higher) to those of the reference lake in 2020 (Table 3.8; Appendix Table D.17). Iron and manganese concentrations were above their respective SQG, and arsenic, iron, and nickel concentrations were higher than the Camp Lake AEMP benchmarks, in sediment from the Camp Lake littoral station in 2020 (Table 3.8). Mean concentrations of iron and copper were also above SQG and AEMP benchmarks, respectively, in littoral sediments at Reference Lake 3 (Table 3.8). Because station JL0-02 is located near the CLT1 inlet, this suggested that mine-influenced flow from this tributary potentially contributed to higher concentrations of the metals indicated above in sediment at this location. Although the mean concentration of manganese was above the SQG in profundal sediment from Camp Lake, the mean concentration of this metal, as well as iron, were also above SQG in profundal sediment at Reference Lake 3 (Table 3.8) indicating naturally high concentrations of these metals in sediments of the study area. Concentrations of arsenic, copper, iron, manganese,

Table 3.8: Sediment Total Organic Carbon and Metal Concentrations at Camp Lake (JLO) and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River Project CREMP, August 2020

					Littoral Stations		Profunda	ll Stations
	Analyte	Units	SQGª	AEMP Benchmark ^b	Reference Lake (n = 5) Average ± SD	Camp Lake (n = 1)	Reference Lake (n = 5) Average ± SD	Camp Lake (n = 9) Average ± SD
TO	С	%	10 ^α	-	4.80 ± 1.96	3.39	3.42 ± 1.08	1.51 ± 0.889
	Aluminum (Al)	mg/kg	-	-	16,880 ± 1,785	15,500	21,800 ± 2,185	15,303 ± 5,683
	Antimony (Sb)	mg/kg	_	_	<0.10 ± 0	0.11	<0.10 ± 0	<0.10 ± 0
	Arsenic (As)	mg/kg	17	5.9	3.53 ± 1.09	9.03	4.07 ± 0.397	5.54 ± 4.51
	Barium (Ba)	mg/kg	-	-	117 ± 22	122	122 ± 18	82.7 ± 57.2
	Beryllium (Be)	mg/kg	-	-	0.65 ± 0.073	0.78	0.80 ± 0.092	0.83 ± 0.33
	Bismuth (Bi)	mg/kg	-	-	<0.20 ± 0	0.29	<0.20 ± 0	0.27 ± 0.056
	Boron (B)	mg/kg	-	-	12.2 ± 0.853	17.8	14.7 ± 1.77	24.5 ± 10.4
	Cadmium (Cd)	mg/kg	3.5	1.5	0.173 ± 0.047	0.269	0.148 ± 0.0172	0.159 ± 0.074
	Calcium (Ca)	mg/kg	-	-	5,608 ± 1,247	5,650	5,010 ± 407	5,122 ± 2,362
	Chromium (Cr)	mg/kg	90	98	54.3 ± 4.40	66.2	65.0 ± 6.64	64.6 ± 20.1
	Cobalt (Co)	mg/kg	-	-	10.8 ± 1.64	18.4	15.2 ± 1.56	16.3 ± 5.62
	Copper (Cu)	mg/kg	110 ^α	50	71.4 ± 14.2	49.9	83.8 ± 11.1	39.6 ± 16.8
	Iron (Fe)	mg/kg	40,000 ^α	52,400	50,600 ± 24,939	61,000	45,080 ± 4,440	36,833 ± 15,000
	Lead (Pb)	mg/kg	91	35	13.8 ± 0.799	18.9	16.7 ± 1.82	18.0 ± 7.48
	Lithium (Li)	mg/kg	-	-	26.0 ± 2.51	22.4	33.7 ± 3.83	27.3 ± 10.3
"	Magnesium (Mg)	mg/kg	-	-	11,440 ± 814	13,400	14,180 ± 1,422	12,476 ± 2,881
Metals	Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	4,370	579 ± 258	1,410	1,230 ± 355	2,063 ± 2,299
ğ	Mercury (Hg)	mg/kg	0.486	0.17	0.0500 ± 0.0178	0.0530	0.0583 ± 0.0164	0.0404 ± 0.0233
	Molybdenum (Mo)	mg/kg	-	-	4.44 ± 3.31	2.45	2.52 ± 0.273	1.52 ± 1.61
	Nickel (Ni)	mg/kg	$75^{\alpha,\beta}$	72	40.0 ± 3.52	72.5	45.0 ± 4.54	61.0 ± 18.5
	Phosphorus (P)	mg/kg	$2,000^{\alpha}$	1,580	1,167 ± 394	1,310	956 ± 47	1,037 ± 510
	Potassium (K)	mg/kg	-	-	4,100 ± 453	4,100	5,338 ± 543	4,171 ± 1,725
	Selenium (Se)	mg/kg	-	-	0.73 ± 0.31	0.49	0.61 ± 0.18	0.37 ± 0.135
	Silver (Ag)	mg/kg	-	-	0.14 ± 0.047	0.12	0.20 ± 0.057	0.13 ± 0.043
	Sodium (Na)	mg/kg	-	-	304 ± 32	203	369 ± 50	227 ± 125
	Strontium (Sr)	mg/kg	-	-	11.6 ± 1.70	9.87	12.3 ± 1.24	12.4 ± 5.93
	Sulphur (S)	mg/kg	-	-	1,400 ± 387	<1,000	1,140 ± 195	1,789 ± 2,367
	Thallium (TI)	mg/kg	-	-	0.379 ± 0.0415	0.467	0.594 ± 0.094	0.435 ± 0.183
	Tin (Sn)	mg/kg	-	-	<2.0 ± 0	<2.0	<2.0 ± 0	<2.0 ± 0
	Titanium (Ti)	mg/kg	-	-	1,006 ± 109	833	1,136 ± 50	816 ± 259
	Uranium (U)	mg/kg	-	-	11.0 ± 2.41	7.39	19.7 ± 3.76	5.04 ± 2.51
	Vanadium (V)	mg/kg	-	-	54.1 ± 5.40	54.3	63.4 ± 4.89	52.5 ± 18.5
	Zinc (Zn)	mg/kg	315	135	73.1 ± 7.83	59.4	83.8 ± 8.52	50.2 ± 19.2
	Zirconium (Zr)	mg/kg	-	-	4.5 ± 1.0	7.8	3.9 ± 0.32	5.4 ± 3.6

Indicates parameter concentration above SQG.

Indicates parameter concentration above the AEMP Benchmark.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013). The indicated values are specific to Camp Lake.

nickel, and phosphorus were above respective Camp Lake AEMP benchmarks in sediment at some profundal stations of Camp Lake, but on average, were below the applicable benchmarks (Table 3.8; Appendix Table D.15). Of these metals, average concentrations of copper were also above the Camp Lake AEMP benchmark in profundal sediment at Reference Lake 3 (Table 3.8), providing further support for naturally elevated concentrations of copper in sediment.

Mean metal concentrations in sediment from Camp Lake littoral and profundal stations were comparable between 2020 and the baseline period for each respective station type (Appendix Table D.17). The only exception was a slightly higher (i.e., 3-fold greater) arsenic concentration in sediment from the single Camp Lake littoral station in 2020 (Figure 3.8; Appendix Table D.17).8 Metal concentrations in sediment from Camp Lake littoral and profundal stations in 2020 were typically within the range of those observed from 2015 to 2019 (Figure 3.8). In addition, except for slightly higher mean concentrations of arsenic, calcium, and manganese, there was no evidence of consistently higher metal concentrations in Camp Lake sediments over the 2015 to 2020 period of mine operation relative to baseline (Figure 3.8). Overall, no substantial changes in sediment chemistry have been observed at Camp Lake following the commencement of mine operations in 2015.

3.3.3 Phytoplankton

Camp Lake chlorophyll-a concentrations showed no clear spatial gradients with distance from the CLT1 inlet to the lake outlet stations in 2020 (Figure 3.9). Chlorophyll-a concentrations were significantly lower in winter compared to summer and fall at Camp Lake in 2020 (Figure 3.9; Appendix Table E.6). Chlorophyll-a concentrations at Camp Lake did not differ significantly from those at Reference Lake 3 in the summer sampling event, but were significantly higher at Camp Lake in the fall sampling event (Appendix Tables E.7 and E.8). However, chlorophyll-a concentrations at Camp Lake were consistently well below the AEMP benchmark of 3.7 µg/L during all winter, summer, and fall sampling events in 2020 (Figure 3.9). Average chlorophyll-a concentrations at Camp Lake suggested relatively low phytoplankton abundance and an 'oligotrophic' status based on comparison to Wetzel (2001) lake trophic classifications using chlorophyll-a concentrations. This trophic status classification was also consistent with an ultra-oligotrophic to oligotrophic WQG (CCME 2020) categorization for Camp Lake based on

⁸ Boron concentrations in sediment from 2015 to 2020 were considerably higher (i.e., 10- to 70-fold) than those reported during both the baseline and 2014 studies at all mine-exposed lakes. The lack of any distinct gradient in the magnitude of the elevation in boron concentrations among stations within each lake and among study lakes suggested that the stark contrast in boron concentrations between recent data and data collected prior to 2015 was likely due to laboratory-based analytical differences.

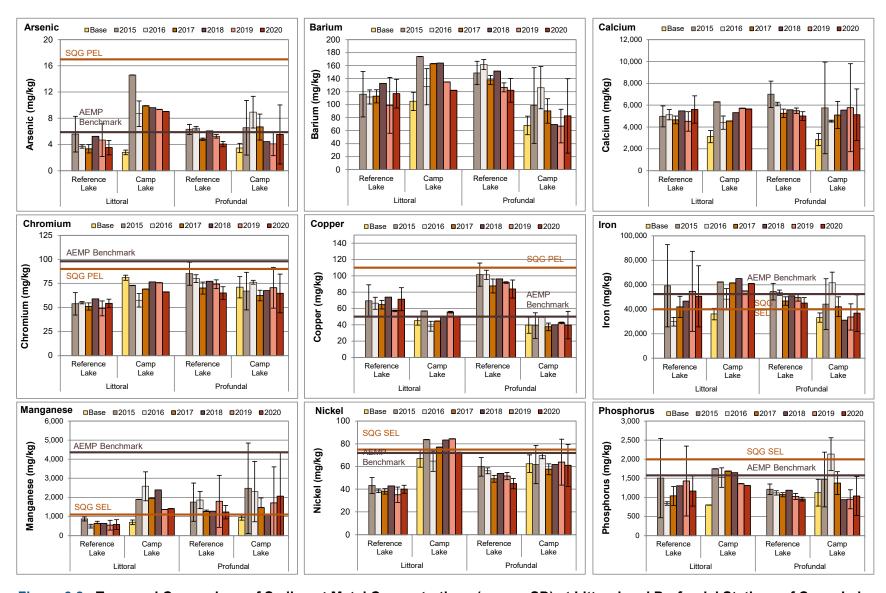


Figure 3.8: Temporal Comparison of Sediment Metal Concentrations (mean ± SD) at Littoral and Profundal Stations of Camp Lake and Reference Lake 3 for Mine Baseline (2005 to 2013) and Operational (2015 to 2020) Periods

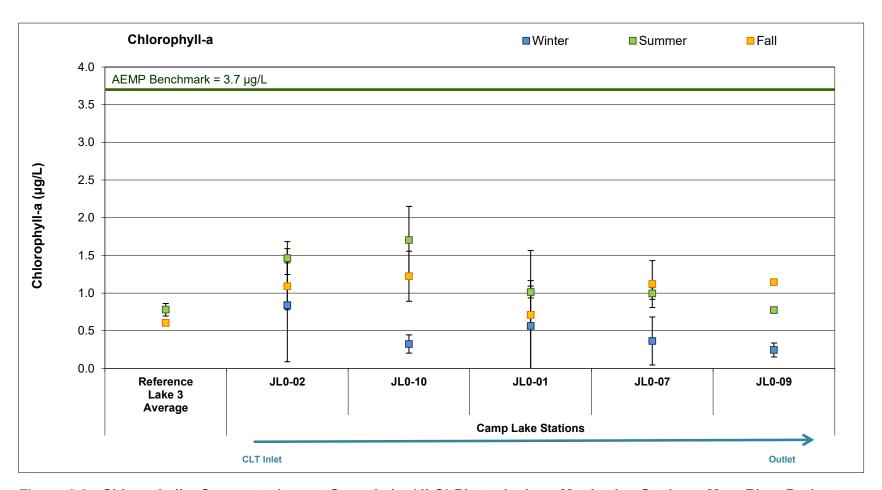


Figure 3.9: Chlorophyll a Concentrations at Camp Lake (JLO) Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020

Notes: Values are averages of samples taken from the surface and the bottom of the water column at each station. Reference values represent mean \pm standard deviation (n = 3). Reference Lake 3 was not sampled in winter 2020.

mean aqueous total phosphorus concentrations below 10 μ g/L for all seasonal sampling events (Table 3.7; Appendix Table C.26).

Temporal comparisons of the Camp Lake chlorophyll-a data did not indicate any consistent significant differences between years of mine construction (2014) and mine operation (2015 to 2020) for seasonal data collected in winter, summer, or fall (Figure 3.10). The lack of any consistent directional changes in chlorophyll-a concentrations for any given season among years was consistent with no substantial changes in nutrient (e.g., nitrate) concentrations and water quality generally achieving WQG at Camp Lake for the six years since mine operations commenced. No chlorophyll-a baseline (2005 to 2013) data are available for Camp Lake, precluding comparisons to conditions prior to the mine construction period.

3.3.4 Benthic Invertebrate Community

Benthic invertebrate density was significantly higher at littoral and profundal habitat of Camp Lake compared to like-habitat stations at Reference Lake 3 (Tables 3.9 and 3.10). For both habitat types, the difference was ecologically significant based on the magnitude being outside of the CES_{BIC} of ±2 SD_{REF}. No significant differences in richness or evenness were indicated between Camp Lake and the reference lake for either littoral or profundal habitat (Tables 3.9 and 3.10). Bray-Curtis Index differed significantly between Camp Lake and Reference Lake 3 for both littoral and profundal habitat types (Appendix Table F.21), indicating benthic invertebrate community structural differences between lakes. No ecologically significant differences in relative abundance of metal-sensitive Chironomidae were indicated between Camp Lake and Reference Lake 3 (Tables 3.9 and 3.10), which was consistent with metal concentrations in water and sediment of Camp Lake generally below applicable guidelines (Tables 3.7 and 3.8).9 Therefore, the difference(s) in community structure between lakes appeared unrelated to metal concentrations.

The key differences in benthic invertebrate community composition between Camp Lake and Reference Lake 3 included significantly higher and lower relative abundance of Chironomidae and Ostracoda dominant groups, respectively, at littoral habitat of Camp Lake (Tables 3.9 and 3.10). No ecologically significant differences in FFGs were indicated between Camp Lake and the reference lake (Tables 3.9 and 3.10), suggesting a similar food resource base for benthic invertebrates between lakes. However, an ecologically significant higher relative abundance of the burrower HPG was present at Camp Lake compared to Reference Lake 3 (Tables 3.9

⁹ Although mean concentrations of iron and manganese in sediment were above SQG at Camp Lake, the concentrations of these metals in sediment of the reference lake were also above SQG (Table 3.8), indicating natural elevation of iron and manganese in lakes of the study area.

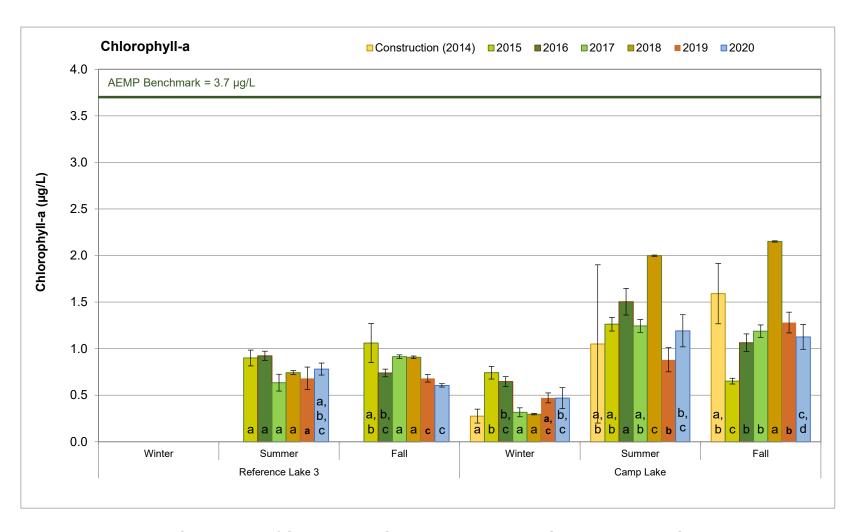


Figure 3.10: Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between Camp Lake and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)

Note: Bars with the same letter at the base do not differ significantly between years for the applicable season

Table 3.9: Benthic Invertebrate Community Statistical Comparison Results between Camp Lake (JLO) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 2020

		Stati	stical Test Re	sults				Summa	ary Statistics			
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Littoral Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum
Density (Individuals/m²)	t-equal	log10	YES	0.003	8.3	Reference Lake 3 Camp Lake Littoral	1,571 5,122	430 2,202	193 985	1,190 2,000	1,474 5,474	2,310 8,052
Richness	t-equal	log10	NO	0.150	0.8	Reference Lake 3	14.6	2.5	1.1	13.0	14.0	19.0
(Number of Taxa)	·	3 1	_			Camp Lake Littoral	16.6	1.7	0.7	14.0	17.0	18.0
Simpson's Evenness	t-equal	none	NO	0.378	0.3	Reference Lake 3	0.810	0.110	0.049	0.630	0.847	0.923
(E)						Camp Lake Littoral Reference Lake 3	0.842 2.710	0.044 0.526	0.020 0.235	0.773 2.080	0.858 2.730	0.889 3.510
Shannon Diversity	t-equal	log10	NO	0.559	0.2	Camp Lake Littoral	2.710	0.526	0.235	2.700	2.730	3.010
						Reference Lake 3	5.3	2.6	1.2	3.5	4.4	9.9
Hydracarina (%)	t-equal	log10	NO	0.568	-1.2	Camp Lake Littoral	2.0	2.4	1.1	0.3	1.0	6.0
	Mann-	_				Reference Lake 3	37.9	14.5	6.5	26.7	36.2	62.6
Ostracoda (%)	Whitney	rank	YES	0.008	-2.5	Camp Lake Littoral	2.0	1.6	0.7	0.0	2.1	4.1
Chironomidae (%)	Mann-	ronk	YES	0.008	2.6	Reference Lake 3	52.6	15.6	7.0	26.9	59.0	66.4
Chironomidae (%)	Whitney	rank	TES	0.008	2.0	Camp Lake Littoral	92.9	2.0	0.9	90.8	92.9	95.8
Metal-Sensitive	t-equal	none	NO	0.882	0.2	Reference Lake 3	28.8	9.5	4.3	15.6	32.5	38.7
Chironomidae (%)	t-equal	none	110	0.002	0.2	Camp Lake Littoral	30.3	19.7	8.8	9.7	33.7	56.9
Collector-Gatherers	t-equal	log10	NO	0.440	-0.5	Reference Lake 3	63.1	11.4	5.1	53.6	60.3	81.5
(%)	t-oquai	10910	140	0.440	-0.0	Camp Lake Littoral	56.9	17.7	7.9	34.0	54.9	83.4
Filterers (%)	t-equal	none	NO	0.804	0.3	Reference Lake 3	27.1	9.8	4.4	14.4	29.2	38.0
1 1101010 (70)	r oquai	110110	110	0.001	0.0	Camp Lake Littoral	29.7	20.2	9.0	7.0	33.7	56.2
Shredders (%)	t-unequal	none	YES	0.088	-1.0	Reference Lake 3	3.9	3.3	1.5	0.6	3.2	7.4
Ciliodacio (70)	t unoquai	110110	120	0.000	1.0	Camp Lake Littoral	0.5	0.7	0.3	0.0	0.2	1.6
Clingers (%)	t-equal	none	NO	0.742	-0.4	Reference Lake 3	31.9	9.3	4.2	17.9	33.5	41.6
				*** **		Camp Lake Littoral	28.6	19.7	8.8	4.6	25.5	56.2
Sprawlers (%)	t-equal	log10	YES	0.046	-1.8	Reference Lake 3	57.9	12.1	5.4	41.0	57.2	73.8
,		1-31-				Camp Lake Littoral	36.7	17.8	8.0	22.0	26.6	65.0
Burrowers (%)	t-equal	log10	YES	0.002	5.0	Reference Lake 3	10.2	4.9	2.2	4.6	8.3	17.3
()		1-31-				Camp Lake Littoral	34.7	12.5	5.6	21.8	31.1	55.3

Grey shading indicates statistically significant difference between study areas based on p-value≤ 0.10.

Blue shaded values indicate significant difference (ANOVA p-value ≤ 0.10) that was also outside of a Critical Effect Size of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

Table 3.10: Benthic Invertebrate Community Statistical Comparison Results between Camp Lake (JLO) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 2020

		Stat	istical Test Re	sults				Summar	y Statistics			
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Profundal Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum
Density	t-equal	log10	YES	0.005	6.4	Reference Lake 3	479	142	63	336	491	681
(Individuals/m²)		11911				Camp Lake Profundal	1,383	656	293	621	1,138	2,345
Richness	t-equal	log10	NO	0.125	1.8	Reference Lake 3	7.0	1.9	0.8	5.0	8.0	9.0
(Number of Taxa)	r oquai	10910		0.120	1.0	Camp Lake Profundal	10.4	4.5	2.0	7.0	8.0	18.0
Simpson's Evenness	t-egual	log10	NO	0.346	-1.3	Reference Lake 3	0.731	0.045	0.020	0.689	0.721	0.795
(E)	r oquui	10910	110	0.040	-1.0	Camp Lake Profundal	0.673	0.151	0.068	0.512	0.643	0.901
Shannon Diversity	t-egual	log10	NO	0.623	1.2	Reference Lake 3	1.800	0.196	0.088	1.580	1.720	2.030
Shallifold Diversity	i-equai	10910	110	0.023	1.2	Camp Lake Profundal	2.040	0.750	0.336	1.350	2.000	3.280
Hydracarina (%)	t-equal	log10(x+1)	NO	0.494	-0.5	Reference Lake 3	2.8	2.0	0.9	0.0	3.5	5.1
nyuracarina (70)	t-equal	log 10(X+1)	NO			Camp Lake Profundal	1.9	2.2	1.0	0.0	1.4	5.6
O-td- (0/)	4	I==40(··· 4)	NO	0.386	-0.8	Reference Lake 3	8.6	4.1	1.8	3.5	7.7	14.5
Ostracoda (%)	t-equal	log10(x+1)	NO	0.300	-0.0	Camp Lake Profundal	5.5	7.1	3.2	0.0	1.5	17.3
Obj	4 1		NO	0.404	0.7	Reference Lake 3	87.9	4.2	1.9	82.3	87.2	92.7
Chironomidae (%)	t-equal	none	NO	0.484	0.7	Camp Lake Profundal	91.0	8.4	3.8	77.6	90.8	98.5
Metal-Sensitive	A several		VEC	0.040	-1.1	Reference Lake 3	31.5	17.6	7.9	7.9	38.0	49.3
Chironomidae (%)	t-equal	none	YES	0.049	-1.1	Camp Lake Profundal	11.9	6.9	3.1	1.9	11.1	18.5
Collector-Gatherers			\/F0	0.000	1.0	Reference Lake 3	62.9	15.0	6.7	45.4	56.1	79.0
(%)	t-equal	log10	YES	0.020	1.6	Camp Lake Profundal	87.0	9.5	4.3	75.1	90.1	99.3
F:11 (0/)			\/F0	0.007	4.0	Reference Lake 3	30.7	17.5	7.8	7.9	38.0	49.3
Filterers (%)	t-equal	none	YES	0.037	-1.2	Camp Lake Profundal	9.4	7.4	3.3	0.4	9.1	18.5
						Reference Lake 3	2.2	2.3	1.0	0.0	2.5	5.3
Shredders (%)	t-unequal	log10(x+1)	NO	0.119	-0.9	Camp Lake Profundal	0.2	0.5	0.2	0.0	0.0	1.1
au (0/)						Reference Lake 3	33.5	16.9	7.6	13.1	41.5	52.8
Clingers (%)	t-equal	none	YES	0.046	-1.2	Camp Lake Profundal	12.4	10.6	4.8	0.4	15.4	25.5
						Reference Lake 3	64.8	16.2	7.2	45.5	58.5	87.0
Sprawlers (%)	t-unequal	log10	NO	0.267	-0.9	Camp Lake Profundal	50.0	40.2	18.0	12.3	40.1	93.0
						Reference Lake 3	1.7	2.9	1.3	0.0	0.0	6.7
Burrowers (%)	t-unequal	log10(x+1)	YES	0.057	12.4	Camp Lake Profundal	37.5	32.3	14.4	5.6	34.4	72.3

Grey shading indicates statistically significant difference between study areas based on p-value≤ 0.10.

Blue shaded values indicate significant difference (ANOVA p-value ≤ 0.10) that was also outside of a Critical Effect Size of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

and 3.10). This difference in HPG between lakes may have reflected the occurrence of more compact (i.e., lower moisture content), sandier sediment at Camp Lake (Appendix Table F.18). Substrate compactness is an important factor influencing inhabitation by burrowing invertebrates (Ward 1992), and thus greater substrate compactness may have accounted for the subtle benthic invertebrate community assemblage differences at Camp Lake compared to Reference Lake 3. Overall, markedly higher benthic invertebrate density without accompanying differences in richness, evenness, and FFG at Camp Lake compared to Reference Lake 3 suggested that Camp Lake was more biologically productive.

No consistent significant differences in general community effect indicators of density, richness, and evenness were indicated at littoral and profundal habitats of Camp Lake over years of mine operation (2015 to 2020) compared to baseline (2007, 2013; Appendix Tables F.22 and F.23; Appendix Figures F.5 and F.6). Similarly, benthic invertebrate dominant taxonomic groups and FFGs over years of mine operation from 2015 to 2020 did not differ significantly from baseline at littoral habitat at Camp Lake (Appendix Table F.22). At profundal habitat of Camp Lake, the relative abundance of metal-sensitive chironomids and the filterer FFG were routinely significantly lower at magnitudes outside of the CES_{BIC} of ±2 SD_{REF} over years of mine operation compared to the 2007 baseline data, but not to the 2013 baseline data (Appendix Table F.23). This indicated that the study-to-study differences in community features at profundal stations of Camp Lake were likely the result of sampling artifacts (e.g., differences in sampling station locations and/or replication among studies) or natural temporal variability among studies and was not related to potential influences from mine operation. Therefore, consistent with only minor changes in water and sediment quality since the mine baseline period, no ecologically significant differences in benthic invertebrate community features were indicated at littoral and profundal habitat of Camp Lake following the commencement of commercial mine operation in 2015.

3.3.5 Fish Population

3.3.5.1 Camp Lake Fish Community

The fish community at Camp Lake was composed of arctic charr (*Salvelinus alpinus*) and ninespine stickleback (*Pungitius*; Table 3.11), reflecting the same fish species observed previously (Minnow 2020). Higher CPUE for arctic charr and ninespine stickleback occurred at Camp Lake compared to Reference Lake 3 suggesting greater densities of both species at Camp Lake (Table 3.11). The higher density of fish at Camp Lake compared to Reference Lake 3 may be linked to greater productivity within Camp Lake based on higher chlorophyll-a concentrations in water (indicative of greater phytoplankton density) and greater benthic invertebrate density. Electrofishing CPUE for arctic charr at Camp Lake in 2020 was within the range observed during baseline studies (2007 to 2013) and over the five previous years

Table 3.11: Fish Catch and Community Summary from Backpack Electrofishing and Gill Netting Conducted at Camp Lake (JLO) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Lake	Met	hod ^a	Arctic Charr	Ninespine Stickleback	Total by Method	Total No. of Species
	Electrofishing	No. Caught	134	1	135	
Reference	Electionshing	CPUE	2.09	0.016	2.11	2
Lake 3	Cill potting	No. Caught	69	0	69	2
	Gill netting	CPUE	0.956	0	0.956	
	Electrofishing	No. Caught	109	18	127	
Camp	Electionshing	CPUE	4.93	0.814	5.75	2
Lake	Cill notting	No. Caught	94	0	94	2
	Gill netting	CPUE	14.8	0	14.8	

^a Catch-per-unit-effort (CPUE) for electrofishing represents the number of fish captured per electrofishing minute, and for gill netting represents the number of fish captured per 100 m hours of net deployed.

since mine operation commenced (Figure 3.11). In contrast, the CPUE associated with gill netting at Camp Lake in 2020 was substantially greater than baseline and earlier years of mine operations (Figure 3.12). An increase in the gill netting CPUE (almost three times greater than 2019) was also observed at Reference Lake 3 in 2020 (Figure 3.11). Higher gill netting CPUE in 2020 at both Camp Lake and Reference Lake 3 compared to previous studies likely reflected slightly earlier sampling timing in 2020 which, due to warmer water temperatures, may have resulted in greater fish movement and thus higher catches. Because electrofishing is an 'active' fish collection method, the similarity in electrofishing CPUE between 2020 and baseline, and between 2020 and other years of mine operation, suggested no substantial changes in within-lake fish densities at either lake and supported the notion that slight difference in sampling timing among years likely accounted for higher gill netting CPUE in 2020.

3.3.5.2 Camp Lake Fish Population Assessment

Nearshore Arctic Charr

A total of 100 arctic charr were sampled from the nearshore habitat of each of Camp Lake and Reference Lake 3 in August 2020. Arctic charr YOY were distinguished from older (non-YOY) age classes at both lakes using a fork length of 4.3 cm based on the evaluation of length-frequency distributions coupled with supporting age determinations (Figure 3.12; Appendix Tables G.4 and G.5) and historical evaluations (Minnow 2020). Due to limited capture of YOY in Camp Lake (i.e., only 2 of 100 individuals), statistical comparisons focused only on non-YOY individuals. The length-frequency distribution for the nearshore arctic charr differed significantly between Camp Lake and Reference Lake 3 (Table 3.12; Appendix Table G.6) based on fewer YOY and smaller-sized individuals captured at Camp Lake (Figure 3.12). Non-YOY arctic charr from Camp Lake were significantly longer (8%) and heavier (44%) than those from Reference Lake 3 (Table 3.12; Appendix Table G.6). Condition (i.e., weight-at-length) of non-YOY was significantly greater for arctic charr captured at Camp Lake than those from the reference lake, although the magnitude of this difference (7%) was within the CES of ±10% (referred to herein as CES_C), suggesting that this difference was not ecologically significant (Table 3.12; Appendix Table G.6).

Arctic charr non-YOY at Camp Lake were almost consistently significantly longer and heavier than at Reference Lake 3 from 2015 to 2020, indicating consistent presence of larger juveniles at Camp Lake (Table 3.12). In contrast, condition of non-YOY arctic charr showed no consistent differences, and no consistent direction of differences, between Camp Lake and the reference lake from 2015 to 2020 (Table 3.12) suggesting no appreciable differences in fish health between lakes. The length-frequency distribution of non-YOY arctic charr collected from nearshore habitats in 2020 differed from the (2013) baseline study at Camp Lake (Table 3.12).

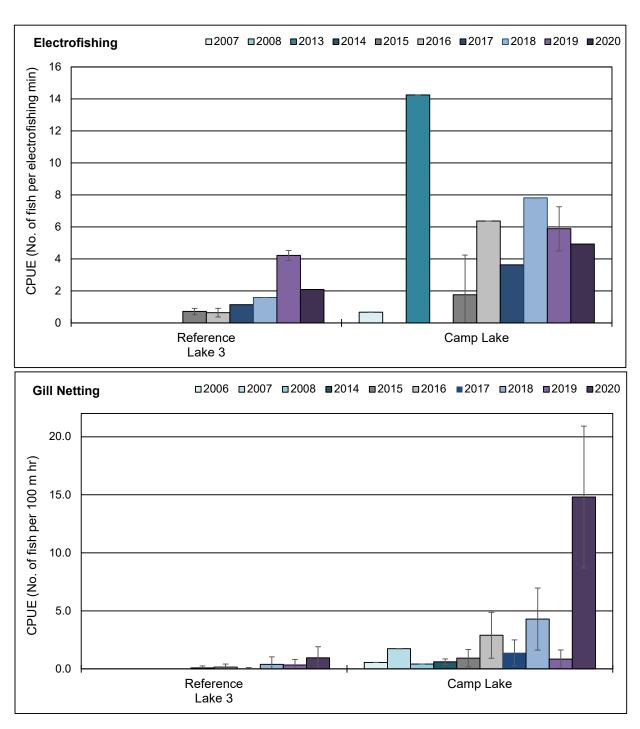


Figure 3.11: Catch-per-unit-effort (CPUE; mean ± SD) of Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Camp Lake (JLO) and Reference Lake 3 (REF3), Mary River Project CREMP, 2006 to 2020

Note: Data presented for fish sampling conducted in fall during baseline (2006, 2007, 2008, 2013), construction (2014) and operational (2015 to 2020) mine phases.

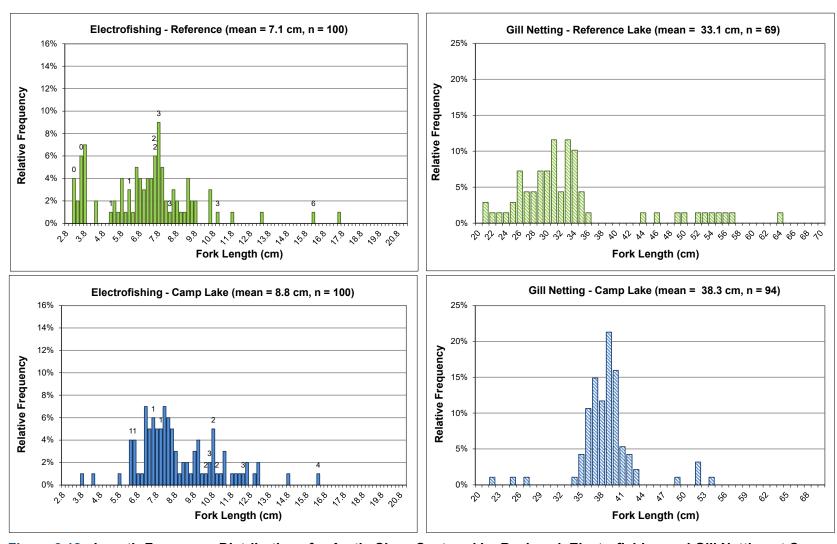


Figure 3.12: Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Camp Lake (JLO) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Note: Fish ages are shown above the bars, where available.

Table 3.12: Summary of Statistical Results for Arctic Charr Population Comparisons between Camp Lake and Reference Lake 3 from 2015 to 2020, and between Camp Lake Mine Operational and Baseline Period Data, for Fish Captured by Electrofishing and Gill Netting Methods, Mary River Project CREMP

						Statistica	ally Signi	ficant Dif	ference	S Observ	ved? a			
Data Set by Sampling Method	Response Category	Endpoint	versus Reference Lake 3								ersus Ca seline pe	-		
			2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020
<u> </u>	Survival	Length-Frequency Distribution	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
ofishir		Age	No	No	No	-	-	-	-	-	-	-	-	-
Nearshore Electrofishing	Energy Use	Size (mean fork length)	Yes (+41%)	No	Yes (+17%)	Yes (+40%)	Yes (+10%)	Yes (+8%)	Yes (-15%)	Yes (-32%)	Yes (-35%)	Yes (-28%)	No	Yes (-22%)
earshoi	(non-YOY)	Size (mean weight)	Yes (+176%)	No	Yes (+51%)	Yes (+135%)	Yes (+29%)	Yes (+44%)	Yes (-42%)	Yes (-71%)	Yes (-74%)	Yes (-56%)	No	Yes (-52%)
z	Energy Storage (non-YOY)	Condition (body weight- at-fork length)	No	Yes (-6%)	No	Yes (-14%)	Yes (-7%)	Yes (+7%)	Yes (-6%)	Yes (-10%)	Yes (-10%)	Yes (-9%)	Yes (-11%)	No
٠,		Length Frequency Distribution	-	-	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
l Netting	Survival	Age	ı	-	-	ı	-	-	Yes (+48%)	Yes (+58%)	Yes (+ 46%)	-	-	-
ındal Gil	Energy Use	Size (mean fork length)	1	-	-	Yes (+10%)	Yes (+28%)	Yes (+24%)	Yes (+6%)	No	Yes (+12%)	Yes (+15%)	Yes (+17%)	Yes (+19%)
Littoral/Profundal Gill Netting	Lifelgy Use	Size (mean weight)	ı	-	-	Yes (+46%)	Yes (+130%)	Yes (+129%)	No	No	Yes (+37%)	Yes (+46%)	Yes (+44%)	Yes (+47%)
Litto	Energy Storage	Condition (body weight- at-fork length)	1	-	-	Yes (+12%)	Yes (+6%)	Yes (+18%)	No	Yes (-3%)	No	No	No	No

BOLD indicates a significant difference related to the comparison.

^a Values in parentheses indicate direction and magnitude of any significant differences.

b Baseline period data included 2013 nearshore electrofishing data and 2006, 2008, and 2013 littoral/profundal gill netting data. nc = non-calculable magnitude.

^c Due to low catches of arctic charr in gill nets at Reference Lake 3 in 2015, 2016, and 2017, no comparison of fish health was conducted for gill netted fish.

Similar to most previous years of mine operation, non-YOY arctic charr from Camp Lake were significantly shorter and lighter in 2020 than during baseline, but unlike most years, showed no difference in condition between 2020 and baseline (Table 3.12; Appendix Table G.7). Overall, the absence of consistent differences in non-YOY condition between Camp Lake and Reference Lake 3 since 2015, and occurrence of differences near ecologically meaningful thresholds in non-YOY condition at Camp Lake between mine operational and baseline studies, suggested no effects on the health of non-YOY arctic charr at Camp Lake since mine operations commenced in 2015.

Littoral/Profundal Arctic Charr

A total of 94 and 69 arctic charr were sampled from littoral/profundal habitat of Camp Lake and Reference Lake 3, respectively, in August 2020. The length-frequency distribution for littoral/profundal arctic charr differed significantly between Camp Lake and Reference Lake 3, reflecting the occurrence of relatively larger fish at Camp Lake (Table 3.12; Figure 3.12). Littoral/profundal arctic charr from Camp Lake were significantly longer (24%) and heavier (129%) and had greater body condition (18%) than those captured at the reference lake (Table 3.12; Appendix Table G.6). The absolute magnitude of difference in condition between Camp Lake and Reference Lake 3 was greater than the CES_C of 10%, suggesting an ecologically significant difference. Larger body size and greater body condition of littoral/profundal arctic charr at Camp Lake relative to Reference Lake 3 were consistent with results in the two previous years (Table 3.12), suggesting an on-going difference between these populations.

A significant difference in length-frequency distribution of littoral/profundal arctic charr from Camp Lake was observed between 2020 and the combined baseline data set (i.e., 2006, 2007, and 2008 studies; Table 3.12). Although fork length and body weight were significantly greater for littoral/profundal arctic charr captured at Camp Lake in 2020 and most other years in which the mine was operational compared to the baseline period, no significant differences in body condition have generally been indicated since 2015 (Table 3.12). The occurrence of consistently larger littoral/profundal arctic charr at Camp Lake during mine operational years compared to the reference lake and Camp Lake baseline data, as well as greater condition and no differences in condition in littoral/profundal arctic charr compared to the reference lake and Camp Lake baseline data, respectively, collectively indicated no effects on the health of spawning-sized arctic charr at Camp Lake since mine operations commenced in 2015.

3.3.6 Effects Assessment and Recommendations

At Camp Lake, the following AEMP benchmarks were exceeded in 2020:

- Arsenic concentration in sediment was greater than the benchmark or 5.9 mg/kg at the single Camp Lake littoral monitoring station (JL0-02);
- Iron concentration in sediment was greater than the benchmark of 52,400 mg/kg at the single Camp Lake littoral monitoring station (JL0-02);
- Nickel concentration in sediment was greater than the benchmark of 72 mg/kg at the single Camp Lake littoral monitoring station (JL0-02); and,
- Arsenic, copper, iron, manganese, nickel, and phosphorus concentrations in sediment were above respective benchmarks at individual stations, but on average were below these benchmarks among the Camp Lake profundal stations.

Arsenic concentrations in sediment at the Camp Lake littoral station in 2020 were markedly higher than at the reference lake and compared to baseline, but showed no substantial change from 2015 to 2020 suggesting no on-going source of arsenic to sediment at this station. Although iron concentrations in sediment at the Camp Lake littoral station in 2020 were elevated compared to baseline, similar concentrations of iron were observed in littoral sediment at the reference lake suggesting naturally high background concentrations. Similarly, although nickel concentrations in sediment at the Camp Lake littoral station were elevated compared to concentrations at the reference lake in 2020, no substantial change in nickel concentrations had occurred between 2020 and baseline. At profundal habitat of Camp Lake in 2020, mean concentrations of arsenic, copper, iron, manganese, nickel, and phosphorus in sediment were all comparable to mean concentrations observed at the reference lake, as well as to Camp Lake baseline data, suggesting no changes over time. Thus, only the concentration of arsenic at the Camp Lake littoral station in 2020 was elevated compared to concentrations observed in sediment both at the reference lake in 2020 and at the Camp Lake littoral station at the time of baseline.

No AEMP water quality benchmarks were exceeded at Camp Lake during spring, summer, or fall sampling events in 2020.¹⁰ In addition, no adverse effects on phytoplankton, benthic invertebrates, nor on fish (arctic charr) health were indicated at Camp Lake in 2020 based on comparisons to reference lake conditions and to Camp Lake baseline data. Considering these results within the Mary River Project AEMP Management Response Framework, the potential change in arsenic concentrations in sediment at the littoral station of Camp Lake warrants a low action response. Arsenic concentrations in water at CLT1, CLT2, and Camp Lake have consistently been near or below laboratory Method Detection Limits (MDL) since 2015, and thus

¹⁰ The reported concentration of zinc at the Station JL0-07 surface was above the AEMP benchmark during the summer sampling event but this result appeared to be an anomaly based on an order of magnitude difference in concentration between this station and data reported for all other Camp Lake stations in summer 2020 (Appendix Table C.26).

the mine did not appear to be a source of arsenic to the Camp Lake system. Under the current AEMP, sediment chemistry sampling is conducted only at a single littoral station at Camp Lake (Baffinland 2015), and therefore the current AEMP does not adequately capture variability in sediment chemistry at littoral habitat of Camp Lake. Moreover, sediment chemistry sampling under the current AEMP is not always conducted at the same locations at which benthic invertebrate community sampling is conducted, precluding linkages to be drawn between sediment chemistry and biological responses. Accordingly, as per recommendations provided in the past by Minnow (2016b), a low action response of harmonizing lake sediment quality and benthic invertebrate monitoring stations, focusing primarily on littoral habitat, is recommended to improve the ability of the program to evaluate mine-related effects to biota and potentially allow linkages to be determined between metal concentrations in sediment and benthic invertebrate responses.

4 SHEARDOWN LAKE SYSTEM

4.1 Sheardown Lake Tributaries (SDLT1, SDLT12, and SDLT9)

4.1.1 Water Quality

Dissolved oxygen was consistently near full saturation at each of the Sheardown Lake tributaries during spring, summer, and fall sampling events in 2020 (Appendix Tables C.1 to C.3). Dissolved oxygen concentrations at Sheardown Lake Tributary 1 (SDLT1) and Sheardown Lake Tributary 9 (SDLT9) did not differ significantly from those at Unnamed Reference Creek during the August 2020 biological study (Figure 4.1). Although dissolved oxygen concentrations were significantly lower at Sheardown Lake Tributary 12 (SDLT12) than at Unnamed Reference Creek, the dissolved oxygen concentrations at SDLT12, and both other Sheardown Lake tributaries, were well above the WQG minimum for supporting sensitive life stages of cold-water biota (i.e., 9.5 mg/L) during the August 2020 biological study (Figure 4.1; Appendix Table C.31). In situ pH was significantly higher at SDLT1 and SDLT12 compared to Unnamed Reference Creek, whereas pH at SDLT9 did not differ significantly from that at the reference creek during the August 2020 biological study (Figure 4.1). Despite minor differences in pH among the Sheardown Lake tributaries, pH was consistently within WQG limits at each of the Sheardown Lake tributaries and thus slight dissimilarity in pH among areas was unlikely to be ecologically meaningful. Specific conductance at each of the Sheardown Lake tributaries was significantly higher than at Unnamed Reference Creek during the August 2020 biological study (Figure 4.1; Appendix Table C.32). Because specific conductance often serves as an indication of mine-associated influences on water quality (e.g., Environment Canada these observations suggested a potential mine-related influence on water quality of the SDLT1, SDLT9, and SDLT12 watercourses.

Sheardown Lake Tributary 1 (SDLT1) is the only tributary of the Sheardown Lake system at which routine water chemistry monitoring is conducted, with one monitoring station established in each of the upper and lower reaches of the tributary (i.e., Stations D1-05 and D1-00, respectively; Figure 2.2). Water chemistry of SDLT1 met AEMP benchmarks and WQG in spring, summer, and fall sampling events of 2020 except copper concentrations, which on average were elevated relative to both criteria for all sampling events (Table 4.1; Appendix Table C.33). Among parameters with established AEMP benchmarks, mean chloride, copper, nitrate, and sulphate concentrations were elevated at SDLT1 compared to the reference creeks during at least one sampling event in 2020, with nitrate and sulphate elevated by greatest factors (Table 4.1; Appendix Table C.35). For parameters without AEMP benchmarks, concentrations of total and dissolved molybdenum, potassium, and uranium, and concentrations of dissolved manganese,

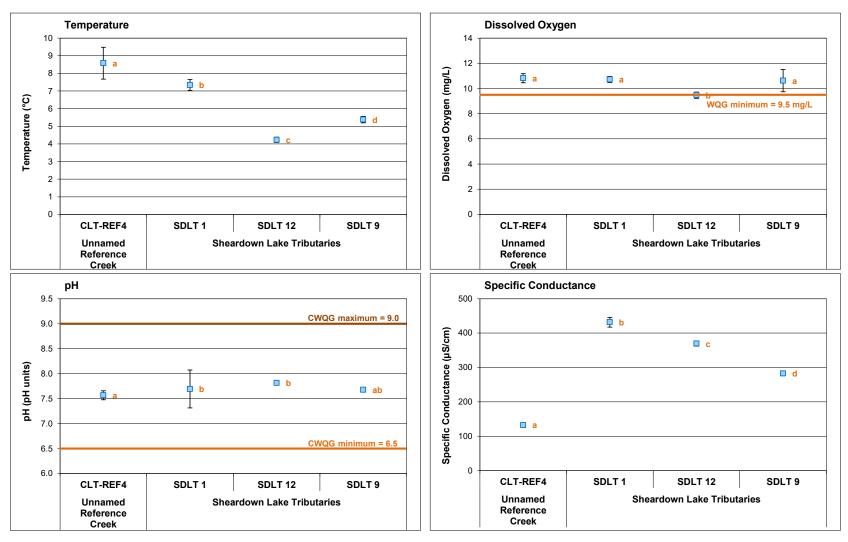


Figure 4.1: Comparison of *In Situ* Water Quality Variables (mean ± SD; n = 5) Measured at Sheardown Lake Tributaries (SDLT) and Unnamed Reference Creek Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Note: The same letter(s) next to data points indicate study area values do not differ significantly.

Table 4.1: Mean Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Monitoring Stations in Spring, Summer, and Fall, Mary River Project CREMP, 2020

Para	ameters	Units	Water Quality Guideline	AEMP Bench-		Reference Creek (n = 4)		Sh	eardown Lake Tributary 1 (n	= 2)
i ai	anicter 3	Omis	(WQG) ^a	mark ^b	Spring	Summer	Fall	Spring	Summer	Fall
Δ.	Conductivity (lab)	umho/cm	-	-	55	134	175	217	338	309
onals ^b	pH (lab)	pН	6.5 - 9.0	-	7.63	8.01	8.05	8.07	7.94	8.07
ou	Hardness (as CaCO ₃)	mg/L	-	-	24	57	83	100	152	155
nti	Total Suspended Solids	mg/L	-	-	3.2	2.7	2	2.6	2	2
Ve	Total Dissolved Solids	mg/L	-	-	85	85	99	122	198	172
Con	Turbidity	NTU	-	-	1.87	6.62	2.49	5.37	0.57	0.20
C	Alkalinity (as CaCO ₃)	mg/L	-	-	24	61	69	74	112	111
	Total Ammonia	mg/L	-	0.855	0.010	0.012	0.010	0.010	0.010	0.010
р	Nitrate	mg/L	3	3	0.020	0.062	0.076	0.416	0.900	0.701
and S	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.005	0.005	0.005
its nic	Total Kjeldahl Nitrogen	mg/L	-	-	0.02	0.15	0.15	0.15	0.18	0.23
ien ga	Dissolved Organic Carbon	mg/L	-	-	1.9	3.4	2.3	3.4	3.8	3.1
를 ŏ	Total Organic Carbon	mg/L	-	-	2.2	3.1	2.1	4.8	4.9	3.4
ž	Total Phosphorus	mg/L	0.030 ^α	-	0.0045	0.0065	0.0039	0.0058	0.0267	0.0030
	Phenols	mg/L	0.004 ^a	-	0.0010	0.0010	0.0021	0.0018	0.0010	0.0013
SI	Bromide (Br)	mg/L	-	-	0.1	0.1	0.1	0.1	0.1	0.1
ior	Chloride (CI)	mg/L	120	120	1.2	4.1	7.1	4.2	8.0	8.4
Anions	Sulphate (SO ₄)	mg/L	218 ^β	218	1.3	5.5	9.2	26.3	52.1	32.3
	Aluminum (Al)	mg/L	0.100	0.179	0.078	0.311	0.059	0.095	0.011	0.011
	Antimony (Sb)	mg/L	0.020 ^α	0.179	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Arsenic (As)		0.020	0.005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Barium (Ba)	mg/L	-	0.005	0.00010	0.0001275	0.0001	0.0001	0.0001	0.0001
	Beryllium (Be)	mg/L mg/L	- 0.011 ^α	-	0.0005	0.0095	0.0005	0.0107	0.0005	0.0005
	Bismuth (Bi)	mg/L	- 0.011	-	0.0005	0.0003875	0.0005	0.0005	0.0005	0.0005
	Boron (B)	mg/L	1.5	-	0.0003	0.003873	0.0003	0.003	0.0003	0.016
	Cadmium (Cd)	mg/L	0.00012	0.00008	0.00001	0.000009	0.00010	0.000026	0.000025	0.000025
	Calcium (Ca)	mg/L	0.00012	-	4.9	11.8	16.5	17.5	27.1	27.5
	Chromium (Cr)	mg/L	0.0089	0.00856	0.00050	0.00082	0.0005	0.0005	0.0005	0.0005
	Cobalt (Co)	mg/L	0.0009°	0.00636	0.00030	0.00082	0.0003	0.0003	0.0003	0.0003
	Copper (Cu)	mg/L	0.0009	0.004	0.0007	0.0011	0.0010	0.0029	0.0024	0.0023
	Iron (Fe)		0.30	0.0022	0.0007	0.243	0.066	0.131	0.0024	0.061
	Lead (Pb)	mg/L mg/L	0.001	0.320	0.00011	0.00023	0.0009	0.00023	0.00005	0.0005
Metals	Lithium (Li)		-	0.001	0.0011	0.00023	0.0009	0.00023	0.0000	0.0005
ete	Magnesium (Mg)	mg/L mg/L	-	-	2.86	6.7	9.6	13.0	20.7	20.4
Σ	Manganese (Mn)	mg/L	- 0.935 ^β	-	0.00136	0.00300	0.00102	0.00462	0.00539	0.00293
Total	Mercury (Hg)	mg/L	0.935	-	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005
ĭ	Molybdenum (Mo)	mg/L	0.00026	-	0.00005	0.00005	0.00005	0.00351	0.00390	0.00495
	Nickel (Ni)	mg/L	0.075	0.025	0.00013	0.00043	0.00037	0.00351	0.00390	0.00493
	Potassium (K)	mg/L	0.025	0.025	0.0003	0.93	1.04	2.44	2.84	3.06
	Selenium (Se)	mg/L	0.001	-	0.45	0.0007625	0.001	0.001	0.001	0.001
	Silicon (Si)	mg/L	-	-	0.62	1.25	0.87	1.39	1.42	1.43
	Silver (Ag)	mg/L	0.00025	0.0001	0.00001	0.00002	0.00001	0.00001	0.00001	0.00001
	Sodium (Na)	mg/L	-	-	0.83	2.76	3.97	2.46	3.90	4.20
	Strontium (Sr)	mg/L	-	-	0.0049	0.0139	0.0185	0.0142	0.0200	0.0187
	Thallium (TI)	mg/L	0.0008	0.0008	0.0049	0.00008	0.00010	0.00142	0.00010	0.00010
	Tin (Sn)	mg/L	-	-	0.00010	0.0008	0.00010	0.0001	0.00010	0.00010
	Titanium (Ti)				0.0001	0.0001	0.0100	0.0100	0.0001	0.0001
	Uranium (U)	mg/L		-			0.0100	0.0100		
		mg/L	0.015	- 0.006	0.00045	0.00405			0.00789	0.01430
	Vanadium (V)	mg/L	0.006 ^α	0.006	0.00100	0.00115	0.00100	0.00100	0.00100	0.00100
	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.003	0.003	0.0063	0.00565	0.00485

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark. ^a Canadian Water Quality Guideline except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]) and β (British Columbia Water Quality Guideline [BCWQG]). See Table 2.3 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data adopted from Camp Lake Tributaries.

were moderately (i.e., 5- to 10-fold) to highly (i.e., ≥10-fold) elevated at SDLT1 compared to the reference creeks in at least one of the spring, summer, or fall 2020 sampling events (Appendix Table C.35). Highest elevation in parameter concentrations typically occurred during the spring sampling event (Appendix Tables C.34 and C.35). In addition, higher parameter concentrations were generally observed at lower SDLT1 compared to upper SDLT1, suggesting that additional inputs of metals to SDLT1 occurred with distance downstream of the headwaters at the main mine camp (Appendix Table C.34).

Despite total copper concentrations above the AEMP benchmark and WQG at SDLT1 in 2020, the concentrations of copper during each seasonal sampling event were comparable to those reported at SDLT1 during baseline (Appendix Figure C.11; Appendix Table C.34), suggesting that copper concentrations were naturally high within this tributary prior to commencement of mine operations in 2015. Among the other parameters with established AEMP benchmarks, nitrate and sulphate concentrations were most consistently elevated at SDLT1 in 2020 (and other years of mine operation) compared to baseline (Appendix Figure C.11; Appendix Table C.33). For parameters without AEMP benchmarks, sodium and uranium were the only parameters with elevated concentrations for more than one of the three seasonal sampling events at SDLT1 in 2020 compared to baseline (Appendix Table C.33; Appendix Figure C.11). Overall, the key mine-related influences on water quality of SDLT1 based on comparisons to the reference creeks and baseline included elevated specific conductance and concentrations of molybdenum, nitrate, sulphate, and uranium, although none of the latter four parameters were observed at concentrations above applicable AEMP benchmarks and/or WQG.

4.1.2 Sediment Quality

Sediment from SDLT1 was visually characterized as reddish-brown silt, whereas sediment from SDLT12 was mainly coarse sand and gravel, and sediment from SDLT9 was medium-sized coarse sand (Appendix Table D.18). Natural in-stream substrate at tributaries SDLT1 and SDLT12 is composed almost entirely of cobble and boulder material, but smaller particles tend to deposit interstitially in slow flowing areas and along the shoreline at both tributaries (Minnow 2018). In contrast, small cobble is the primary substrate type at SDLT9, but sand can constitute as much as 5 to 10% of the surficial bed material in this tributary (Minnow 2018). Sediment TOC content was low (i.e., <1%) in samples collected from SDLT1 and SDLT12, but slightly higher (0.8 to 4.0%) in samples from SDLT9 (Appendix Tables D.19, D.21, and D.22). Sediment TOC content was 6-fold higher (on average) at SDLT1 and SDLT12 than observed at lotic reference areas, but 17-fold higher at SDLT9 (Table 4.2; Appendix Table D.20). This suggested a more depositional environment and/or greater suspended sediment loads at the three Sheardown Lake tributaries compared to reference conditions.

Table 4.2: Sediment Total Organic Carbon and Metal Concentrations at Sheardown Lake Tributaries (SDLT1, 12, and 9) and Applicable Reference Creek and River Sediment Monitoring Stations, Mary River Project CREMP, August 2020

			Lotic Reference Stations	She	eardown Lake Tributa	ries
Parameter	Units	SQGª	Unnamed Reference Creek (REFCRK; n = 3)	Sheardown Trib 1 SDLT1 (n = 3)	Sheardown Trib 12 SDLT12 (n = 3)	Sheardown Trib 9 SDLT9 (n = 3)
			Average ± SD	Average ± SD	Average ± SD	Average ± SD
TOC	%	10 ^α	0.12 ± 0.035	0.76 ± 0.19	0.75 ± 0.19	2.03 ± 1.69
Aluminum (Al)	mg/kg	-	584 ± 185	15,967 ± 1,601	8,153 ± 807	6,997 ± 3,386
Antimony (Sb)	mg/kg	-	<0.10 ± 0	0.17 ± 0.057	0.22 ± 0.023	0.11 ± 0.012
Arsenic (As)	mg/kg	17	0.22 ± 0.11	3.29 ± 1.13	5.83 ± 1.00	1.65 ± 1.15
Barium (Ba)	mg/kg	-	2.72 ± 0.722	63.6 ± 13.2	17.1 ± 6.11	32.2 ± 19.4
Beryllium (Be)	mg/kg	-	<0.10 ± 0	0.65 ± 0.042	0.68 ± 0.020	0.32 ± 0.20
Bismuth (Bi)	mg/kg	-	<0.20 ± 0	0.48 ± 0.16	0.25 ± 0.040	0.22 ± 0.035
Boron (B)	mg/kg	-	<5.0 ± 0	6.8 ± 1.1	5.5 ± 0.68	8.50 ± 6.06
Cadmium (Cd)	mg/kg	3.5	<0.020 ± 0	0.143 ± 0.0261	0.051 ± 0.011	0.064 ± 0.040
Calcium (Ca)	mg/kg	-	494 ± 249	3,790 ± 1,060	1,223 ± 643	2,920 ± 1,974
Chromium (Cr)	mg/kg	90	7.79 ± 5.39	33.7 ± 2.25	30.6 ± 0.643	22.7 ± 10.3
Cobalt (Co)	mg/kg	-	0.953 ± 0.558	13.3 ± 1.37	14.6 ± 0.751	6.24 ± 3.07
Copper (Cu)	mg/kg	110 ^α	1.21 ± 0.899	24.0 ± 2.16	19.4 ± 0.656	15.7 ± 11.3
Iron (Fe)	mg/kg	$40,000^{\alpha}$	12,493 ± 9,700	152,667 ± 33,546	345,000 ± 53,731	60,133 ± 40,945
Lead (Pb)	mg/kg	91	1.49 ± 0.546	12.4 ± 0.666	5.48 ± 1.05	5.48 ± 3.02
Lithium (Li)	mg/kg	-	<2.0 ± 0	17.8 ± 1.20	8.17 ± 1.69	7.67 ± 3.50
Magnesium (Mg)	mg/kg	-	444 ± 165	14,000 ± 2,166	5,790 ± 957	6,017 ± 3,033
Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	27.4 ± 14.6	681 ± 51	810 ± 103.9	294 ± 175
Mercury (Hg)	mg/kg	0.486	<0.0050 ± 0	0.0065 ± 0.00067	0.0052 ± 0.00029	0.0120 ± 0.0069
Molybdenum (Mo)	mg/kg	-	<0.10 ± 0	5.73 ± 1.33	3.82 ± 0.248	1.82 ± 1.27
Nickel (Ni)	mg/kg	75 ^{α,β}	1.76 ± 0.920	33.1 ± 1.14	36.4 ± 1.70	24.5 ± 14.8
Phosphorus (P)	mg/kg	2,000 ^α	167 ± 98	344 ± 50	252 ± 51	428 ± 155
Potassium (K)	mg/kg	-	133 ± 42	5,817 ± 801	800 ± 385	1,597 ± 827
Selenium (Se)	mg/kg	-	<0.20 ± 0	0.21 ± 0.012	0.27 ± 0.061	0.27 ± 0.12
Silver (Ag)	mg/kg	-	<0.10 ± 0	0.12 ± 0.021	0.10 ± 0	<0.10 ± 0
Sodium (Na)	mg/kg	-	<50 ± 0	126 ± 29	<50 ± 0	63 ± 22
Strontium (Sr)	mg/kg	-	2.00 ± 0.544	3.9 ± 0.49	2.1 ± 0.56	4.06 ± 1.73
Sulphur (S)	mg/kg	-	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0
Thallium (TI)	mg/kg	-	<0.050 ± 0	0.271 ± 0.0278	0.068 ± 0.017	0.153 ± 0.0785
Tin (Sn)	mg/kg	-	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0
Titanium (Ti)	mg/kg	-	83 ± 47	821 ± 134	218 ± 69	485 ± 139
Uranium (U)	mg/kg	-	0.479 ± 0.247	4.35 ± 1.408	2.33 ± 0.395	1.28 ± 0.946
Vanadium (V)	mg/kg	-	16.8 ± 12.8	27.7 ± 3.64	15.6 ± 1.15	18.0 ± 8.10
Zinc (Zn)	mg/kg	315	3.0 ± 1.2	75.8 ± 8.90	25.2 ± 5.67	23.1 ± 12.5
Zirconium (Zr)	mg/kg	-	2.1 ± 0.91	9.0 ± 1.9	3.5 ± 0.38	2.9 ± 2.1

Indicates parameter concentration above SQG.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Mean concentrations of metals in sediment from both SDLT1 and SDLT12 were generally elevated compared to mean concentrations at lotic reference areas (Table 4.2; Appendix Table D.20). In particular, concentrations of aluminum, arsenic, barium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, and zinc were highly elevated (i.e., ≥10-fold higher) in sediment from one or both of these tributaries compared to the lotic reference areas (Appendix Table D.20). In part, elevated metal concentrations in sediment from SDLT1 and SDLT12 may reflect finer substrate sizes and more depositional features of these tributaries compared to that observed at the lotic reference areas. On average, metal concentrations in sediment from SDLT1 and SDLT12 were below applicable SQG except for iron, which occurred at mean concentrations approximately four- and nine-times higher than the SQG, respectively, at these tributaries (Table 4.2; Appendix Tables D.19 and D.21). Sediment from SDLT9 had highly elevated concentrations of molybdenum relative to mean concentrations at the lotic reference areas, whereas mean concentrations of several other metals including aluminum, arsenic, barium, copper, iron, magnesium, manganese, nickel, and potassium were only moderately higher (i.e., 5-fold to 10-fold) at SDLT9 (Appendix Table D.20). Similar to the other Sheardown Lake tributaries, concentrations of all metals except iron (which was only 1.5 times greater than the SQG, on average) were well below SQG at SDLT9 (Table 4.2; Appendix Table D.22).

4.1.3 Phytoplankton

Among the Sheardown Lake tributaries, phytoplankton (chlorophyll-a) monitoring is conducted only at SDLT1 as part of the Mary River Project CREMP (Table 2.1). Chlorophyll-a concentrations were lower at upper SDLT1 (Station D1 05) compared to near the creek mouth (Station D1 00) during each of the spring, summer, and fall sampling events in 2020 (Figure 4.2). Nitrate, phosphorus, and TKN concentrations were consistently the same or higher near the mouth of SDLT1 in 2020 (Appendix Table C.34), and thus higher chlorophyll-a concentrations near the mouth was in line with typical responses of phytoplankton to higher nutrient concentrations. Chlorophyll-a concentrations at SDLT1 were within the range of variability observed among reference creeks in spring and summer sampling events, but were considerably lower compared to the reference creeks in the summer sampling event (Figure 4.2). Although the latter may have reflected a mine-related influence on phytoplankton abundance occurring seasonally at lower SDLT1, chlorophyll-a concentrations were unusually high at the reference creeks in the summer of 2020 compared to previous years, and thus may not reflect the norm. For all sampling events in 2020, chlorophyll-a concentrations were well below the AEMP benchmark of 3.7 µg/L at both of the SDLT1 monitoring stations (Figure 4.2). Similar to the reference creeks and Camp Lake tributaries, chlorophyll-a concentrations at SDLT1 were suggestive of oligotrophic, low productivity conditions based on Dodds et al (1998) trophic status

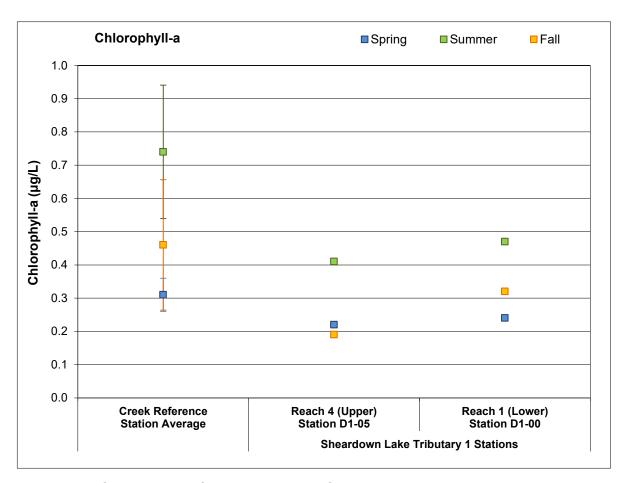


Figure 4.2: Chlorophyll-a Concentrations at Sheardown Lake Tributary 1 Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020

Note: Reference creek data represented by average (\pm SD; n = 4) calculated from CLT-REF and MRY-REF stations.

classification for stream environments (i.e., chlorophyll-a concentration <10 μ g/L). Relatively low chlorophyll-a concentrations at SDLT1 stations in 2020 were also consistent with an oligotrophic categorization using CWQG (CCME 2020) categorization based on aqueous phosphorus concentrations (i.e., concentrations below 10 μ g/L; Table 4.1; Appendix Table C.33).

Chlorophyll-a concentrations at SDLT1 stations in fall 2020 were similar to those during the baseline period (Figure 4.3). In addition, no consistent directional changes in chlorophyll-a concentrations were shown at the SDLT1 stations during fall sampling events over the mine baseline (2005 to 2013), construction (2014), and operational (2015 to 2020) periods (Figure 4.3). These results suggested no adverse mine-related influences on phytoplankton productivity at SDLT1 over the past six years of mine operation.

4.1.4 Benthic Invertebrate Community

4.1.4.1 Sheardown Lake Tributary 1 (SDLT1)

The benthic invertebrate community at the lower reach of SDLT1, near the outlet to Sheardown Lake NW, showed significantly lower evenness and significant differences in composition (as indicated by Bray-Curtis Index) compared to Unnamed Reference Creek in 2020 (Table 4.3; Appendix Table F.29). Marked differences in community composition between SDLT1 and the reference creek included significantly higher relative abundance of Nemata and Chironomidae, and significantly lower relative abundance of Hydracarina, Ostracoda, and Simuliidae at SDLT1 (Table 4.3). However, an ecologically significant higher relative abundance of metal-sensitive Chironomidae occurred at SDLT1 compared to Unnamed Reference Creek (Table 4.3), suggesting that metals were not biologically available and/or were not a large contributor to community composition differences between SDLT1 and the reference creek. This result was consistent with concentrations of all metals below WQG at SDLT1, except copper which was slightly above the WQG, in 2020 (Table 4.1). Ecologically significant higher relative abundance of the shredder FFG was indicated at SDLT1 compared to Unnamed Reference Creek, suggesting a greater amount of in-stream vegetation and/or organic debris at SDLT1. In addition, ecologically significant higher relative abundance of the burrower HPG was shown at SDLT1 compared to the reference creek (Table 4.3), possibly indicating physical habitat alteration associated with sedimentation had affected benthic invertebrate community composition at SDLT1 relative to reference conditions.

No consistent ecologically significant differences in density, richness, or evenness were indicated at SDLT1 over years of mine operation (2015 to 2020) compared to baseline (Appendix Figure F.7; Appendix Table F.30). Similarly, no ecologically significant differences in the relative abundance of any dominant taxonomic groups were consistently indicated over years

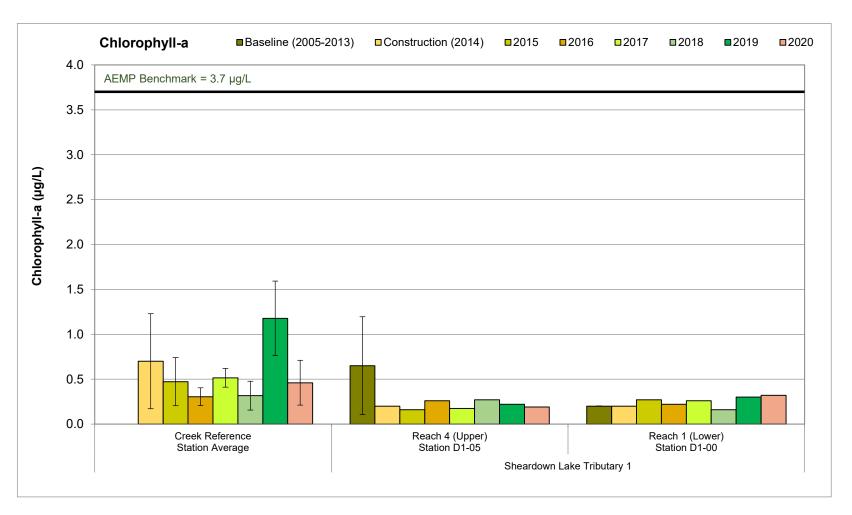


Figure 4.3: Temporal Comparison of Chlorophyll-a Concentrations at Sheardown Lake Tributary 1 for Mine Baseline (2005 to 2013), Construction (2014), and Operational (2015 to 2020) Periods in the Fall, Mary River Project CREMP

Note: Reference creek data represented by average (± SD; n = 4) calculated from CLT-REF and MRY-REF stations.

Table 4.3: Benthic Invertebrate Community Metric Statistical Comparison Results among the Sheardown Lake Tributaries and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

		Overall 4-Area	Comparison			Pair-wise, p	ost hoc comp	parisons	
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Areas?	P-value	Study Area	Mean	Standard Deviation (SD)	Magnitude of Difference (Ref SD)	Different from Reference Creek?
					Reference Creek	713	296	-	-
Density	ANOVA	log10	YES	0.050	SDLT1	679	625	-0.1	NO
(No. per m²)	71110171	10910	120	0.000	SDLT12	1,318	26	2.0	NO
					SDLT9	1,601	841	3.0	YES
					Reference Creek	16.0	4.4	-	-
Richness (No. of Toxa)	ANOVA	none	NO	0.350	SDLT1	13.4	2.9	-0.6	NO
(No. of Taxa)					SDLT12 SDLT9	17.3	4.2	0.3	NO
					Reference Creek	18.0 0.840	0.043	0.5	NO
					SDLT1	0.722	0.043	-2.7	YES
Simpson's Evenness	ANOVA	none	YES	0.019	SDLT12	0.832	0.063	-0.2	NO
					SDLT9	0.855	0.024	0.3	NO
					Reference Creek	0.7	1.3	-	-
Nemata	ANOV/A	log10/y+11	YES	0.046	SDLT1	6.2	3.6	4.3	YES
(% of community)	ANOVA	log10(x+1)	159	0.016	SDLT12	5.4	1.7	3.7	YES
					SDLT9	3.1	2.3	1.8	NO
					Reference Creek	4.5	3.7	-	
Hydracarina	K-W	rank	YES	0.004	SDLT1	1.1	0.9	-0.9	YES
(% of community)					SDLT12	0.2	0.2	-1.2	YES
					SDLT9	4.2	1.8	-0.1	NO
0-4					Reference Creek	30.6	11.7	-	- VEC
Ostracoda (% of community)	K-W	rank	YES	0.001	SDLT1 SDLT12	0.0	0.1	-2.6 -2.6	YES YES
(70 or community)					SDLT12	8.2	2.6	-1.9	NO
					Reference Creek	48.3	12.9	-1.5	-
Chironomidae					SDLT1	85.0	6.9	2.8	YES
(% of community)	ANOVA	none	YES	<0.001	SDLT12	88.6	2.1	3.1	YES
					SDLT9	70.3	4.3	1.7	YES
					Reference Creek	0.8	1.2	-	-
Metal Sensitive Chironomids	ANOVA	log10(x+1)	YES	0.002	SDLT1	10.5	5.3	7.9	YES
(% of community)	ANOVA	10910(x11)	120	0.002	SDLT12	0.5	0.4	-0.3	NO
					SDLT9	3.2	3.6	1.9	NO
					Reference Creek	9.8	8.6	-	-
Simuliidae	ANOVA	log10(x+1)	YES	0.020	SDLT1	0.0	0.0	-1.1	YES
(% of community)					SDLT12	0.0	0.0	-1.1	YES
					SDLT9 Reference Creek	0.5 1.5	0.9 2.3	-1.1	YES -
Tipulidae					SDLT1	3.9	2.5	1.0	NO
(% of community)	ANOVA	log10(x+1)	NO	0.218	SDLT12	1.5	0.7	0.0	NO
,					SDLT9	3.1	1.3	0.7	NO
					Reference Creek	80.7	8.8	-	-
Collector-Gatherer	ANOV/A	log10	VEC	0.000	SDLT1	79.4	7.0	-0.1	NO
FFG (% of community)	ANOVA	log10	YES	0.002	SDLT12	82.2	1.4	0.2	NO
(13.3.3.3.3.3)					SDLT9	63.1	6.9	-2.0	YES
					Reference Creek	2.8	2.7	-	-
Shredder FFG	ANOVA	log10(x+1)	YES	<0.001	SDLT1	15.8	6.4	4.9	YES
(% of community)					SDLT12	16.9	1.8	5.3	YES
					SDLT9	29.8	6.8	10.2	YES
Clingo: UDC					Reference Creek SDLT1	15.8 15.1	7.7 5.7	-0.1	- NO
Clinger HPG (% of community)	ANOVA	log10	YES	0.010	SDLT1	16.3	1.9	0.1	NO NO
()					SDLT12 SDLT9	33.4	8.1	2.3	YES
					Reference Creek	79.4	6.6	-	-
Sprawler HPG	,				SDLT1	72.1	6.0	-1.1	NO
(% of community)	ANOVA	none	YES	<0.001	SDLT12	73.8	0.3	-0.8	NO
-					SDLT9	53.0	9.9	-4.0	YES
					Reference Creek	4.8	3.3	-	-
Burrower FFG	ANOVA	log10	YES	0.032	SDLT1	12.5	5.8	2.3	YES
(% of community)	ANOVA	10910	IES	0.032	SDLT12	9.9	1.6	1.5	YES
					SDLT9	8.1	2.8	1.0	YES

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Blue shaded values indicate significant difference (ANOVA p-value ≤ 0.10) that was also outside of a Critical Effect Size of ±2 SD_{REF}, indicating that the difference between the mine-exposed area and reference area was ecologically meaningful.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

of mine operation compared to both years of baseline at SDLT1 (Appendix Table F.30).¹¹ However, consistent differences in FFG composition that included significantly higher relative abundance of collector-gatherers and significantly lower relative abundance of filterers and shredders at SDLT1 beginning in 2018 and 2019, respectively, compared to baseline potentially indicated a shift in the benthic invertebrate food base during more recent years of mine operation. Interestingly, the relative abundance of these FFG at SDLT1 since 2018 has more closely reflected the FFG composition at the reference creek, suggesting that the benthic invertebrate food base at SDLT1 more recently reflects the reference condition than was observed during baseline.

4.1.4.2 Sheardown Lake Tributary 12 (SDLT12)

Benthic invertebrate density, richness, and evenness at SDLT12 did not differ significantly compared to Unnamed Reference Creek, but benthic invertebrate community compositional differences were indicated between SDLT12 and the reference creek in 2020 based on significantly differing Bray-Curtis Index (Table 4.3; Appendix Table F.29). Similar to SDLT1, the differences in community composition included significantly higher relative abundance of Nemata, Chironomidae, shredder FFG, and burrower HPG, and significantly lower relative abundance of Hydracarina, Ostracoda, and Simuliidae, at SDLT12 compared to Unnamed Reference Creek (Table 4.3). However, no significant differences in the relative abundance of metal-sensitive Chironomidae were indicated at SDLT12 compared to the reference creek in 2020 (Table 4.3). In addition, no ecologically significant differences in benthic invertebrate density, richness, evenness, and relative abundance of any dominant taxonomic groups or FFG were consistently indicated at SDLT12 over years of mine operation compared to baseline (Appendix Table F.32; Appendix Figure F.8). The dominant taxon at SDLT12 was the midge Diplocladius, which is characteristic of small, cool, slow-flowing or still streams (Armitage et al. 1995; Namayandeh et al 2016). Much lower densities of this midge were present at the reference creek (compare Appendix Tables F.4 and F.31), which suggested that the existence of significantly slower water velocity at SDLT12 compared to Unnamed Reference Creek (Appendix Table F.26) likely accounted for the differences in benthic invertebrate community composition shown between these creeks. Overall, no adverse influences of the mine on benthic invertebrate community structure or food resources were indicated at SDLT12 in 2020 and since the commencement of commercial mine operations in 2015.

¹¹ Although the relative abundance of Tipulidae at SDLT1 was consistently significantly lower in years of mine operation compared to baseline data collected in 2008, no significant difference in the relative abundance of this group was indicated in years of mine operation relative to baseline data collected in 2013. In addition, the relative abundance of Tipulidae at SDLT1 from 2016 to 2020 was comparable to that shown at the reference creek in 2020, suggesting that the relative abundance of this group during baseline in 2008 was unusually high.

4.1.4.3 Sheardown Lake Tributary 9 (SDLT9)

Benthic invertebrate density was significantly higher at SDLT9 compared to Unnamed Reference Creek, the magnitude of which was outside of the CES_{BIC} of ±2 SD_{REF} (Table 4.3). In addition, richness, evenness, and relative abundance of all dominant groups, including metal-sensitive Chironomidae, did not differ significantly between SDLT9 and the reference creek at magnitudes considered ecologically meaningful (Table 4.3). Ecologically significant lower relative abundance of collector-gatherer FFG and sprawler HPG, and ecologically significant higher relative abundance of shredder FFG and clinger HPG, were indicated at SDLT9 compared to the reference creek in 2020 (Table 4.3). However, the relative abundance of all FFG, as well as benthic invertebrate density, richness, evenness, and relative abundance of all dominant taxonomic groups, showed no consistent differences over years of mine operation compared to baseline at SDLT9 (Appendix Table F.34; Appendix Figure F.9), indicating that the differences in FFG between SDLT9 and the reference creek in 2020 reflected natural phenomena. For instance, a higher relative abundance of the shredder FFG was consistent with field observations of greater amounts of rooted in-stream vegetation and organic debris, the primary food source for shredders, at SDLT9 compared to the reference creek (Appendix Table F.24). In turn, this suggested that differing amounts and/or types of organic material accounted for the differences in benthic invertebrate community composition between SDLT9 and the reference creek. Overall, no adverse influences of the mine on the benthic invertebrate community structure of SDLT12 were indicated since the commencement of commercial mine operations in 2015, including in 2020.

4.1.5 Effects Assessment and Recommendations

At the SDLT1, the following AEMP benchmarks were exceeded in 2020:

 Aqueous total copper concentration greater than the benchmark of 0.0022 mg/L in spring, summer, and fall monitoring events (i.e., mean of 0.0029 mg/L, 0.0024 mg/L, and 0.0023 mg/L, respectively).

Although copper concentrations at SDLT1 were, on average, slightly higher than at the reference creeks in 2020, the concentration of copper in 2020 was closely comparable to those reported during baseline suggesting natural elevation. Given the proximity to mine operations and evidence of sedimentation, a mine-related source of copper to SDLT1 seems likely, but because no elevation in copper concentrations was indicated at SDLT1 from 2015 to 2020 compared to baseline conditions, copper concentrations at SDLT1 may just naturally be similar to the AEMP benchmark. Biological monitoring conducted at SDLT1 in 2020 indicated no adverse effects to phytoplankton or benthic invertebrates, potentially reflecting copper concentrations at, or just marginally above, the WQG. Because no adverse effects to biota were associated with

copper concentrations above the AEMP benchmark at SDLT1, a low action response to identify the likely source(s) of copper to the system is recommended to meet obligations under the AEMP Management Response Framework.

Benthic invertebrate community monitoring at SDLT12 and SDLT9 indicated no adverse influences of the mine on the benthic invertebrate community structure of either watercourse since the commencement of commercial mine operations in 2015, including in 2020. Under the AEMP Management Response Framework, no adjustment to the existing AEMP need be applied at SDLT12 and SDLT9 for the next monitoring program due to the absence of any mine-related changes shown in the benthic invertebrate community shown between the mine-operational period and baseline at these tributaries. However, because routine water quality monitoring is not conducted at either SDLT12 or SDLT9 under the current AEMP (Baffinland 2015), linkages between water chemistry and biological responses are not possible. Therefore, it is recommended that a water quality monitoring station be established at each of these watercourses and that the same AEMP water quality monitoring program implemented at SDLT1 be conducted at SDLT12 and SDLT9 in the future in order to provide water chemistry data to support the interpretation of biological data.

4.2 Sheardown Lake Northwest (DLO-1)

4.2.1 Water Quality

Water quality profiles of in situ water temperature, dissolved oxygen, pH, and specific conductance conducted at Sheardown Lake NW in 2020 showed no substantial station-to-station differences during any of the winter, summer, or fall sampling events (Appendix Figures C.12 to C.15). A warmer surface layer was indicated at Sheardown Lake NW during the summer sampling event in 2020 that extended to a depth of approximately 6 metres, but no complete thermal stratification developed in summer or during the winter or fall sampling events (Figure 4.4). Thermal changes with depth at Sheardown Lake NW were very similar to the patterns shown at Reference Lake 3 during the summer and fall sampling events in 2020 (Figure 4.4). The average water temperature at the bottom of the water column at Sheardown Lake NW littoral stations was significantly cooler than at Reference Lake 3 during the August 2020 biological study, but no differences in bottom water temperature were indicated between lakes at profundal sampling depths (Figure 4.5). Dissolved oxygen profiles at Sheardown Lake NW showed a distinct oxycline in winter and from depths of 4 to 11 metres in summer, but no oxycline was evident in fall indicating well mixed conditions (Figure 4.4). The general pattern in dissolved oxygen profiles at Sheardown Lake NW in summer and fall sampling events were similar to those observed at Reference Lake 3 in 2020 (Figure 4.4). Dissolved oxygen concentrations near the bottom of the water column were significantly lower at Sheardown Lake NW littoral and profundal

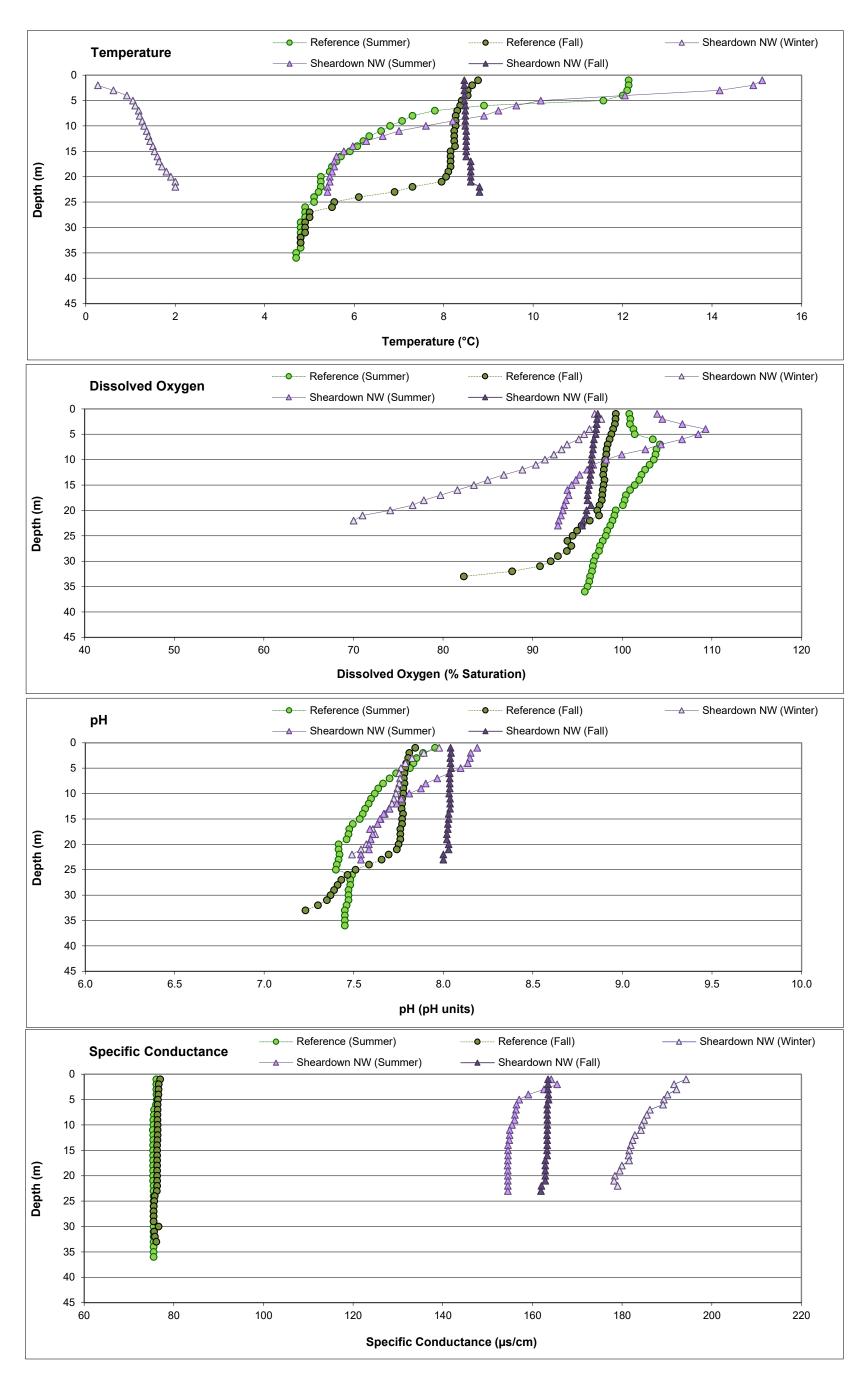


Figure 4.4: Average *In Situ* Water Quality with Depth from Surface at Sheardown Lake NW (DLO-01) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

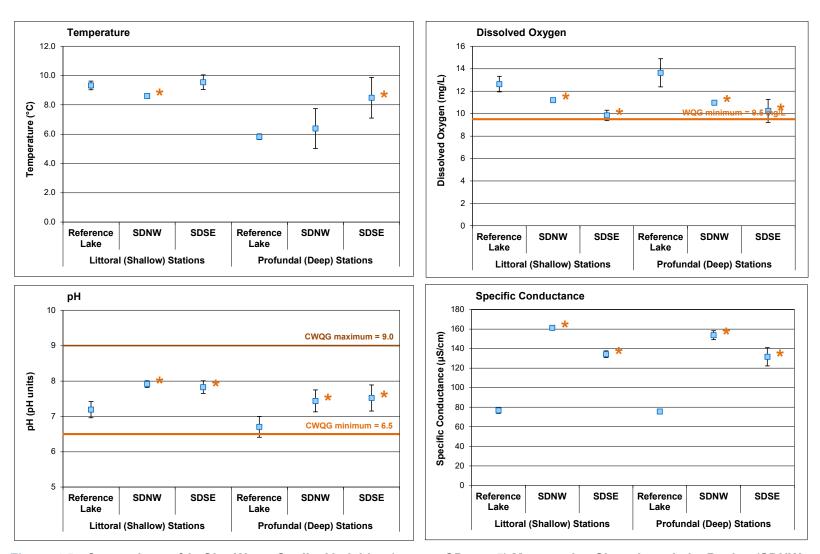


Figure 4.5: Comparison of *In Situ* Water Quality Variables (mean ± SD; n = 5) Measured at Sheardown Lake Basins (SDNW and SDSE) and Reference Lake 3 (REF3) Littoral and Profundal Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Note: An asterisk (*) next to data point indicates mean value differs significantly from the Reference Lake 3 mean for the respective littoral or profundal station type.

stations than like habitat stations at Reference Lake 3 during the August 2020 biological study (Figure 4.5). However, mean dissolved oxygen concentrations were above the WQG of 9.5 mg/L near the bottom at littoral and profundal stations of Sheardown Lake NW during biological monitoring in August 2020 (Figure 4.5; Appendix Table C.40).

Water column profiles showed decreasing pH with increased depth at Sheardown Lake NW and Reference Lake 3 in 2020, with the changes in pH through the water column at both lakes appearing to coincide with changes in water temperature (Figure 4.4). The pH near the bottom at littoral and profundal stations of Sheardown Lake NW were significantly higher than at respective habitats at the reference lake during the August 2020 biological study (Figure 4.5). However, the mean incremental difference in bottom pH between lakes was less than a pH unit, and pH values were consistently within WQG limits at Sheardown Lake NW (Figure 4.5; Appendix Table C.40), suggesting that the pH difference between lakes was not ecologically meaningful. Specific conductance profiles at Sheardown Lake NW showed no distinct changes with depth during any of the winter, summer, or fall sampling events in 2020, and exhibited similar patterns to those observed at Reference Lake 3 (Figure 4.4). Specific conductance near the bottom of the water column was significantly higher at Sheardown Lake NW littoral and profundal stations compared to the reference lake (Figure 4.5; Appendix Table C.40). Water clarity, as determined through evaluation of Secchi depth, was significantly lower at Sheardown Lake NW than at the reference lake at the time of the August 2020 biological study (Appendix Figure C.8).

Water chemistry at Sheardown Lake NW met all AEMP benchmarks and WQG over the duration of spring, summer, and fall sampling events in 2020 (Table 4.4). Among those parameters with established AEMP benchmarks, aluminum, chloride, nitrate, and sulphate concentrations were elevated by factors greater than three at Sheardown Lake NW compared to the reference lake during the summer and fall sampling events (Table 4.4; Appendix Table C.43). Of those parameters without AEMP benchmarks, turbidity, total manganese concentrations, and total and dissolved molybdenum and uranium concentrations were elevated at Sheardown Lake NW compared to the reference lake during summer and/or fall sampling events in 2020 (Appendix Tables C.43 and C.45). Similar to previous studies, elevated total aluminum and manganese concentrations at Sheardown Lake NW compared to the reference lake in 2020 were associated with suspended material that contributed to elevated turbidity at Sheardown Lake NW (Table 4.4; Appendix Table C.42). Naturally high turbidity 12 at Sheardown Lake NW may reflect backflow received from Mary River that contains relatively high amounts of suspended aluminum--and manganese-bearing particulate minerals. Similar concentrations of dissolved

¹² Turbidity at Sheardown Lake NW in 2020 was comparable to turbidity shown at the lake during baseline (Appendix Table C.44), suggesting that greater turbidity at this lake compared to Reference Lake 3 reflects a natural phenomenon.

Table 4.4: Mean Water Chemistry at Sheardown Lake NW (DLO-01) and Reference Lake 3 (REF3) Monitoring Stations During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

			Water Quality	AEMP	Reference L	ake 3 (n = 3)		Sheardown Lake NW Stations (n = 5)
Para	ameters	Units	Guideline (WQG) ^b	Benchmark ^c	Summer	Fall	Winter	Summer	Fall
Q	Conductivity (lab)	umho/cm	-	-	79	79	191	164	166
Conventionals ^b	pH (lab)	рН	6.5 - 9.0	-	7.66	7.75	7.65	7.99	8.02
õ	Hardness (as CaCO ₃)	mg/L	-	-	35	38	97	76	80
ij	Total Suspended Solids (TSS)	mg/L	-	-	2.0	2.0	2.0	2.5	2.0
× ×	Total Dissolved Solids (TDS)	mg/L	-	-	41	51	118	93	92
Ö	Turbidity	NTU	-	-	0.15	0.15	0.12	0.84	0.55
O	Alkalinity (as CaCO ₃)	mg/L	-	-	46	34	76	59	74
	Total Ammonia	mg/L	-	0.855	0.010	0.014	0.025	0.005	0.012
7	Nitrate	mg/L	3	3	0.020	0.020	0.211	0.219	0.211
and	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.001	0.005
ts nic	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.15	0.16	0.17	0.12	0.16
en ga	Dissolved Organic Carbon	mg/L	-	-	3.3	3.5	2.7	1.8	2.0
utrients Organic	Total Organic Carbon	mg/L	-	-	4.6	3.8	3.8	1.8	2.5
ž	Total Phosphorus	mg/L	0.020 ^α	-	0.004	0.003	0.007	0.005	0.007
	Phenols	mg/L	0.004°	_	0.0010	0.0011	0.002	0.0018	0.002
S	Bromide (Br)	mg/L	-	_	0.1	0.1	0.1	0.05	0.1
Anions							1		
Ē	Chloride (CI)	mg/L	120	120	1.4	1.4	5.2	4.2	4.5
4	Sulphate (SO ₄)	mg/L	218 ^β	218	3.6	3.6	17.1	14.7	15.2
	Aluminum (Al)	mg/L	0.100	0.179, 0.173 ^d	0.0031	0.003	0.005	0.016	0.011
	Antimony (Sb)	mg/L	0.020 ^α	-	0.0001	0.0001	0.0001	0.0001	0.0001
	Arsenic (As)	mg/L	0.005	0.005	0.0001	0.0001	0.0001	0.0001	0.0001
	Barium (Ba)	mg/L	-	-	0.0064	0.00696	0.00919	0.00759	0.00819
	Beryllium (Be)	mg/L	0.011 ^α	-	0.0005	0.0005	0.0005	0.0001	0.0005
	Bismuth (Bi)	mg/L	-	-	0.0005	0.0005	0.0005	0.00005	0.0005
	Boron (B)	mg/L	1.5	-	0.01	0.01	0.0115	0.01225	0.0135
	Cadmium (Cd)	mg/L	0.00012	0.00009	0.00001	0.00001	0.00001	0.000005	0.00001
	Calcium (Ca)	mg/L	-	-	7.2	7.2	18.7	14.1	15.5
	Chromium (Cr)	mg/L	0.0089	0.0089	0.0005	0.0005	0.0005	0.0001	0.0005
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	0.0001	0.0001	0.0001	0.0001	0.0001
	Copper (Cu)	mg/L	0.002	0.0024	0.00073	0.0008	0.0010	0.0009	0.0008
	Iron (Fe)	mg/L	0.30	0.300	0.03	0.03	0.03	0.02	0.03
S	Lead (Pb)	mg/L	0.001	0.001	0.00005	0.00005	0.00005	0.00005	0.00005
tal	Lithium (Li)	mg/L	-	-	0.0010	0.001	0.0015	0.0014	0.0015
Metals	Magnesium (Mg)	mg/L	-	-	4.2	4.7	11.9	9.2	10.1
otal	Manganese (Mn)	mg/L	0.935^{β}	-	0.00080	0.00068	0.00075	0.00283	0.00132
ᅙ	Mercury (Hg)	mg/L	0.000026	-	0.00005	0.00005	0.000005	0.000005	0.000005
-	Molybdenum (Mo)	mg/L	0.073	-	0.00013	0.00015	0.00120	0.00097	0.00101
	Nickel (Ni)	mg/L	0.025	0.025	0.00050	0.00050	0.00080	0.00072	0.00069
	Potassium (K)	mg/L	-	-	0.9	0.90	1.64	1.33	1.38
	Selenium (Se)	mg/L	0.001	-	0.001	0.001	0.001	0.000052	0.001
	Silicon (Si)	mg/L	-	-	0.50	0.50	0.62	0.63	0.56
	Silver (Ag)	mg/L	0.00025	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001
	Sodium (Na)	mg/L	-	-	0.9	0.96	2.25	1.83	1.96
	Strontium (Śr)	mg/L	-	-	0.0084	0.0082	0.0132	0.0104	0.0108
	Thallium (TI)	mg/L	0.0008	0.0008	0.0001	0.0001	0.0001	0.00001	0.0001
	Tin (Sn)	mg/L	-	-	0.0001	0.0001	0.0001	0.0001	0.0001
	Titanium (Ti)	mg/L	-	-	0.010	0.010	0.010	0.001	0.010
	Uranium (U)	mg/L	0.015	-	0.00032	0.00033	0.00143	0.00135	0.00153
	Vanadium (V)	mg/L	0.006 ^a	0.006	0.0010	0.001	0.001	0.0005	0.001
	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.003	0.003	0.003	0.003

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

^a Values presented are averages from samples taken from the surface and the bottom of the water column at each lake for the indicated season.

b Canadian Water Quality Guideline (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

^c AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake NW.

^d Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively (Intrinsik 2013).

aluminum and manganese between Sheardown Lake NW and Reference Lake 3 in 2020 (and historically) suggested that the mine was unlikely to be the source of these metals (Appendix Tables C.43 and C.45). Sulphate was the only parameter among those with established AEMP benchmarks that was elevated in 2020 compared to baseline at Sheardown Lake NW (Appendix Figure C.16), as were dissolved molybdenum and uranium concentrations among those parameters without AEMP benchmarks (Appendix Tables C.42 and C.44). Overall, a slight mine-related influence on water quality of Sheardown Lake NW was indicated in 2020 as reflected by elevated concentrations of chloride, molybdenum, nitrate, sulphate, and uranium. However, concentrations of all parameters remained well below AEMP benchmarks and WQG since commercial mine operations commenced in 2015, and therefore no adverse biological effects were expected at Sheardown Lake NW.

4.2.2 Sediment Quality

Surficial sediment in Sheardown Lake NW was primarily composed of silt, except at littoral station DLO-01-10, which contained 93% sand (Figure 4.6; Appendix Table D.25). Except for a slightly higher percentage of clay in sediments from profundal stations in Sheardown Lake NW, no differences in sediment particle size were noted relative to stations sharing like-habitat at Reference Lake 3 (Appendix Table D.26). The TOC content in sediment from littoral and profundal stations at Sheardown Lake NW was significantly lower, and sediment was significantly more compact (i.e., lower moisture content), than at the reference lake (Appendix Table D.26). Similar to observations at Reference Lake 3 and Camp Lake, reddish-brown oxidized material was observed on the surface of Sheardown Lake NW sediments at sine stations (Appendix Tables D.23 and D.24). This material occasionally occurred as a thin, distinct layer that was likely principally composed of iron (oxy)hydroxide precipitate. Substrate of Sheardown Lake NW exhibited some blackening (or unusually dark colouration), and traces of a sulphidic odour at some stations at the time of the August 2020 sampling event (Appendix Tables D.23 and D.24), suggesting the occurrence of reducing conditions in the sediment similar to that observed at the reference lake (Appendix Tables D.3 and D.4).

No consistent spatial differences in sediment metal concentrations occurred between Sheardown Lake NW stations located nearest to key tributary inlets (e.g., SDLT1 and SDLT12) and those located near the lake outlet in 2020 (Appendix Table D.25). Although arsenic, cadmium, iron, nickel, and uranium concentrations were highest in sediment at the Sheardown Lake NW station located closest to the outlet of SDLT1 (i.e., Station DD-HAB 9-STN2), higher concentrations of these metals may be related to high TOC content at this location (Appendix Table D.25). Sheardown Lake Tributary 1 was previously identified as a source of iron loadings to the lake (Section 4.1.2), so elevated iron concentrations at this location are not unexpected. Mean metal

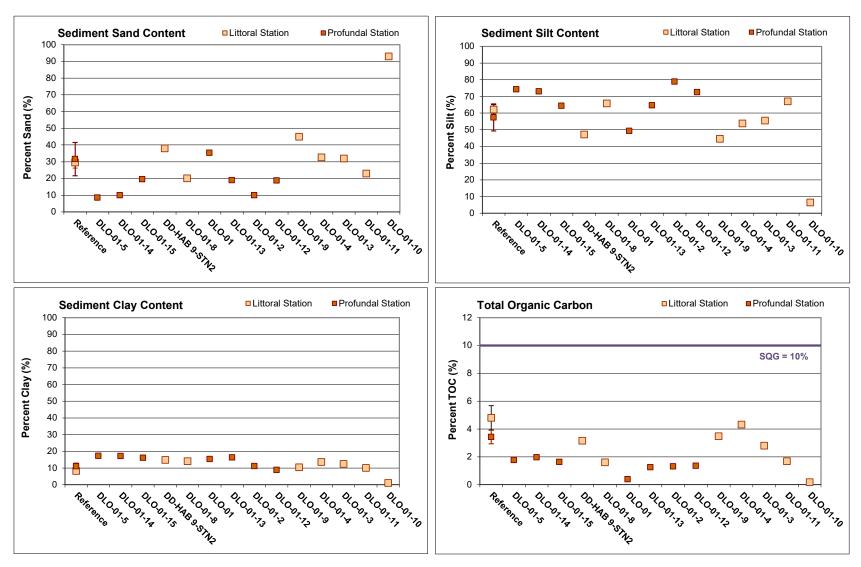


Figure 4.6: Sediment Particle Size and Total Organic Carbon (TOC) Content Comparisons among Sheardown Lake NW (DLO-01) Sediment Monitoring Stations and Reference Lake 3 (mean ± SE), Mary River Project CREMP, August 2020

concentrations in littoral and profundal sediment of Sheardown Lake NW were very similar to mean concentrations observed at like-habitat in Reference Lake 3, the only exception being slightly elevated (i.e., 3- to 5-fold higher) mean concentration of manganese at the Sheardown Lake NW profundal stations (Table 4.5; Appendix Table D.27). Although average concentrations of iron were above SQG in sediment from littoral stations in Sheardown Lake NW, the average concentration of iron was also above the SQG in sediment from Reference Lake 3 indicating naturally elevated concentrations of iron (Table 4.5). Nickel was also above the SQG in sediment from one littoral station in Sheardown Lake NW (Appendix Table D.25). In addition to iron, manganese was above the SQG in profundal sediments from Sheardown Lake NW and the reference lake, indicating manganese is also naturally elevated in the study area (Table 4.5). Only the mean concentration of manganese in profundal sediment of Sheardown Lake NW was above the lake-specific AEMP benchmark, whereas at the reference lake, mean concentrations of copper, iron, and manganese were elevated above the Sheardown Lake NW AEMP benchmarks in littoral and profundal sediments (Table 4.5).

Metal concentrations in sediment from Sheardown Lake NW in 2020 were comparable to those observed during the mine baseline (2005 to 2013) period (Figure 4.7; Appendix Table D.27).¹³ On average, metal concentrations in sediment of Sheardown Lake NW in 2020 were within the range of those observed from 2015 to 2019, except for manganese at the profundal stations where concentrations were higher than historically (although the variability in concentrations among sampling stations was substantial, as indicated by the high standard deviation; Figure 4.7). No continual increase in mean concentrations of any metals were apparent from 2015 to 2020 at the Sheardown Lake NW littoral or profundal stations, including for manganese (Figure 4.7). Overall, no substantial changes in sediment metal concentrations of Sheardown Lake NW have occurred since the commencement of mine operations in 2015.

4.2.3 Phytoplankton

Chlorophyll-a concentrations at Sheardown Lake NW showed no consistent spatial gradients with progression towards the lake outlet among the winter, summer, and fall sampling events in 2020 (Figure 4.8). Chlorophyll-a concentrations differed significantly among seasons at Sheardown Lake NW, with highest and lowest concentrations observed in summer and winter, respectively (Appendix Tables E.5 and E.6) reflecting similar occurrence of highest chlorophyll-a concentrations in the summer sampling event at the reference lake (Appendix Table B.7).

¹³ See footnote 6 regarding differences in the concentration of boron in sediment between baseline and recent CREMP studies.

Table 4.5: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Sheardown Lake NW (DLO-01) and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River **Project CREMP, August 2020**

				AEMD	Litt	toral	Profu	ındal
Para	nmeter	Units	SQG ^a	AEMP Benchmark ^b (NW, SE)	Reference Lake (n = 5)	Sheardown Lake NW (n = 4)	Reference Lake (n = 5)	Sheardown Lake NW (n = 4)
				(INVV, SE)	Average ± SD	Average ± SD	Average ± SD	Average ± SD
TOC	,	%	10 ^α	-	4.80 ± 1.96	2.10 ± 1.39	3.42 ± 1.08	1.17 ± 0.576
	Aluminum (Al)	mg/kg	-	-	16,880 ± 1,785	15,635 ± 8,686	21,800 ± 2,185	20,675 ± 3,970
	Antimony (Sb)	mg/kg	-	-	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0
	Arsenic (As)	mg/kg	17	6.2, 5.9	3.53 ± 1.09	4.05 ± 2.84	4.07 ± 0.397	3.72 ± 0.66
	Barium (Ba)	mg/kg	-	-	117 ± 22.0	87 ± 58	122 ± 18.3	110 ± 41
	Beryllium (Be)	mg/kg	-	-	0.65 ± 0.073	0.88 ± 0.48	0.80 ± 0.092	0.98 ± 0.176
	Bismuth (Bi)	mg/kg	-	-	<0.20 ± 0	0.23 ± 0.024	<0.20 ± 0	0.24 ± 0.04
	Boron (B)	mg/kg	-	-	12.2 ± 0.853	25.8 ± 14.1	14.7 ± 1.77	29.9 ± 5.78
	Cadmium (Cd)	mg/kg	3.5	1.5, 1.5	0.173 ± 0.047	0.252 ± 0.177	0.148 ± 0.0172	0.253 ± 0.046
	Calcium (Ca)	mg/kg	-	-	5,608 ± 1,247	4,023 ± 1,857	5,010 ± 407	4,270 ± 593
	Chromium (Cr)	mg/kg	90	97, 79	54.3 ± 4.40	60.1 ± 30.9	65.0 ± 6.64	71.3 ± 11.41
	Cobalt (Co)	mg/kg	-	-	10.8 ± 1.64	11.5 ± 6.39	15.2 ± 1.56	15.9 ± 3.32
	Copper (Cu)	mg/kg	110	58, 56	71.4 ± 14.2	38.0 ± 21.8	83.8 ± 11.1	42.5 ± 6.55
	Iron (Fe)	mg/kg	40,000 ^α	52,200, 34,400	50,600 ± 24,939	41,200 ± 21,466	45,080 ± 4,440	43,350 ± 12,934
	Lead (Pb)	mg/kg	91.3	35	13.8 ± 0.799	16.5 ± 8.55	16.7 ± 1.82	19.7 ± 3.94
	Lithium (Li)	mg/kg	-	-	26.0 ± 2.51	29.6 ± 16.3	33.7 ± 3.83	33.2 ± 6.59
	Magnesium (Mg)	mg/kg	-	-	11,440 ± 814	9,930 ± 5,277	14,180 ± 1,422	13,105 ± 2,514
tals	Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	4,530, 657	579 ± 258	526 ± 380	1,230 ± 355	5,291 ± 5,948
Met	Mercury (Hg)	mg/kg	0.486	0.17	0.0500 ± 0.0178	0.0306 ± 0.0198	0.0583 ± 0.0164	0.0332 ± 0.01397
	Molybdenum (Mo)	mg/kg	-	-	4.44 ± 3.31	3.08 ± 1.93	2.52 ± 0.273	5.22 ± 4.69
	Nickel (Ni)	mg/kg	$75^{\alpha,\beta}$	77, 66	40.0 ± 3.52	56.1 ± 31.1	45.0 ± 4.54	61.4 ± 9.82
	Phosphorus (P)	mg/kg	$2,000^{\alpha}$	1,958, 1,278	1,167 ± 394	832 ± 379	956 ± 47.3	900 ± 94.6
	Potassium (K)	mg/kg	-	-	4,100 ± 453	4,168 ± 2,333	5,338 ± 543	5,288 ± 1,043
	Selenium (Se)	mg/kg	-	-	0.73 ± 0.31	0.37 ± 0.15	0.61 ± 0.18	0.32 ± 0.11
	Silver (Ag)	mg/kg	-	-	0.14 ± 0.047	0.16 ± 0.042	0.20 ± 0.057	0.16 ± 0.024
	Sodium (Na)	mg/kg	-	-	304.2 ± 32	232 ± 122	369 ± 50	283 ± 50
	Strontium (Sr)	mg/kg	-	-	11.6 ± 1.70	9.45 ± 3.72	12.3 ± 1.24	11.40 ± 1.50
	Sulphur (S)	mg/kg	-	-	1,400 ± 387	<1,000 ± 0	1,140 ± 195	<1,000 ± 0
	Thallium (TI)	mg/kg	-	-	0.379 ± 0.0415	0.419 ± 0.242	0.594 ± 0.094	0.514 ± 0.1225
	Tin (Sn)	mg/kg	-	-	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0
	Titanium (Ti)	mg/kg	-	-	1,006 ± 109	934 ± 472	1,136 ± 50	1,194 ± 210.5
	Uranium (U)	mg/kg	-	-	11.0 ± 2.41	6.17 ± 3.68	19.7 ± 3.76	6.37 ± 1.212
	Vanadium (V)	mg/kg	-	-	54.1 ± 5.40	45.8 ± 23.4	63.4 ± 4.89	56.7 ± 9.97
	Zinc (Zn)	mg/kg	315	135	73.1 ± 7.83	53.5 ± 29.0	83.8 ± 8.52	63.3 ± 11.80
	Zirconium (Zr)	mg/kg	-	-	4.5 ± 1.0	10.1 ± 6.4	3.9 ± 0.32	7.03 ± 1.68

Indicates parameter concentration above Sediment Quality Guideline (SQG). Indicates parameter concentration above the AEMP Benchmark.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020)

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013) using sediment quality guidelines, background sediment quality data, and method detection limits. The indicated values are specific to the Sheardown Lake basins

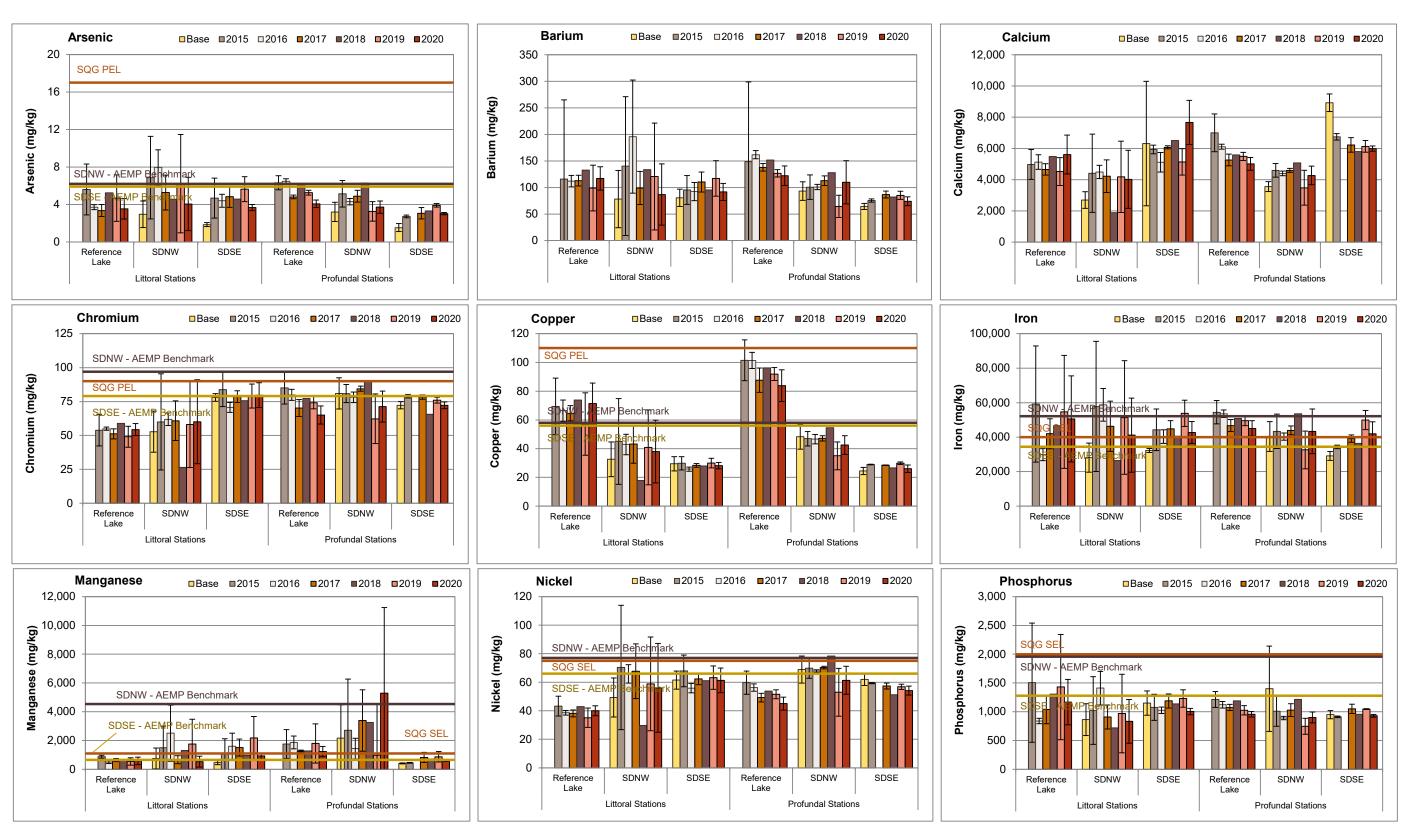


Figure 4.7: Temporal Comparison of Sediment Metal Concentrations (mean ± SD) at Littoral and Profundal Stations of Sheardown Lake NW (SDNW), Sheardown Lake SE (SDSE), and Reference Lake 3 for Mine Baseline (2005 to 2013) and Operational (2015 to 2020) Periods

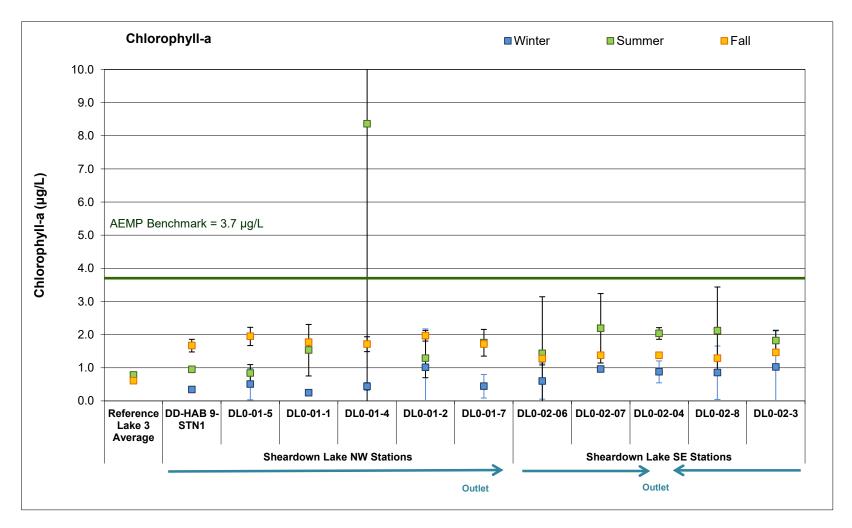


Figure 4.8: Chlorophyll-a Concentrations at Sheardown Lake NW (DLO-1) and Sheardown Lake SE (DLO-2) Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020

Notes: Values are averages of samples taken from the surface and the bottom of the water column at each station. Reference values are expressed as mean \pm standard deviation (n = 3). Reference Lake 3 was not sampled in winter 2020.

Although chlorophyll-a concentrations were significantly higher at Sheardown Lake NW compared to Reference Lake 3 for both the summer and fall sampling events in 2020 (Appendix Tables E.7 and E.8), chlorophyll-a concentrations during each of the winter, summer, and fall sampling events at Sheardown Lake NW were well below the AEMP benchmark of 3.7 µg/L for all samples except one sample in July (Figure 4.8). For the sample that exceeded the benchmark, the chlorophyll-a concentration (15 µg/L) was an order of magnitude higher than any other sample collected in the lake on the same day, suggesting a sampling or laboratory analysis issue rather than an actual increase in phytoplankton abundance. Chlorophyll-a concentrations at Sheardown Lake NW were suggestive of an 'oligotrophic' status using Wetzel (2001) lake trophic status classifications. This trophic status classification was consistent with an oligotrophic categorization for Sheardown Lake NW using CWQG (CCME 2020) classifications based on aqueous total phosphorus concentrations near the surface (i.e., concentrations below 10 µg/L; Table 4.4; Appendix Table C.42).

Chlorophyll-a concentrations at Sheardown Lake NW in 2020 were within the ranges shown among years of mine construction (2014) and previous mine operation (2015 to 2019), and showed no consistent direction of changes for any of the winter, summer, or fall seasons (Figure 4.9; Appendix Table E.11). This suggested no ecologically meaningful changes in the trophic status of Sheardown Lake NW since the onset of mine operations in 2015. No chlorophyll-a data are available for Sheardown Lake NW over the mine baseline period (2005 to 2013), precluding comparisons of Sheardown Lake NW chlorophyll-a data to the period prior to mine construction.

4.2.4 Benthic Invertebrate Community

Benthic invertebrate density was significantly higher at littoral and profundal habitats of Sheardown Lake NW compared to like-habitat at Reference Lake 3 at magnitudes outside of the CES_{BIC} of ±2 SD_{REF} (Tables 4.6 and 4.7). Although no significant differences in richness or evenness were indicated between Sheardown Lake NW and the reference lake for either littoral or profundal habitat (Tables 4.6 and 4.7), Bray-Curtis Index differed significantly between Sheardown Lake NW and Reference Lake 3 for both habitat types (Appendix Table F.21). Because no ecologically significant differences (i.e., CES_{BIC} outside of ±2 SD_{REF}) in the relative abundance of any dominant taxonomic groups were indicated between Sheardown Lake NW and the reference lake for either habitat type (Tables 4.6 and 4.7), the difference in Bray-Curtis Index between lakes likely reflected substantially higher benthic invertebrate density at Sheardown Lake NW. The occurrence of higher benthic invertebrate density without an accompanying difference in evenness or dominant taxonomic groups suggested that Sheardown Lake NW was simply more productive than Reference Lake 3. This was supported by the

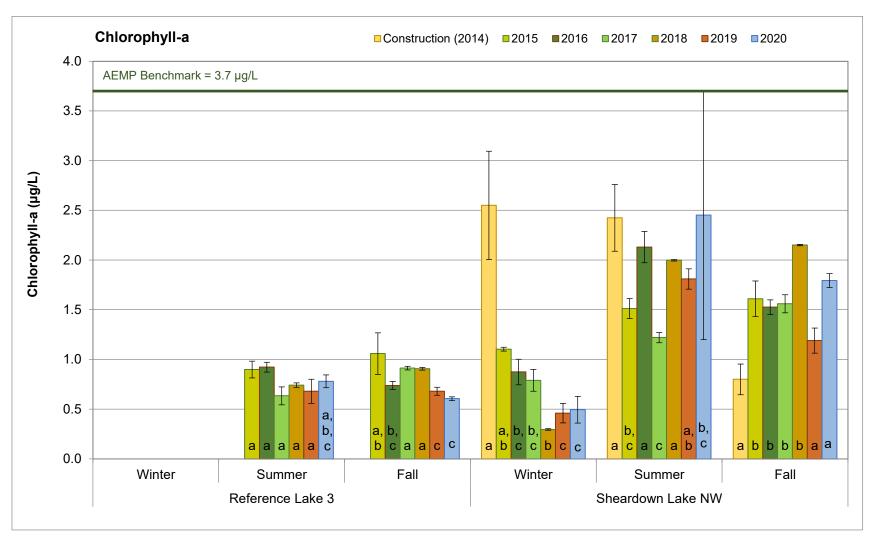


Figure 4.9: Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between Sheardown Lake NW and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)

Note: Bars with the same letter at the base do not differ significantly between years for the applicable season.

Table 4.6: Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake NW (DLO-01) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 2020

		Stati	stical Test Re	sults		Summary Statistics							
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Littoral Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum	
Density (Individuals/m²)	t-equal	log10	YES	0.003	11.8	Reference Lake 3 Sheardown NW Littoral	1,571 6,631	430 3,914	193 1,750	1,190 2,250	1,474 6,457	2,310 12,500	
Richness (Number of Taxa)	Mann Whitney	rank	NO	0.202	0.3	Reference Lake 3 Sheardown NW Littoral	14.6 15.4	2.5	1.1	13.0	14.0	19.0	
Simpson's Evenness (E)	,	none	NO	0.515	-0.3	Reference Lake 3 Sheardown NW Littoral	0.810	0.110	0.049	0.630 0.718	0.847	0.923	
Shannon Diversity	t-equal	log10	NO	0.301	-0.6	Reference Lake 3 Sheardown NW Littoral	2.710 2.410	0.526 0.217	0.235	2.080	2.730	3.510 2.760	
Hydracarina (%)	t-equal	log10	YES	0.065	-1.0	Reference Lake 3 Sheardown NW Littoral	5.3	2.6	1.2	3.5	4.4	9.9	
Ostracoda (%)	t-equal	log10	NO	0.118	-0.8	Reference Lake 3 Sheardown NW Littoral	37.9 25.6	14.5	6.5	26.7	36.2 28.0	62.6	
Chironomidae (%)	t-equal	none	YES	0.060	1.1	Reference Lake 3 Sheardown NW Littoral	52.6 70.4	15.6 9.3	7.0	26.9 60.5	59.0 70.1	66.4 83.7	
Metal-Sensitive Chironomidae (%)	t-equal	log10	NO	0.101	-1.4	Reference Lake 3 Sheardown NW Littoral	28.8	9.5 14.3	4.3	15.6 2.3	32.5 14.4	38.7 36.4	
Collector-Gatherers (%)	t-equal	none	NO	0.114	1.3	Reference Lake 3	63.1 77.5	11.4	5.1	53.6 54.2	60.3	81.5 90.8	
Filterers (%)	t-equal	log10	NO	0.114	-1.3	Sheardown NW Littoral Reference Lake 3	27.1	9.8	6.3	14.4	83.5	38.0	
Shredders (%)	t-unequal	none	YES	0.068	-1.1	Sheardown NW Littoral Reference Lake 3	14.6 3.9	14.5 3.3	6.5 1.5	1.3 0.6	3.2	36.0 7.4	
Clingers (%)	t-equal	none	YES	< 0.001	-2.5	Sheardown NW Littoral Reference Lake 3	0.2 31.9	9.3	0.1 4.2	0.0 17.9	33.5	0.4 41.6	
Sprawlers (%)	t-equal	none	NO	0.176	-0.8	Sheardown NW Littoral Reference Lake 3	8.5 57.9	3.8 12.1	1.7 5.4	3.7 41.0	9.6 57.2	12.5 73.8	
. , ,	t-equal	log10	YES	< 0.001	6.7	Sheardown NW Littoral Reference Lake 3	48.4 10.2	7.7 4.9	3.5 2.2	40.3 4.6	47.1 8.3	57.5 17.3	
Burrowers (%)	i-equal	109 10	120	10.001	0.7	Sheardown NW Littoral	43.1	8.5	3.8	32.4	41.7	54.2	

Grey shading indicates statistically significant difference between study areas based on p-value less than 0.10.

Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

Table 4.7: Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake NW (DLO-01) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 2019

		Stati	stical Test Re	sults		Summary Statistics							
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Profundal Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum	
Density	t-unequal	none	YES	0.021	6.0	Reference Lake 3	479	142	63	336	491	681	
(Individuals/m²)						Sheardown NW Profundal	1,326	527	236	802	1,345	2,034	
Richness	t-equal	log10	NO	0.581	0.4	Reference Lake 3	7.0	1.9	8.0	5.0	8.0	9.0	
(Number of Taxa)		_				Sheardown NW Profundal	7.8	2.5	1.1	6.0	7.0	12.0	
Simpson's Evenness	t-equal	none	NO	0.103	-5.5	Reference Lake 3	0.731	0.045	0.020	0.689	0.721	0.795	
(E)						Sheardown NW Profundal	0.486	0.295	0.132	0.236	0.324	0.872	
Shannon Diversity	t-equal	log10	NO	0.199	-1.9	Reference Lake 3	1.800	0.196	0.088	1.580	1.720	2.030	
,	'	3 -	-			Sheardown NW Profundal	1.420	0.891	0.398	0.677	0.961	2.720	
Hydracarina (%)	t-equal	log10(x+1)	NO	0.839	-0.1	Reference Lake 3	2.8	2.0	0.9	0.0	3.5	5.1	
Tydraddinia (70)		109.0(% 1)		0.000	0	Sheardown NW Profundal	2.6	0.9	0.4	1.3	3.1	3.2	
Ostracoda (%)	t-equal	none	NO	0.434	-0.5	Reference Lake 3	8.6	4.1	1.8	3.5	7.7	14.5	
Ostradoda (70)	r-oquai	110110	140	0.404	-0.0	Sheardown NW Profundal	6.6	3.9	1.7	1.1	5.9	11.7	
Chironomidae (%)	t-equal	log10	NO	0.268	0.7	Reference Lake 3	87.9	4.2	1.9	82.3	87.2	92.7	
Chilonomidae (70)	t-equal	10910	NO	0.200	0.7	Sheardown NW Profundal	90.8	3.7	1.7	86.2	91.0	95.7	
Metal-Sensitive	t-equal	log10	YES	0.002	-1.6	Reference Lake 3	31.5	17.6	7.9	7.9	38.0	49.3	
Chironomidae (%)	t-equal	10910	TLS	0.002	-1.0	Sheardown NW Profundal	4.0	4.0	1.8	1.3	2.6	11.1	
Collector-Gatherers	t agual	none	YES	0.003	1.9	Reference Lake 3	62.9	15.0	6.7	45.4	56.1	79.0	
(%)	t-equal	none	TES	0.003	1.9	Sheardown NW Profundal	91.9	3.5	1.6	86.8	91.7	96.6	
F:lt-=== (0/)	4		YES	0.008	-1.6	Reference Lake 3	30.7	17.5	7.8	7.9	38.0	49.3	
Filterers (%)	t-equal	none	TES	0.006	-1.0	Sheardown NW Profundal	2.4	4.9	2.2	0.0	0.0	11.1	
Olimanana (0/)	4	J= =:40	VEC	0.000	4.7	Reference Lake 3	33.5	16.9	7.6	13.1	41.5	52.8	
Clingers (%)	t-equal	log10	YES	0.003	-1.7	Sheardown NW Profundal	5.2	4.2	1.9	1.3	3.2	12.1	
Caroudoro (0/)	t agual	2000	NO	0.796	0.3	Reference Lake 3	64.8	16.2	7.2	45.5	58.5	87.0	
Sprawlers (%)	t-equal	none	NO	0.786	0.3	Sheardown NW Profundal	69.9	36.7	16.4	16.1	94.2	97.5	
Durrowere (0/)	t agual	log10(v.14)	NO	0.146	0.1	Reference Lake 3	1.7	2.9	1.3	0.0	0.0	6.7	
Burrowers (%)	t-equal	log10(x+1)	NO	0.146	8.1	Sheardown NW Profundal	24.9	32.6	14.6	1.3	2.6	71.8	

Grey shading indicates a statistically significant difference between study areas based on p-value less than 0.10.

Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

occurrence of no ecologically significant differences in the relative abundance of metal-sensitive chironomids and FFG between lakes (Tables 4.6 and 4.7), which indicated no sediment metal-related influences or effects to available food resources, respectively, on the benthic invertebrate community of Sheardown Lake NW in 2020. Similar to Camp Lake, sediment at Sheardown Lake NW littoral and profundal stations was significantly more compact (i.e., lower moisture content) than like-habitat stations at the reference lake, which potentially contributed to differences in relative abundance of HPG between lakes (Tables 4.6 and 4.7; Appendix Table F.35).

No significant differences in benthic invertebrate density, richness, evenness, relative abundance of dominant groups, and relative abundance of FFG were consistently shown for Sheardown Lake NW littoral stations over years of mine operation (2015 to 2020) compared to baseline studies conducted in 2007, 2008, and 2013 (Appendix Figure F.10; Appendix Table F.37). At profundal stations of Sheardown Lake NW, only the relative abundance of metal-sensitive Chironomidae routinely differed significantly between the mine operational period and both years of mine baseline (Appendix Table F.38). However, because greater relative abundance of metal-sensitive Chironomidae were observed in years of mine operation compared to baseline (Appendix Figure F.11), this temporal difference was not indicative of an adverse effect on the benthic invertebrate community at Sheardown Lake NW. Therefore, consistent with no substantial changes in water and sediment quality since the mine baseline period, no significant differences in benthic invertebrate community features were indicated at littoral and profundal habitat of Sheardown Lake NW since the commencement of commercial mine operation in 2015.

4.2.5 Fish Population

4.2.5.1 Sheardown Lake NW Fish Community

The fish community of Sheardown Lake NW included arctic charr and ninespine stickleback in 2020 (Table 4.8), reflecting the same fish species that were observed historically (Minnow 2020). Arctic charr and ninespine stickleback CPUE were higher at Sheardown Lake NW than at the reference lake in 2020 (Table 4.8), suggesting higher densities and/or productivity of these species at Sheardown Lake NW. A greater relative abundance of fish, together with higher chlorophyll-a concentrations and greater benthic invertebrate density, suggested that overall biological productivity was higher at Sheardown Lake NW than at Reference Lake 3. Arctic charr electrofishing CPUE at Sheardown Lake NW in 2020 was within the range observed over the mine baseline period (2007 to 2013) and previous years of mine operation (2015 to 2019; Figure 4.10). Gill netting CPUE for arctic charr in 2020 was also within the range observed during baseline, but slightly greater than the previous five years of mine operation (Figure 4.10). The similarities in CPUE among study years suggested that the relative abundance of arctic charr

Table 4.8: Fish Catch and Community Summary from Backpack Electrofishing and Gill Netting Conducted at Sheardown Lake NW (DLO-01), Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Lake	Meth	od ^a	Arctic Charr	Ninespine Stickleback	Total by Method	Total No. of Species
	Cloatrofishing	No. Caught	134	1	135	
Reference	Electrofishing	CPUE	2.09	2.09 0.016		2
Lake 3	Cill notting	No. Caught	0	0	0	2
	Gill netting	CPUE	0.956	0	0.956	
	Clastrofishing	No. Caught	118	6	124	
Sheardown Lake	Electrofishing	CPUE	4.46	0.227	4.69	2
Northwest	0:11 #:	No. Caught	98	0	98	2
	Gill netting	CPUE	3.34	0	3.34	
	Clastrafiahing	No. Caught	115	63	178	
Sheardown	Electrofishing	CPUE	4.28	2.35	6.63	2
Lake Southeast	Cill notting	No. Caught	107	0	107	2
	Gill netting	CPUE	3.81	0	3.81	

^a Catch-per-unit-effort (CPUE) for electrofishing represents the number of fish captured per electrofishing minute, and for gill netting represents the number of fish captured per 100 m hours of net.

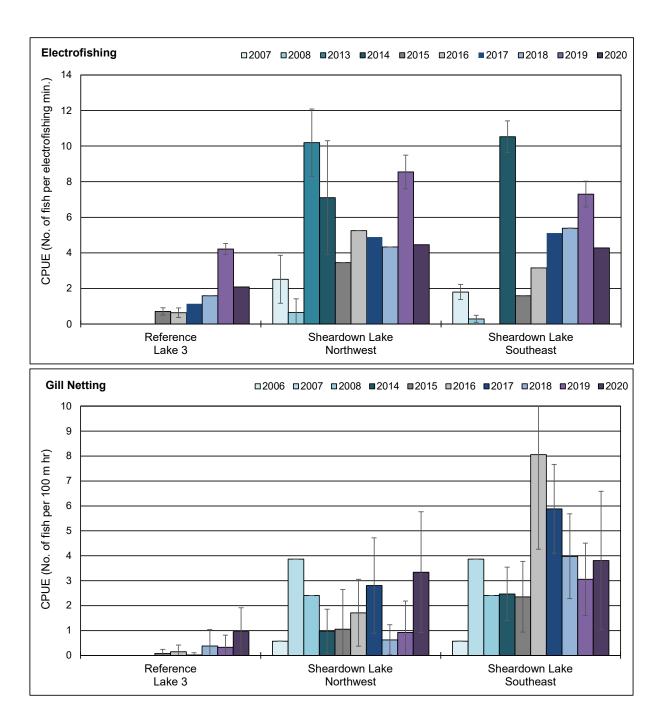


Figure 4.10: Catch-per-unit-effort (CPUE; mean ± SD) of Arctic Charr Captured by Back-pack Electrofishing and Gill Netting at Sheardown Lake NW (DLO-01) and Sheardown Lake SE (DLO-02), Mary River Project CREMP, 2006 to 2020

Notes: Data presented for fish sampling conducted in fall during baseline (2006, 2007, 2008, 2013), construction (2014) and operational (2015 to 2020) mine phases. Lake basins (i.e., NW or SE) were not differentiated historically for baseline gill netting catches.

at the nearshore and littoral/profundal habitats of Sheardown Lake NW has remained similar over time, suggesting the mine has not influenced the size of the arctic charr population in the lake.

4.2.5.2 Sheardown Lake NW Fish Population Assessment

Nearshore Arctic Charr

A total of 100 arctic charr were captured from nearshore habitat of each of Sheardown Lake NW and Reference Lake 3 in August 2020. Distinguishing arctic charr YOY from the older, non-YOY age class was possible using a fork length cut-off of 4.8 cm and 4.3 cm for the Sheardown Lake NW and Reference Lake 3 data sets, respectively, based on evaluation of length-frequency distributions coupled with supporting age determinations (Figure 4.11; Appendix Tables G.4 and G.13). Because greater than ten YOY arctic charr were identified from the Sheardown Lake NW and Reference Lake 3 populations, statistical comparisons of health endpoints were completed separately on both the YOY and non-YOY populations. Length-frequency distributions for the nearshore arctic charr (based on the full dataset, and non-YOY only) differed significantly between Sheardown Lake NW and Reference Lake 3 (Table 4.9). This was primarily due to a greater number of non-YOY and larger fish being captured at Sheardown Lake NW compared to the reference lake (Figure 4.11). Both YOY and non-YOY arctic charr from nearshore habitats in Sheardown Lake NW were significantly larger and had greater condition than those from the reference lake (Table 4.9; Appendix Table G.14). However, the magnitudes of the differences in condition between lakes for both the YOY and noy-YOY populations were not considered ecologically significant because they were within CES_C (i.e., ±10%; Table 4.9; Appendix Table G.14).

Temporal comparisons of nearshore arctic charr populations between Sheardown Lake NW and Reference Lake 3 generally indicated non-YOY were significantly larger but showed no consistent difference/direction of difference in condition at Sheardown Lake NW since 2015 (Table 4.9). Although the lengths and weights of non-YOY arctic charr in years of mine operation (i.e., 2015 to 2020) have not differed consistently relative to the baseline period at Sheardown Lake NW, the condition of non-YOY arctic charr in all years of mine operation has been significantly lower than baseline at magnitudes near or outside of CES_C (i.e., ±10%; Table 4.9). The inconsistent response of non-YOY arctic charr between Sheardown Lake NW and Reference Lake 3 since 2015 compared to between years of mine operation and baseline at Sheardown Lake NW resulted in uncertainty as to whether current mine operations have affected non-YOY arctic charr health at Sheardown Lake NW.

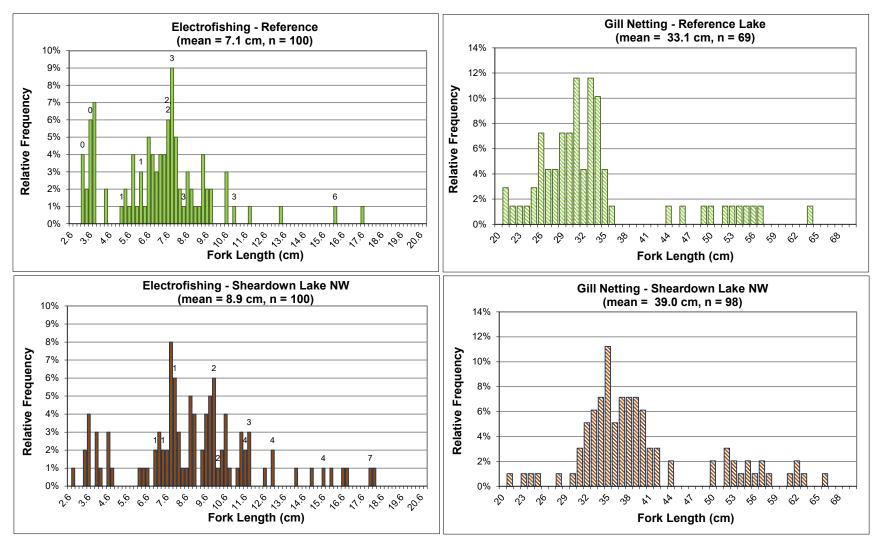


Figure 4.11: Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Sheardown Lake NW (DLO-01) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Note: Fish ages are shown above the bars, where available.

Table 4.9: Summary of Statistical Results for Arctic Charr Population Comparisons between Sheardown Lake NW and Reference Lake 3 from 2015 to 2020, and between Sheardown Lake NW Mine Operational and Baseline Period Data, for Fish Captured by Electrofishing and Gill Netting Methods, Mary River Project CREMP

Data Set						Sta	tistically S	ignificant	Differenc	es Observ	ed? a				
by Sampling	Response Category	Endpoint		Ve	ersus Refe	erence Lak	(e 3		versus Sheardown Lake NW baseline period data ^b						
Method			2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	
ηg	Survival	Length-Frequency Distribution	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
ofishii	Garvivai	Age	No	No	No	-	-	-	No	-	-	-	-	-	
Nearshore Electrofishing	Energy Use	Size (mean fork length)	Yes (+29%)	Yes (+17%)	Yes (+20%)	Yes (+24%)	Yes (-10%)	Yes (+22%)	No	No	No	Yes (-12%)	No	Yes (+13%)	
rshore	(non-YOY)	Size (mean weight)	Yes (+121%)	Yes (+60%)	No	Yes (+83%)	Yes (-24%)	Yes (+99%)	No	Yes (-29%)	No	Yes (-50%)	No	No	
Neai	Energy Storage (non-YOY)	Condition (body weight-at- fork length)	Yes (+3%)	No	Yes (+7%)	Yes (-5%)	Yes (+4%)	Yes (+10%)	Yes (-13%)	Yes (-12%)	Yes (-9%)	Yes (-10%)	Yes (-13%)	Yes (-9%)	
	Survival	Length Frequency Distribution	-	-	-	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No	
ting ^c	Survivai	Age	-	-	-	-	-	-	Yes (-35%)	Yes (-28%)	Yes (-26%)	-	-	-	
Sill Net		Size (mean fork length)	-	-	-	No	Yes (+22%)	Yes (+18%)	Yes (-21%)	Yes (-14%)	Yes (-6%)	No	No	No	
undal (Size (mean weight)	-	-	-	No	Yes (+92%)	Yes (+94%)	Yes (-47%)	Yes (-31%)	Yes (-9%)	No	No	No
Littoral/Profundal Gill Netting	Energy Use	Growth (fork length-at-age)	-	-	-	-	-	-	No	No	No	-	-	-	
		Growth (weight-at-age)	-	-	-	-	-	-	No	No	Yes (+24%)	-	-	-	
	Energy Storage	Condition (body weight-at- fork length)	-	-	-	Yes (+4%)	No	Yes (+11%)	Yes (+8%)	Yes (+11%)	Yes (+6%)	No	No	No	

BOLD indicates a significant difference related to the comparison.

^a Values in parentheses indicate direction and magnitude of any significant differences.

^b Baseline period data included 2002, 2005, 2006, 2008, and 2013 nearshore electrofishing data and 2006, 2008 and 2013 littoral/profundal gill netting data.

^c Due to low catches of arctic charr in gill nets at Reference Lake 3 in 2015, 2016, and 2017, no comparison of fish health was conducted for gill netted fish.

Littoral/Profundal Arctic Charr

A total of 98 and 69 arctic charr were sampled from littoral/profundal habitat of Sheardown Lake NW and Reference Lake 3, respectively, in August 2020. The length-frequency distribution for littoral/profundal arctic charr differed significantly between lakes based on greater numbers of larger fish captured at Sheardown Lake NW (Table 4.9; Figure 4.11). Arctic charr captured by gill net at Sheardown Lake NW in 2020 were significantly larger and had greater condition than those captured at Reference Lake 3 (Table 4.9; Appendix Table G.18). The magnitude of difference in condition (11%) was slightly outside of the CES_C of ±10%, suggesting a potentially ecologically meaningful difference.

The differences in size and condition of arctic charr captured from littoral/profundal habitat between Sheardown Lake NW and Reference Lake 3 in 2020 were similar to the differences shown in 2018 and/or 2019, suggesting no appreciable changes in health of littoral/profundal arctic charr at Sheardown Lake NW over time. No significant differences in body size or condition of arctic charr captured from littoral/profundal habitat of Sheardown Lake NW were observed from 2018 to 2020 relative to the baseline period (Table 4.9; Appendix Figure G.10; Appendix Table G.18). From 2015 to 2017, arctic charr sampled from littoral/profundal habitat of Sheardown Lake NW were significantly shorter, lighter, and of greater condition than those captured during the baseline period (Table 4.9). The absence of differences in size and condition of arctic charr from Sheardown Lake NW over the 2018 to 2020 period compared to baseline appeared to reflect closer comparability in fish size between the most recent studies and baseline. In turn, this suggested that assessment of littoral/profundal arctic charr health should use sampling methods that reduce variability in the size of fish sampled to assess potential mine-Nevertheless, the general absence of consistent ecologically significant differences in condition of arctic charr captured at littoral/profundal areas of Sheardown Lake NW from 2018 to 2020 compared to Reference Lake 3 and Sheardown Lake NW baseline suggested no adverse mine-related influences on the adult arctic charr population of the lake as a result of mine operations.

4.2.6 Effects Assessment and Recommendations

At Sheardown Lake NW, the following AEMP benchmarks were exceeded in 2020:

- Arsenic concentration in sediment was greater than the benchmark of 6.2 mg/kg at one littoral monitoring station (DD-HAB 9-STN2), although the average concentration of arsenic in sediment at littoral stations was below this benchmark;
- Iron concentration in sediment was greater than the benchmark of 52,200 mg/kg at one littoral station (DD-HAB 9-STN2) and one profundal station (DL0-01-5), although average

concentrations of iron in sediment at littoral and profundal stations were below this benchmark;

- Manganese concentration in sediment was greater than the benchmark of 4,530 mg/kg at two profundal stations (DL0-01-2 and DL0-01-5), although the average concentration of manganese in sediment at profundal stations was below this benchmark; and,
- Nickel concentration in sediment was greater than the benchmark of 77 mg/kg at one littoral monitoring station (DD-HAB 9-STN2), although the average concentration of nickel in sediment at littoral stations was below this benchmark.

No AEMP benchmarks for water quality were exceeded over the duration of spring, summer, and fall sampling events in 2020 at Sheardown Lake NW. Lake-specific AEMP benchmarks for sediment quality were exceeded for arsenic, iron, manganese, and nickel at as many as one littoral station and two profundal stations in 2020, but none of these metals were elevated in the sediment of Sheardown Lake NW compared to the reference lake and to concentrations at Sheardown Lake NW during baseline. No adverse effects to phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at Sheardown Lake NW in 2020 based on comparisons to reference conditions and to Sheardown Lake NW baseline conditions. Because no mine-related changes in metal concentrations occurred in sediment at Sheardown Lake NW in 2020, and no adverse effects to biota were associated with concentrations of metals above AEMP benchmarks for sediment quality, a low action response is recommended to meet obligations under the AEMP Management Response Framework for Sheardown Lake NW. Specifically, it is recommended that, because concentrations of metals in Sheardown Lake NW sediment have been similar to those shown at the reference lake, consideration should be given to updating the AEMP sediment quality benchmarks for Sheardown Lake NW to reflect not only baseline data, but also reference lake data.

4.3 Sheardown Lake Southeast (DLO-2)

4.3.1 Water Quality

Vertical profiles of *in situ* water temperature, dissolved oxygen, pH and specific conductance conducted at Sheardown Lake SE showed no substantial within-season station-to-station differences during any of the winter, summer, or fall sampling events in 2020 (Appendix Figures C.17 to C.20). Distinctly cooler water temperature was indicated with depth at the Sheardown Lake SE basin in the summer, as well as at depths greater than 10 metres in the fall, that roughly mirrored gradients observed at Reference Lake 3 during both seasons in 2020 (Figure 4.12). The average water temperature at the bottom of the water column at Sheardown Lake SE littoral stations did not differ significantly from that at the reference lake, unlike at profundal stations

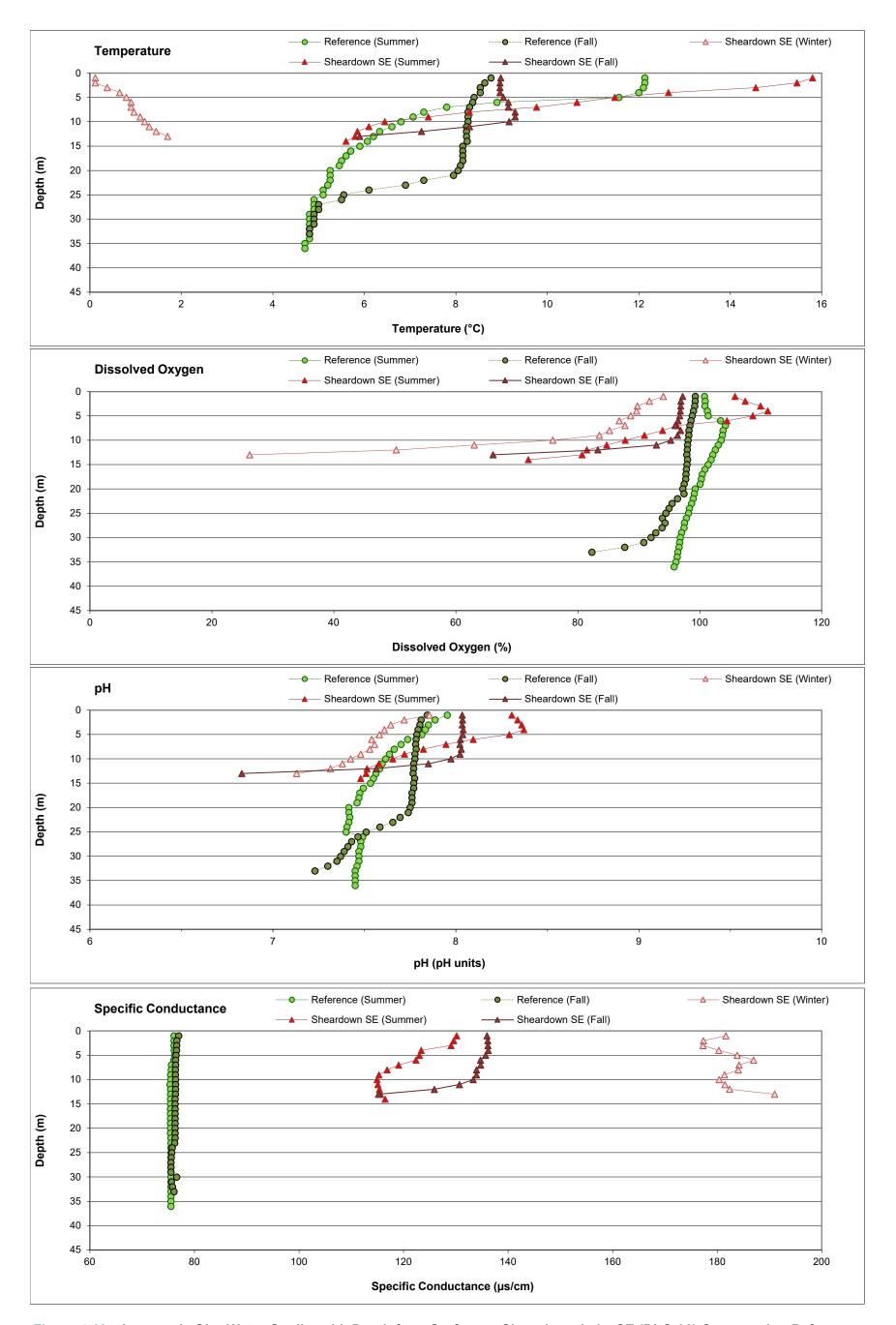


Figure 4.12: Average *In Situ* Water Quality with Depth from Surface at Sheardown Lake SE (DLO-02) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

where the water temperature was significantly warmer than at Reference Lake 3 during the August 2020 biological study (Figure 4.5; Appendix Table C.51). Sheardown Lake SE is a smaller and shallower waterbody than Reference Lake 3 (see Figure 2.1; Appendix Table B.1), and therefore heat distribution patterns (i.e., thermal profiles) may be expected to differ naturally between these lakes. Dissolved oxygen profiles conducted at Sheardown Lake SE in 2020 showed a gradient of decreasing saturation levels with increased depth in all but the fall sampling event (Figure 4.12). Dissolved oxygen concentrations near the bottom of the water column were significantly lower at Sheardown Lake SE littoral and profundal stations than like habitat stations at the reference lake during the August 2020 biological study (Figure 4.5). However, mean dissolved oxygen concentrations were above the WQG for the protection of sensitive populations of cold-water species (i.e., 9.5 mg/L) near the bottom at littoral and profundal stations of Sheardown Lake SE at the time of biological monitoring (Figure 4.5; Appendix Table C.51).

Water column profiles showed decreasing pH with increased depth at Sheardown Lake SE and Reference Lake 3 during winter and summer sampling events in 2020, with the changes in pH through the water column at both lakes appearing to coincide with changes in water temperature during each given season (Figure 4.12). The pH near the bottom of the water column at littoral and profundal stations of Sheardown Lake SE were significantly higher than at respective stations at the reference lake during the August 2020 biological study (Figure 4.5). However, the mean incremental difference in bottom pH between lakes was less than a pH unit, and pH values were consistently within WQG limits at Sheardown Lake SE (Figure 4.5; Appendix Table C.51), suggesting that the pH difference between lakes was not ecologically meaningful. Specific conductance at Sheardown Lake SE differed between the bottom and surface of the water column in all seasons (Figure 4.12), and was significantly higher at the littoral and profundal stations of Sheardown Lake SE than at Reference Lake 3 during the August 2020 biological study (Figure 4.5). Secchi depth at Sheardown Lake SE was significantly lower, indicating lower water clarity, than at the reference lake during the August 2020 biological study (Appendix Figure C.8; Appendix Tables C.51). Indeed, water clarity at Sheardown Lake SE was the lowest among all study lakes used for the CREMP in 2020 and historically, which is hypothesized to reflect backflow containing naturally high suspended sediment received from Mary River.

Water chemistry at Sheardown Lake SE met all AEMP benchmarks and WQG over the duration of spring, summer, and fall sampling events in 2020 (Table 4.10). Among those parameters with established AEMP benchmarks, aluminum and nitrate concentrations were elevated by factors greater than three at Sheardown Lake SE compared to Reference Lake 3 during the summer and fall sampling events (Table 4.10; Appendix Table C.43). Of those parameters without AEMP benchmarks, turbidity and total and dissolved manganese, molybdenum, and uranium

Table 4.10: Mean Water Chemistry at Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF3) Monitoring Stations During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

	rameters		Guideline		AEMP	Reference L	ake 3 (n = 3)		Sheardown Lake SE Stations (n = 5	
Para	meters	Units	Guideline (WQG) ^b	Benchmark ^c	Summer	Fall	Winter	Summer	Fall	
_	Conductivity (lab)	umho/cm	- '	-	79	79	194	128	142	
Conventionals ^b	pH (lab)	pН	6.5 - 9.0	-	7.66	7.75	7.44	8.02	8.01	
ő	Hardness (as CaCO ₃)	mg/L	-	-	35	38	101	60	68	
ij	Total Suspended Solids (TSS)	mg/L	-	-	2.0	2.0	2.0	2.0	2.2	
ĕ	Total Dissolved Solids (TDS)	mg/L	-	-	41	51	129	69	77	
ou	Turbidity	NŤU	-	-	0.15	0.15	0.23	0.94	2.32	
ပ	Alkalinity (as CaCO ₃)	mg/L	-	-	46	34	79	49	56	
	Total Ammonia	mg/L	-	0.855	0.010	0.014	0.018	0.007	0.013	
-	Nitrate	mg/L	3	3	0.020	0.020	0.230	0.095	0.089	
and	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.002	0.005	
ts i	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.15	0.16	0.15	0.13	0.15	
utrients Organic	Dissolved Organic Carbon	mg/L	_	_	3.3	3.5	2.7	2.0	2.1	
ξõ	Total Organic Carbon	mg/L	_	_	4.6	3.8	2.7	1.7	2.4	
ž	Total Phosphorus	mg/L	0.020 ^α	_	0.004	0.003	0.004	0.006	0.009	
	Phenols	mg/L	0.004°	_	0.0010	0.0011	0.001	0.0026	0.001	
<u> </u>	Bromide (Br)	mg/L	-	_	0.1	0.1	0.001	0.05	0.1	
Anions	Chloride (CI)	mg/L	120	120	1.4	1.4	5.4	3.3	3.9	
Ē	Sulphate (SO ₄)	mg/L	218 ^β	218	3.6	3.6	12.4	9.2	9.6	
<u> </u>	Aluminum (Al)	mg/L	0.100	0.179, 0.173 ^d	0.0031	0.003	0.006	0.026	0.064	
			0.100 0.020 ^α	0.179, 0.173	0.0031	0.003	0.0001	0.026	0.004	
	Antimony (Sb)	mg/L		- 0.005						
	Arsenic (As)	mg/L	0.005	0.005	0.0001	0.0001	0.000101	0.0001	0.0001	
	Barium (Ba)	mg/L	-	-	0.0064	0.00696	0.01100	0.00641	0.00776	
	Beryllium (Be)	mg/L	0.011 ^a	-	0.0005	0.0005	0.0005	0.0001	0.0005	
	Bismuth (Bi)	mg/L		-	0.0005	0.0005	0.0005	0.00005	0.0005	
	Boron (B)	mg/L	1.5	-	0.01	0.01	0.0116	0.01	0.0114	
	Cadmium (Cd)	mg/L	0.00012	0.00009	0.00001	0.00001	0.00001	0.00005	0.00001	
	Calcium (Ca)	mg/L	-	-	7.2	7.2	19.1	11.3	13.4	
	Chromium (Cr)	mg/L	0.0089	0.0089	0.0005	0.0005	0.0005	0.00013	0.0005	
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	0.0001	0.0001	0.0001	0.0001	0.0001	
	Copper (Cu)	mg/L	0.002	0.0024	0.00073	0.0008	0.0010	0.0008	0.0009	
	Iron (Fe)	mg/L	0.300	0.300	0.030	0.030	0.030	0.034	0.064	
Ø	Lead (Pb)	mg/L	0.001	0.001	0.00005	0.00005	0.00005	0.00005	0.00006	
<u>ta</u>	Lithium (Li)	mg/L	-	-	0.0010	0.001	0.0013	0.0011	0.0013	
Metals	Magnesium (Mg)	mg/L	-	-	4.2	4.7	12.9	6.9	8.3	
otal	Manganese (Mn)	mg/L	0.935^{β}	-	0.00080	0.00068	0.00233	0.00526	0.00361	
₫	Mercury (Hg)	mg/L	0.000026	-	0.00005	0.00005	0.00005	0.00005	0.000005	
	Molybdenum (Mo)	mg/L	0.073	-	0.00013	0.00015	0.00083	0.00063	0.00064	
	Nickel (Ni)	mg/L	0.025	0.025	0.00050	0.00050	0.00083	0.00059	0.00061	
	Potassium (K)	mg/L	-	-	0.9	0.90	1.69	1.03	1.15	
	Selenium (Se)	mg/L	0.001	_	0.001	0.001	0.001	0.00005	0.001	
	Silicon (Si)	mg/L	-	-	0.50	0.50	0.74	0.55	0.50	
	Silver (Ag)	mg/L	0.00025	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001	
	Sodium (Na)	mg/L	-	-	0.9	0.96	2.46	1.37	1.71	
	Strontium (Śr)	mg/L	-	-	0.0084	0.0082	0.0156	0.0086	0.0102	
	Thallium (TI)	mg/L	0.0008	0.0008	0.0001	0.0001	0.0001	0.00001	0.0001	
	Tin (Sn)	mg/L	-	-	0.0001	0.0001	0.0001	0.0001	0.0001	
	Titanium (Ti)	mg/L	-	-	0.010	0.010	0.010	0.001	0.010	
	Uranium (U)	mg/L	0.015	-	0.00032	0.00033	0.00135	0.00089	0.00118	
	Vanadium (V)	mg/L	0.006 ^α	0.006	0.0010	0.001	0.001	0.0005	0.001	
	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.003	0.004	0.003	0.003	

Indicates parameter concentration above applicable Water Quality Guideline. **BOLD** Indicates parameter concentration above the AEMP benchmark.

^a Values presented are averages from samples taken from the surface and the bottom of the water column at each lake for the indicated season.

b Canadian Water Quality Guideline (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

^c AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake NW.

^d Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively (Intrinsik 2013).

concentrations were elevated at Sheardown Lake SE compared to the reference lake during summer and/or fall sampling events in 2020 (Appendix Tables C.43 and C.54). Similar to the northwest basin of the lake, elevated total aluminum concentrations at Sheardown Lake SE compared to the reference lake in 2020 were associated with influences on water quality of the lake due to backflow received from Mary River that contributed to elevated turbidity at Sheardown Lake SE (Table 4.10; Appendix Table C.43).9 Similar dissolved aluminum concentrations between Sheardown Lake SE and the reference lake in 2020 (and historically) suggested that the mine was unlikely to be the source of aluminum (Appendix Table C.54). Sulphate was the only parameter among those with established AEMP benchmarks that was elevated in 2020 compared to baseline at Sheardown Lake SE (Appendix Figure C.21), as was dissolved molybdenum concentrations among those parameters without AEMP benchmarks (Appendix Tables C.43 and C.54). Overall, a slight mine-related influence on water quality of Sheardown Lake SE was indicated in 2020 as reflected by elevated concentrations of manganese, molybdenum, nitrate, sulphate, and uranium. With the exception of manganese, concentrations of these parameters were also elevated at Sheardown Lake NW, suggesting a common mine-related source. However, concentrations of all parameters remained well below AEMP benchmarks and WQG at Sheardown Lake SE since commercial mine operations commenced in 2015, and therefore no adverse effects to biota were expected at the southeast basin of Sheardown Lake.

4.3.2 Sediment Quality

Surficial sediment at Sheardown Lake SE was primarily composed of silt with low (i.e., <2%) TOC content (Figure 4.13; Appendix Table D.30). Substrate at littoral stations of Sheardown Lake SE contained significantly less sand, moisture, and TOC content, and significantly greater silt and clay content, compared to littoral stations at Reference Lake 3 (Appendix Table D.31). Sediments from profundal stations at Sheardown Lake SE also had lower TOC and moisture content compared to profundal stations at Reference Lake 3, but no significant differences in particle size occurred (Appendix Table D.31). The relatively high proportion of fines in substrate of Sheardown Lake SE is potentially due to the receipt of Mary River backflow during high flow periods, which can be expected to result in the deposition of high quantities of naturally suspended, fine-grained material. Similar to observations at the other mine-exposed lakes and the reference lake, iron (oxy)hydroxide material was visible in surficial and/or sub-surface substrate at some Sheardown Lake SE stations, in some cases occurring as a thin, distinct layer or floc (Appendix Tables D.28 and D.29). Below the surficial layer, substrates at Sheardown Lake SE exhibited some sporadic blackening suggesting development of reducing conditions; however, and D.29). distinct redox boundary was observed (Appendix Tables D.28 no Observations regarding reducing sediment conditions at Sheardown Lake SE were similar to

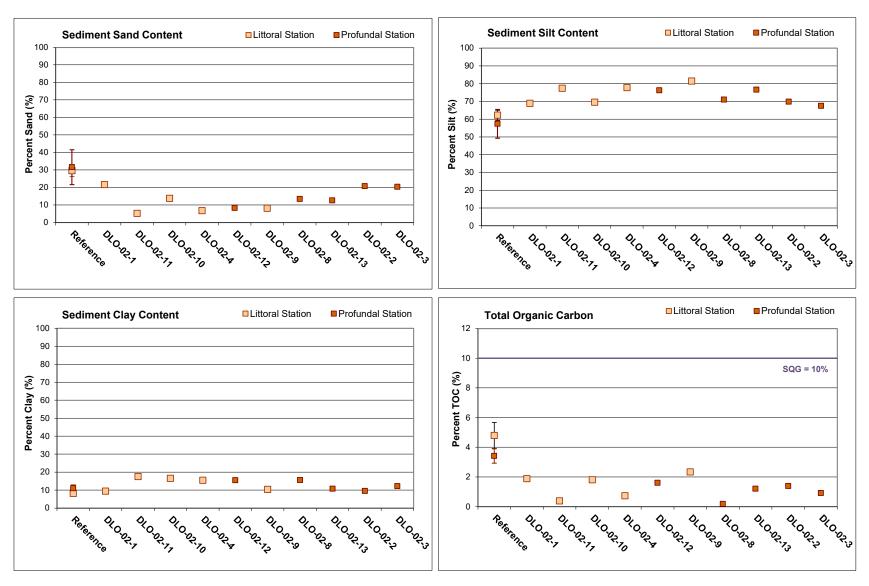


Figure 4.13: Sediment Particle Size and Total Organic Carbon (TOC) Content Comparisons among Sheardown Lake SE (DLO-02) Sediment Monitoring Stations and Reference Lake 3 Averages (mean ± SE), Mary River Project CREMP, August 2020

those made at Reference Lake 3 (Appendix Tables D.3, D.4, D.28, and D.29), suggesting that factors leading to reduced sediment conditions were comparable between lakes.

Metal concentrations in sediment at Sheardown Lake SE showed no clear spatial gradients with progression towards the lake outlet in 2020, suggesting no point sources of metals to the lake (Appendix Table D.30). Metal concentrations were, on average, similar to those observed for like-habitat stations at Reference Lake 3, except for a slight elevation (i.e., 3- to 5-fold) of zirconium concentrations in sediment from Sheardown Lake SE (Table 4.11; Appendix Table D.32). On average, concentrations of iron were above the SQG in Sheardown Lake SE (Table 4.11; Appendix Table D.30). Mean concentrations of iron, as well as chromium and manganese (the latter two metals in sediment from littoral stations only), were also above AEMP benchmarks in sediment in 2020 (Table 4.11; Appendix Table D.30). However, as indicated previously, average concentrations of iron and manganese were also above SQG and AEMP benchmarks at littoral and/or profundal stations of Reference Lake 3 (Table 4.11). This suggested that the elevation of iron and manganese concentrations in sediment relative to SQG and lake-specific AEMP benchmarks may be a natural phenomenon at lakes within the local study area of the mine.

Metal concentrations in sediment of littoral and profundal habitat at Sheardown Lake SE in 2020 were comparable to concentrations observed in the mine baseline period (2005 to 2013), and were also within respective ranges observed in previous years of mine operations (i.e., 2015 to 2019; Figure 4.7; Appendix Table D.32).¹⁴ Thus, no substantial changes to metal concentrations in sediments at Sheardown Lake SE were indicated since the commencement of commercial mine operations in 2015.

4.3.3 Phytoplankton

Chlorophyll-a concentrations at Sheardown Lake SE showed no spatial gradients with closer proximity to the lake outlet during any of the winter, summer, or fall sampling events in 2020 (Figure 4.8). Chlorophyll-a concentrations did not differ significantly between the summer and fall sampling events in 2020, but concentrations in winter were significantly lower than the two openwater seasons (Appendix Table E.6). Similar to Sheardown Lake NW, chlorophyll-a concentrations at Sheardown Lake SE were significantly greater than at the reference lake for both the summer and fall sampling events in 2020 (Appendix Table E.7 and E.8), but concentrations were well below the AEMP benchmark of 3.7 µg/L at all stations and for all sampling events (Figure 4.8). On average, chlorophyll-a concentrations at Sheardown Lake SE

¹⁴ See footnote 8 regarding differences in the concentration of boron in sediment between baseline and recent CREMP studies.

Table 4.11: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Sheardown Lake SE (DLO-02), and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River Project CREMP, August 2020

				AEMP	Li	ittoral	Prof	undal
Para	ameter	Units	SQGª	Benchmark ^b	Reference Lake (n = 5)	Sheardown Lake SE (n = 3)	Reference Lake (n = 5)	Sheardown Lake SE (n = 2)
				(NW, SE)	Average ± SD	Average ± SD	Average ± SD	Average ± SD
TOC	,	%	10 ^α	-	4.80 ± 1.96	1.43 ± 0.828	3.42 ± 1.08	1.06 ± 0.332
	Aluminum (AI)	mg/kg	-	-	16,880 ± 1,785	17,400 ± 1,114	21,800 ± 2,185	17,550 ± 1,909
	Antimony (Sb)	mg/kg	-	-	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0
	Arsenic (As)	mg/kg	17	6.2, 5.9	3.53 ± 1.09	3.67 ± 0.326	4.07 ± 0.397	3.03 ± 0.120
	Barium (Ba)	mg/kg	-	-	117 ± 22.0	92 ± 16	122 ± 18.3	74 ± 8.2
	Beryllium (Be)	mg/kg	-	-	0.65 ± 0.073	0.87 ± 0.079	0.80 ± 0.092	0.84 ± 0.078
	Bismuth (Bi)	mg/kg	-	-	<0.20 ± 0	0.24 ± 0.031	<0.20 ± 0	0.22 ± 0.021
	Boron (B)	mg/kg	-	-	12.2 ± 0.853	22.3 ± 3.35	14.7 ± 1.77	20.8 ± 2.12
	Cadmium (Cd)	mg/kg	3.5	1.5, 1.5	0.173 ± 0.047	0.102 ± 0.0106	0.148 ± 0.0172	0.090 ± 0.016
	Calcium (Ca)	mg/kg	-	-	5,608 ± 1,247	7,663 ± 1,413	5,010 ± 407	5,990 ± 170
	Chromium (Cr)	mg/kg	90	97, 79	54.3 ± 4.40	79.7 ± 9.13	65.0 ± 6.64	72.3 ± 2.47
	Cobalt (Co)	mg/kg	-	-	10.8 ± 1.64	13.7 ± 0.289	15.2 ± 1.56	13.3 ± 0.990
	Copper (Cu)	mg/kg	110	58, 56	71.4 ± 14.2	28.2 ± 2.26	83.8 ± 11.1	26.1 ± 2.62
	Iron (Fe)	mg/kg	40,000 ^α	52,200, 34,400	50,600 ± 24,939	42,733 ± 6,352	45,080 ± 4,440	41,950 ± 7,000
	Lead (Pb)	mg/kg	91.3	35	13.8 ± 0.799	17.4 ± 1.93	16.7 ± 1.82	15.4 ± 1.273
	Lithium (Li)	mg/kg	-	-	26.0 ± 2.51	32.6 ± 1.88	33.7 ± 3.83	32.2 ± 2.40
	Magnesium (Mg)	mg/kg	-	-	11,440 ± 814	15,400 ± 2,095	14,180 ± 1,422	13,800 ± 1,414
als	Manganese (Mn)	mg/kg	1,100 ^{α,β}	4,530, 657	579 ± 258	925 ± 206	1,230 ± 355	602 ± 60.8
Met	Mercury (Hg)	mg/kg	0.486	0.17	0.0500 ± 0.0178	0.0215 ± 0.00044	0.0583 ± 0.0164	0.0204 ± 0.0059
	Molybdenum (Mo)	mg/kg	-	-	4.44 ± 3.31	1.50 ± 0.280	2.52 ± 0.273	1.40 ± 0.184
	Nickel (Ni)	mg/kg	75 ^{α,β}	77, 66	40.0 ± 3.52	61.3 ± 8.62	45.0 ± 4.54	54.2 ± 3.18
	Phosphorus (P)	mg/kg	2,000 ^α	1,958, 1,278	1,167 ± 394	1,004 ± 55.7	956 ± 47.3	929 ± 24.0
	Potassium (K)	mg/kg	-	-	4,100 ± 453	4,343 ± 340	5,338 ± 543	4,565 ± 728
	Selenium (Se)	mg/kg	-	-	0.73 ± 0.31	0.20 ± 0.01	0.61 ± 0.18	0.21 ± 0.0071
	Silver (Ag)	mg/kg	-	-	0.14 ± 0.047	0.12 ± 0.006	0.20 ± 0.057	0.12 ± 0.0141
	Sodium (Na)	mg/kg	-	-	304.2 ± 32	279 ± 31	369 ± 50	261 ± 13.4
	Strontium (Sr)	mg/kg	-	-	11.6 ± 1.70	11.7 ± 1.277	12.3 ± 1.24	10.7 ± 0.778
	Sulphur (S)	mg/kg	-	-	1,400 ± 387	<1,000 ± 0	1,140 ± 195	<1,000 ± 0
	Thallium (TI)	mg/kg	-	-	0.379 ± 0.0415	0.415 ± 0.0598	0.594 ± 0.094	0.364 ± 0.0361
	Tin (Sn)	mg/kg	-	-	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0
	Titanium (Ti)	mg/kg	-	-	1,006 ± 109	1,303 ± 85	1,136 ± 50	1,290 ± 0.0
	Uranium (U)	mg/kg	-	-	11.0 ± 2.41	5.03 ± 0.431	19.7 ± 3.76	4.86 ± 0.658
	Vanadium (V)	mg/kg	-	-	54.1 ± 5.40	51.0 ± 3.97	63.4 ± 4.89	48.3 ± 1.63
	Zinc (Zn)	mg/kg	315	135	73.1 ± 7.83	57.3 ± 1.85	83.8 ± 8.52	54.8 ± 6.43
	Zirconium (Zr)	mg/kg	-	-	4.5 ± 1.0	17.6 ± 1.8	3.9 ± 0.32	17.9 ± 1.8

Indicates parameter concentration above Sediment Quality Guideline (SQG). BOLD Indicates parameter concentration above the AEMP Benchmark.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013) using sediment quality guidelines, background sediment quality data, and method detection limits. The indicated values are specific to the Sheardown Lake basins

indicated an 'oligotrophic' status as defined by Wetzel (2001). This trophic status classification was consistent with an oligotrophic categorization for Sheardown Lake SE based on CWQG (CCME 2020) trophic classifications as defined by total phosphorus concentrations (i.e., average concentrations below 10 µg/L; Table 4.10; Appendix Table C.54).

Chlorophyll-a concentrations did not indicate any consistent direction of significant differences between 2020 and the mine construction (2014) period or previous years of mine operation (2015 to 2019) for winter, summer, and fall seasons (Figure 4.14; Appendix Table E.13). The variability in chlorophyll-a concentrations among years at Sheardown Lake SE may reflect the combination of mine-related influences and variable influence of Mary River on Sheardown Lake SE water levels, hydraulic retention time, and/or chemistry among years/seasons. For instance, Mary River discharges into or drains Sheardown Lake SE during high and low flow periods, respectively, the nature of which may affect phytoplankton abundance and/or community structure. No chlorophyll-a baseline (2005 to 2013) data are available for Sheardown Lake SE, precluding comparisons to conditions prior to the mine construction period.

4.3.4 Benthic Invertebrate Community

Benthic invertebrate density was significantly higher at littoral and profundal habitats, and richness was significantly higher at profundal habitat, of Sheardown Lake SE compared to like-habitat stations at Reference Lake 3, the differences of which were at magnitudes outside of the CES_{BIC} of ±2 SD_{REF} (Tables 4.12 and 4.13). In addition to these differences, benthic invertebrate community compositional differences were indicated between Sheardown Lake SE and Reference Lake 3 based on significantly differing Bray-Curtis Index for both littoral and profundal habitat types (Appendix Table F.21). However, the only ecologically significant differences in dominant taxonomic groups included higher and lower relative abundance of Chironomidae and Ostracoda, respectively, at littoral stations of Sheardown Lake SE compared to Reference Lake 3 (Table 4.12). No differences in dominant taxonomic groups were indicated between Sheardown Lake SE and the reference lake in 2020 (Tables 4.12 and 4.13). Similar to Sheardown Lake NW, the occurrence of higher benthic invertebrate density without an accompanying difference in evenness or existence of a significantly lower relative abundance of metal-sensitive taxa suggested that Sheardown Lake SE was simply more productive than Reference Lake 3, and was not adversely influenced by mine operations in 2020.

Similar to the other mine-exposed lakes, sediment at littoral and profundal stations of Sheardown Lake SE was significantly more compact (i.e., lower moisture content) than like-habitat stations at the reference lake (Appendix Table F.39). The occurrence of more stable, compact sediment likely accounted for an ecologically significant higher relative abundance of the burrower HPG at Sheardown Lake SE compared to the reference lake (Tables 4.12 and 4.13). In addition to

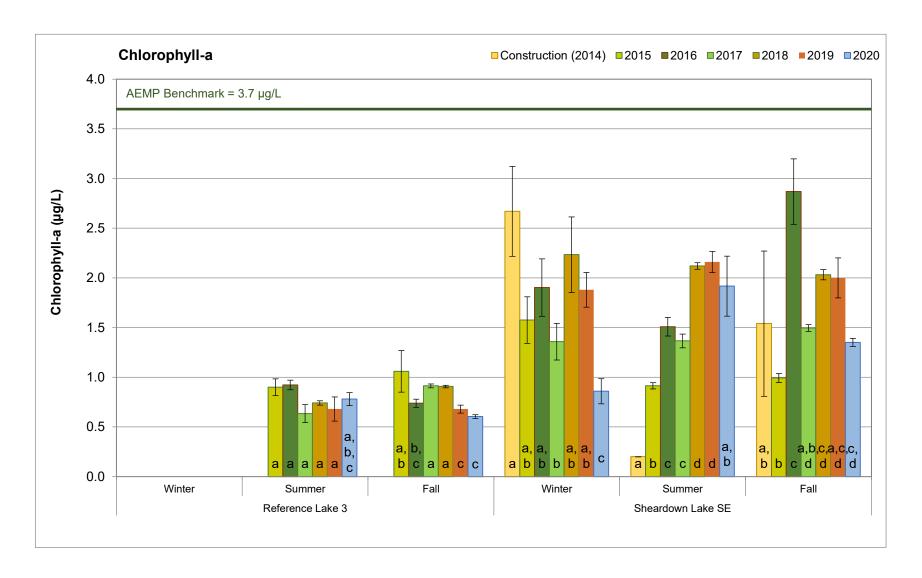


Figure 4.14: Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between Sheardown Lake SE and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)

Note: Bars with the same letter at the base do not differ significantly between years for the applicable season.

Table 4.12: Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake SE (DLO-02) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 2020

		Stati	istical Test Re	sults		Summary Statistics							
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Littoral Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum	
Density (Individuals/m²)	t-equal	log10	YES	< 0.001	8.9	Reference Lake 3 Sheardown SE Littoral	1,571 5,407	430 1,391	193 622	1,190 3,216	1,474 5,509	2,310 6,914	
Richness (Number of Taxa)	t-equal	log10	NO	0.305	-1.0	Reference Lake 3 Sheardown SE Littoral	14.6	2.5	1.1	13.0	14.0	19.0	
Simpson's Evenness (E)	t-equal	none	NO	0.799	0.1	Reference Lake 3	0.810	0.110	0.049	0.630	0.847	0.923	
Shannon Diversity	t-equal	log10	NO	0.547	-0.4	Sheardown SE Littoral Reference Lake 3	0.826 2.710	0.068	0.031	0.722 2.080	0.827 2.730	0.911 3.510	
Hydracarina (%)	t-equal	log10	NO	0.167	-0.7	Sheardown SE Littoral Reference Lake 3	2.520 5.3	0.261 2.6	0.117 1.2	2.220 3.5	2.570 4.4	2.830 9.9	
Ostracoda (%)	t-equal	log10	YES	< 0.001	-2.1	Sheardown SE Littoral Reference Lake 3	3.4 37.9	2.4 14.5	1.1 6.5	1.0 26.7	2.7 36.2	5.9 62.6	
Chironomidae (%)	t-equal	none	YES	0.001	2.3	Sheardown SE Littoral Reference Lake 3	6.8 52.6	3.5 15.6	7.0	2.3 26.9	8.1 59.0	10.3 66.4	
Metal-Sensitive	t-equal	none	YES	0.012	-1.7	Sheardown SE Littoral Reference Lake 3	89.2 28.8	5.1 9.5	2.3 4.3	81.9 15.6	89.0 32.5	96.4 38.7	
Chironomidae (%) Collector-Gatherers	'					Sheardown SE Littoral Reference Lake 3	12.3 63.1	6.5 11.4	2.9 5.1	3.0 53.6	15.1 60.3	19.5 81.5	
(%)	t-equal	log10	NO	0.258	-0.8	Sheardown SE Littoral Reference Lake 3	54.0 27.1	14.9 9.8	6.7 4.4	40.3 14.4	50.6 29.2	75.3 38.0	
Filterers (%)	t-equal	none	YES	0.022	-1.5	Sheardown SE Littoral	12.3	6.5	2.9	3.0	15.1	19.5	
Shredders (%)	t-unequal	none	YES	0.060	-1.2	Reference Lake 3 Sheardown SE Littoral	3.9 0.0	3.3 0.0	1.5 0.0	0.6	3.2 0.0	7.4 0.0	
Clingers (%)	t-equal	none	YES	0.011	-1.8	Reference Lake 3 Sheardown SE Littoral	31.9 15.5	9.3 6.4	4.2 2.9	17.9 4.7	33.5 18.1	41.6 20.9	
Sprawlers (%)	t-equal	log10	NO	0.267	-0.7	Reference Lake 3 Sheardown SE Littoral	57.9 49.7	12.1 9.0	5.4 4.0	41.0 42.4	57.2 46.5	73.8 65.3	
Burrowers (%)	t-equal	none	YES	0.004	5.0	Reference Lake 3 Sheardown SE Littoral	10.2 34.8	4.9 13.1	2.2 5.9	4.6 16.6	8.3 35.1	17.3 52.9	

Grey shading indicates statistically significant difference between study areas based on p-value less than 0.10.

Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

Table 4.13: Benthic Invertebrate Community Statistical Comparison Results between Sheardown Lake SE (DLO-02) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 2020

		Stati	stical Test Re	sults		Summary Statistics							
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Profundal Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum	
Density (2)	t-equal	log10	YES	< 0.001	23.9	Reference Lake 3	479	142	63	336	491	681	
(Individuals/m²)						Sheardown SE Profundal	3,869	1,304	583	3,026	3,336	6,164	
Richness	t-equal	none	YES	0.034	2.4	Reference Lake 3	7.0	1.9	8.0	5.0	8.0	9.0	
(Number of Taxa)						Sheardown SE Profundal	11.4	3.4	1.5	6.0	12.0	15.0	
Simpson's Evenness	t-equal	none	NO	0.429	0.9	Reference Lake 3	0.731	0.045	0.020	0.689	0.721	0.795	
(E)	t oquai	Hone		0.420	0.5	Sheardown SE Profundal	0.772	0.099	0.045	0.619	0.806	0.869	
Shannon Diversity	t-equal	none	NO	0.101	2.3	Reference Lake 3	1.800	0.196	0.088	1.580	1.720	2.030	
Sharmon Diversity	t-equal	none	NO	0.101	2.5	Sheardown SE Profundal	2.250	0.501	0.224	1.670	2.570	2.670	
Hydracarina (%)	t-equal	none	NO	0.434	-0.4	Reference Lake 3	2.8	2.0	0.9	0.0	3.5	5.1	
	t-equal	none	NO	0.454	-0.4	Sheardown SE Profundal	1.9	1.3	0.6	0.3	2.5	3.1	
Ostracoda (%)	t-equal	log10	NO	0.177	-0.8	Reference Lake 3	8.6	4.1	1.8	3.5	7.7	14.5	
Ostracoda (70)	t-cquai	10910	NO	0.177	-0.0	Sheardown SE Profundal	5.3	5.1	2.3	0.5	5.7	13.0	
Chironomidae (%)	t-equal	none	NO	0.202	1.1	Reference Lake 3	87.9	4.2	1.9	82.3	87.2	92.7	
Cilifornidae (70)	t-equal	none	NO	0.202	1.1	Sheardown SE Profundal	92.5	6.2	2.8	84.1	91.2	98.9	
Metal-Sensitive	t ogual	none	NO	0.191	-0.7	Reference Lake 3	31.5	17.6	7.9	7.9	38.0	49.3	
Chironomidae (%)	t-equal	none	NO	0.191	-0.7	Sheardown SE Profundal	19.9	4.7	2.1	11.8	21.6	24.0	
Collector-Gatherers	t amual	J==10	NO	0.292	0.7	Reference Lake 3	62.9	15.0	6.7	45.4	56.1	79.0	
(%)	t-equal	log10	NO	0.292	-0.7	Sheardown SE Profundal	52.5	14.5	6.5	33.6	52.1	70.6	
C:14 (0/)	4 amual		NO	0.212	0.6	Reference Lake 3	30.7	17.5	7.8	7.9	38.0	49.3	
Filterers (%)	t-equal	none	NO	0.212	-0.6	Sheardown SE Profundal	19.7	4.7	2.1	11.8	21.6	23.8	
Olin (0()	41		NO	0.440	0.0	Reference Lake 3	33.5	16.9	7.6	13.1	41.5	52.8	
Clingers (%)	t-equal	none	NO	0.142	-0.8	Sheardown SE Profundal	20.5	5.3	2.4	12.3	21.7	26.9	
0	41	I= =:40	VEO	0.044	4.7	Reference Lake 3	64.8	16.2	7.2	45.5	58.5	87.0	
Sprawlers (%)	t-equal	log10	YES	0.041	-1.7	Sheardown SE Profundal	36.9	17.8	8.0	16.8	37.4	55.1	
D.,,,,,,,,,,,,,,,,,,,(0/.)	4 m1	I==10(v14)	VEC	0.007	44.0	Reference Lake 3	1.7	2.9	1.3	0.0	0.0	6.7	
Burrowers (%)	t-unequal	log10(x+1)	YES	0.007	14.2	Sheardown SE Profundal	42.6	21.3	9.5	19.4	43.0	66.3	

Grey shading indicates statistically significant difference between study areas based on p-value less than 0.10.

Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

differences in sediment properties between lakes, significantly shallower 'profundal' sampling depths at Sheardown Lake SE likely contributed to the differences in benthic invertebrate community features compared to the reference lake (Appendix Table F.39). Natural depth-related influences on benthic invertebrate community structure that include lower density and richness at greater depth in lake environments are well documented (Ward 1992; Armitage et al. 1995), and were consistently evident at Reference Lake 3 from 2015 to 2020 (Appendix B) indicating similar patterns in pristine lakes of the Mary River Project region. The maximum depth of Sheardown Lake SE is approximately 14 m (Minnow 2018). Because profundal habitat for the Mary River Project CREMP is defined as water depths ≥12 m, benthic invertebrate community data collected from profundal depths of Sheardown Lake SE (average station depth of 12 m) are not directly comparable to those at Reference Lake 3, where the mean depth of profundal stations is 21 m (Appendix Table F.39). Therefore, the differences in benthic invertebrate community endpoints shown between Sheardown Lake SE and the reference lake in 2020 likely reflected a combination of naturally greater productivity, naturally more compact sediment, and naturally shallower 'profundal' sampling depths at Sheardown Lake SE. ecologically significant effects on the relative abundance of metal-sensitive Chironomidae were indicated at Sheardown Lake SE in 2020, suggesting no metal-related influences on the benthic invertebrate community of the lake.

Benthic invertebrate density was routinely significantly lower at Sheardown Lake SE in years of mine operation compared to baseline (Appendix Tables F.41 and F.42). However, no ecologically significant differences in richness, evenness, relative abundance of dominant taxonomic groups, or relative abundance of HPG were consistently shown at littoral or profundal habitat of Sheardown Lake SE over the 2015 to 2020 period of mine operation compared to baseline (Appendix Figures F.12 and F.13; Appendix Tables F.41 and F.42). Because density was the only benthic invertebrate community metric that consistently differed between the mine-operational and baseline period, natural temporal variability among studies (and in particular, high density during the 2007 and 2013 baseline studies) likely accounted for the difference in benthic invertebrate density at Sheardown Lake SE between these periods. Overall, consistent with no substantial differences in water and sediment quality since the mine baseline period, no ecologically significant differences in benthic invertebrate community features were indicated at littoral and profundal habitat of Sheardown Lake SE following the commencement of mine operation in 2015.

4.3.5 Fish Population

4.3.5.1 Sheardown Lake SE Fish Community

The Sheardown Lake SE fish community was composed of arctic charr and ninespine stickleback in 2020 (Table 4.8), the same fish species as observed in previous years (Minnow 2020). Total fish CPUE was greater at Sheardown Lake SE than Reference Lake 3, suggesting higher densities and/or productivity of both arctic charr and ninespine stickleback at Sheardown Lake SE (Table 4.8). Consistent with the other mine-exposed lakes, greater numbers of arctic charr, together with greater density of benthic invertebrates, suggested that productivity was higher at Sheardown Lake SE than at Reference Lake 3. Electrofishing and gill netting CPUE at Sheardown Lake SE in 2020 were both within respective ranges observed during the previous five years of mine operation (i.e., 2015 to 2019), and were generally greater than in baseline studies (i.e., 2006 through 2008; Figure 4.10). Based on these data, arctic charr abundance at nearshore and littoral/profundal habitats may be comparable to, or potentially greater than, baseline at Sheardown Lake SE indicating that the mine has not adversely influenced the number of arctic charr in the lake.

4.3.5.2 Sheardown Lake SE Fish Population Assessment

Nearshore Arctic Charr

A total of 100 arctic charr were captured from nearshore habitat at each of Sheardown Lake SE and Reference Lake 3 in August 2020. Arctic charr YOY were distinguished from non-YOY using fork length cut-offs of 5.1 cm and 4.3 cm for the Sheardown Lake SE and Reference Lake 3 data sets, respectively, based on evaluation of length-frequency distributions coupled with supporting age determinations (Figure 4.15; Appendix Tables G.4 and G.19). Because greater than ten YOY arctic charr were identified from the Sheardown Lake SE and Reference Lake 3 populations, statistical comparisons of health endpoints were completed separately on both the YOY and non-YOY populations. The length-frequency distribution for the whole population of nearshore arctic charr did not differ significantly between Sheardown Lake SE and Reference Lake 3; however, a difference was noted when comparing non-YOY between the two lakes (Appendix Table G.20). This difference reflected slightly larger non-YOY fish captured at Sheardown Lake SE compared to the reference lake (Figure 4.15). Arctic charr YOY and non-YOY from nearshore areas of Sheardown Lake SE were significantly larger and had greater condition than those from Reference Lake 3 (Table 4.14; Appendix Table G.20). The absolute magnitudes of difference in condition were greater than the CES_c of 10% for both age classes at Sheardown Lake SE, suggesting that the differences may be ecologically significant (Table 4.14; Appendix Table G.20).

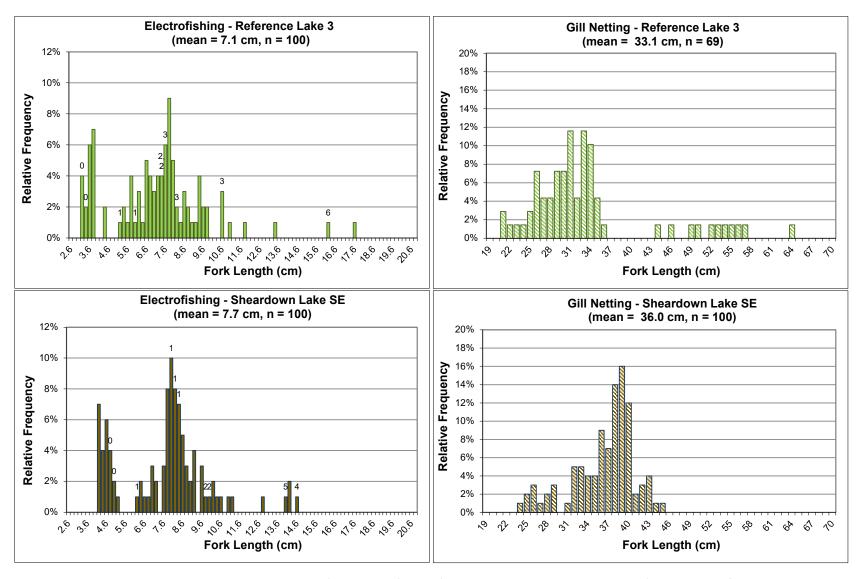


Figure 4.15: Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Note: Fish ages are shown above the bars, where available.

Table 4.14: Summary of Statistical Results for Arctic Charr Population Comparisons between Sheardown Lake SE and Reference Lake 3 from 2015 to 2020, and between Sheardown Lake SE Mine Operational and Baseline Period Data, for Fish Captured by Electrofishing and Gill Netting Methods, Mary River Project CREMP

						Sta	ntistically	Significan	t Differenc	es Obser	ved? a				
Data Set by Sampling Method	Response Category	Endpoint	versus Reference Lake 3							versus Sheardown Lake SE baseline period data ^b					
			2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	
ing	Survival	Length-Frequency Distribution	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Nearshore Electrofishing		Age	No	No	No	-	-	-	Yes (+273%)	-	1	-	-	-	
e Elect	Energy Use	Size (mean fork length)	No	No	Yes (+12%)	Yes (+21%)	Yes (-28%)	Yes (+7%)	Yes (+7%)	Yes (-15%)	Yes (+19%)	Yes (-47%)	No	Yes (+30%)	
arshor	(non-YOY)	Size (mean weight)	No	No	Yes (+55%)	Yes (+59%)	Yes (-59%)	Yes (+53%)	No	Yes (-43%)	Yes (+54%)	No	No	Yes (+117%)	
Ne	• • •	Condition (body weight-at- fork length)	Yes (+4%)	No	Yes (+9%)	Yes (-13%)	Yes (+4%)	Yes (+14%)	Yes (-14%)	Yes (-16%)	No	Yes (-15%)	Yes (-13%)	No	
	Survival	Length Frequency Distribution	1	-	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	
tting ^c		Age	ı	-	-	-	-	-	Yes (-13%)	No	No	-	-	-	
Gill Ne		Size (mean fork length)	-	-	-	No	Yes (+23%)	Yes (+21%)	Yes (-9%)	Yes (-7%)	Yes (-5%)	Yes (-4%)	Yes (-2%)	No	
ndal (Energy Use	Size (mean weight)	-	-	-	No	Yes (+102%)	Yes (+107%)	Yes (-26%)	Yes (-20%)	Yes (-16%)	Yes (-16%)	Yes (-11%)	Yes (-7.0%)	
ıl/Profi	Lifelgy Ose	Growth (fork length-at- age)	-	-	-	-	-	-	No	No	No	-	-	-	
Littoral/Profundal Gill Netting		Growth (weight-at-age)	1	-	-	-	-	-	Yes (+18%)	Yes (+24%)	No	-	-	-	
	Energy Storage	Condition (body weight-at- fork length)	-	-	-	Yes (+7%)	No	Yes (+14%)	No	No	Yes (-6%)	Yes (-7%)	Yes (-6%)	Yes (-5.0%)	

BOLD indicates a significant difference related to the comparison.

^a Values in parentheses indicate direction and magnitude of any significant differences.

^b Baseline period data included 2007 nearshore electrofishing data and 2007 and 2008 littoral/profundal gill netting data.

^c Due to low catches of arctic charr in gill nets at Reference Lake 3 in 2015, 2016, and 2017, no comparison of fish health was conducted for gill netted fish.

No consistent directional differences in size or condition were observed in non-YOY arctic charr from nearshore habitat of Sheardown Lake SE compared to the reference lake from 2015 to 2020, although most often larger fish of slightly greater condition occurred at Sheardown Lake SE over this period (Table 4.14). Although before-after analysis of data collected at Sheardown Lake SE in 2020 (mine operation) and 2007 (baseline) was conducted (Appendix Table G.7), poor accuracy in fresh body weight measurements during baseline sampling precluded meaningful data interpretation, and therefore these results were not discussed herein. Overall, the differences in nearshore non-YOY arctic charr size and condition between Sheardown Lake SE and Reference Lake 3 likely reflected natural variability between the two populations over time.

Littoral/Profundal Arctic Charr

A total of 100 and 69 arctic charr were sampled from littoral/profundal habitat of Sheardown Lake SE and Reference Lake 3, respectively, in August 2020. The length-frequency distribution for littoral/profundal arctic charr differed significantly between lakes due to more larger fish being captured at Sheardown Lake SE (Table 4.14; Figure 4.15). Littoral/profundal arctic charr from Sheardown Lake SE were significantly longer, heavier, and had greater condition than those from Reference Lake 3 (Table 4.14; Appendix Table G.24). The absolute magnitude of difference in condition was also above the CES_C of 10%, suggesting potential ecological significance (Table 4.14; Appendix Table G.20).

The differences in size and condition of arctic charr captured from littoral/profundal habitat between Sheardown Lake NW and Reference Lake 3 in 2020 were similar to the differences shown in 2018 and/or 2019, suggesting no appreciable changes in health of littoral/profundal arctic charr at Sheardown Lake NW over time. No difference in length-frequency distribution of arctic charr captured from littoral/profundal habitat of Sheardown Lake SE was shown between 2020 and baseline, although differences were reported historically (Table 4.14). Arctic charr sampled from littoral/profundal habitat of Sheardown Lake SE in years of mine operation (i.e., 2015 to 2020) have almost consistently been smaller than those captured at the time of the mine baseline, but significantly lower condition has only occurred compared to baseline since 2017 (Table 4.14). Differences in arctic charr condition from 2015 to 2020 at Sheardown Lake SE, relative to Reference Lake 3 or Sheardown Lake SE baseline, were generally absent or not ecologically meaningful based on the magnitude of difference being within the CES_C of $\pm 10\%$ (Table 4.14). In turn, this suggested no adverse influences on adult arctic charr at Sheardown Lake SE through the first six years of mine operation.

4.3.6 Effects Assessment and Recommendations

At Sheardown Lake SE, the following AEMP benchmarks were exceeded in 2020:

- Chromium concentration in sediment, on average, was greater than the benchmark of 79 mg/kg at littoral stations;
- Iron concentration in sediment, on average, was greater than the benchmark of 34,400 mg/kg at littoral and profundal stations;
- Manganese concentration in sediment was, on average, greater than the benchmark of 657 mg/kg at littoral stations; and,
- Nickel concentration in sediment was greater than the benchmark of 66 mg/kg at one littoral monitoring station (DL0-02-11), although the average concentration of nickel in sediment at littoral stations was below this benchmark.

No AEMP benchmarks for water quality were exceeded over the duration of spring, summer, and fall sampling events in 2020 at Sheardown Lake SE. Lake-specific AEMP benchmarks for sediment quality were exceeded for chromium, iron, manganese, and nickel concentrations at Sheardown Lake SE in 2020. However, none of these metals occurred at concentrations in sediment of Sheardown Lake SE that were elevated compared to the reference lake, or to concentrations shown at Sheardown Lake SE during the baseline period. concentrations of these metals were above the Sheardown Lake SE AEMP benchmarks in sediment at the reference lake, suggesting naturally high concentrations of each of the indicated metals in sediments of area lakes. Notably, AEMP benchmarks established for sediment quality at Sheardown Lake SE tend to be lower than SQG, and are generally lower than AEMP benchmarks established for the other mine-exposed lakes (Baffinland 2015). No adverse effects to phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at Sheardown Lake SE in 2020 based on comparisons to reference conditions and to applicable Sheardown Lake SE baseline conditions. Because no mine-related changes in metal concentrations occurred in sediment at Sheardown Lake SE in 2020 and no adverse effects to biota were associated with concentrations of metals above AEMP benchmarks for sediment quality, a low action response is recommended to meet obligations under the AEMP Management Response Framework. Specifically, it is recommended that the relevance of site-specific sediment quality AEMP benchmarks for Sheardown Lake SE be assessed and, if necessary, determined anew taking into consideration data from the reference lake and applicable SQG.

5 MARY RIVER AND MARY LAKE SYSTEM

5.1 Mary River Tributary-F

5.1.1 Water Quality

Mary River Tributary-F (MRTF) dissolved oxygen concentrations did not differ significantly between areas located downstream and upstream of the MS-08 effluent discharge channel (effluent-exposed and reference areas, respectively) and were well above the WQG lowest acceptable concentration for sensitive early life stages of cold-water biota (i.e., 9.5 mg/L) at both areas at the time of EEM sampling (i.e., August 2020). Although pH and specific conductance were each significantly higher at the effluent-exposed area than at the reference area of MRTF, the mean incremental difference between areas for each of these parameters was very small and pH values were well within the WQG acceptable range for the protection of aquatic life (i.e., between 6.5 and 9.0) at the time of EEM sampling. The proportion of effluent within MRTF immediately below the effluent channel confluence was estimated as 2.6% on average, under flow conditions at the time of EEM sampling, based on extrapolation using measures of specific conductance collected in the field (Minnow 2021).

Water chemistry at MRTF met all AEMP benchmarks over the duration of spring, summer, and fall sampling events in 2020 (Table 5.1). Although concentrations of total aluminum and phosphorus were above applicable WQG in spring at the effluent-exposed area of MRTF (i.e., Station F0-01), concentrations of these parameters were also above WQG at reference areas indicating naturally elevated concentrations of aluminum and phosphorus within regional watercourses (Table 5.1). Among those parameters with established AEMP benchmarks, nitrate and sulphate concentrations were consistently elevated at MRTF compared to the Mary River reference area (i.e., G0-09 series stations) in all spring, summer, and fall sampling events (Appendix Tables C.59 and C.61), but remained at concentrations well below AEMP benchmarks and WQG (Table 5.1). Nitrate and sulphate concentrations were also elevated in summer and fall sampling events from 2018 to 2020 compared to baseline at MRTF (Appendix Figure C.23). No other parameters were observed at concentrations that were continually elevated at MRTF in 2020 compared to reference conditions through all seasons, nor compared to baseline, except that total and dissolved concentrations of manganese were elevated compared to reference conditions during the spring sampling event in 2020 (Appendix Tables C.59 and C.61; Appendix Figure C.23). Overall, a slight mine-related influence on water quality was indicated by elevated concentrations of nitrate and sulphate at MRTF in 2020, but concentrations of these parameters (and all others) were routinely well below AEMP benchmarks and WQG since commercial mine operations commenced in 2015.

Table 5.1: Mean Water Chemistry at Mary River Monitoring Stations During Spring, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

Parameters			Water		G0-0	9 Reference (r	ı = 3)	G0	Upstream (n =	: 2)	Mar	y River Tributa	ry F	E0	Adjacent (n =	4)	C0 [Downstream (n	= 3)
Param	eters	Units	Quality Guideline	AEMP Benchmark ^b	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall
	Conductivity (lab)	umho/cm	(WQG) ^a	-	61	186	248	45	171	228	108	345	403	53	178	245	57	176	234
<u> </u>	oH (lab)	рН	6.5 - 9.0	_	7.74	8.22	8.33	7.64	8.14	8.48	7.89	8.30	8.32	7.67	8.17	8.19	7.66	8.22	8.17
l au	Hardness (as CaCO ₃)	mg/L		-	28	81	120	20	74	106	49.9	166	211	24	77	117	25	75	112
. ⊭ ⊦	Total Suspended Solids (TSS)	mg/L	-	-	2	12.6	2.1	14.6	10.25	2.8	9.8	<2.0	<2.0	8.5	12.5	2.5	7.7	15.1	2.0
. je -	Total Dissolved Solids (TDS)	mg/L	-	-	66	97	129	66	103	119	90	190	224	74	116	128	73	107	127
Conventionals	Furbidity	NTU	-	-	4.3	26.3	2.8	7.3	34.5	4.7	2.2	0.4	0.6	6.3	38.6	6.2	8.5	29.5	3.3
	Alkalinity (as CaCO ₃)	mg/L	-	-	29	80	103	21	78	91	39	122	132	27	83	95	24	82	94
	Total Ammonia	mg/L	-	0.855	0.010	0.010	0.01	0.01	0.01	0.01	<0.010	<0.010	<0.010	0.010	0.010	0.010	0.010	0.010	0.011
م ا	Nitrate	mg/L	3	3	0.021	0.147	0.103	0.030	0.101	0.163	0.187	0.714	1.090	0.043	0.133	0.259	0.089	0.171	0.229
anc 1	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.005	0.005	0.005	<0.0050	<0.0050	<0.0050	0.005	0.005	0.005	0.005	0.005	0.005
ts nic	Fotal Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.15	0.15	0.15	0.15	0.15	0.15	<0.15	0.32	0.16	0.15	0.15	0.17	0.15	0.15	0.15
_ ~ ⊢	Dissolved Organic Carbon	mg/L	-	-	1.6	4.0	2.6	2.3	4.0	2.3	2.1	1.7	2.0	2.2	3.0	2.2	2.2	2.6	2.3
	Total Organic Carbon	mg/L	-	-	2.2	2.9	2.4	2.7	2.8	2.3	2.9	2.7	2.3	2.9	3.2	2.3	3.3	3.3	2.6
Z	Total Phosphorus	mg/L	0.020^{α}	-	0.0121	0.0215	0.0034	0.0557	0.0225	0.0038	0.0377	<0.0030	<0.0030	0.0480	0.0240	0.0046	0.0365	0.0230	0.0073
F	Phenols	mg/L	0.004 ^a	-	0.0015	0.0012	0.0010	0.0010	0.0010	0.0010	<0.0010	<0.0010	<0.0010	0.0012	0.0010	0.0010	0.0011	0.0010	0.0010
Anions	Bromide (Br)	mg/L	-	-	0.1	0.1	0.1	0.1	0.1	0.1	<0.10	<0.10	<0.10	0.1	0.1	0.1	0.1	0.1	0.1
. <u>ē</u>	Chloride (CI)	mg/L	120	120	1.0	8.9	11.8	1.6	7.8	13.2	1.3	13.7	11.7	1.1	7.6	12.7	1.4	7.5	11.7
Ar S	Sulphate (SO ₄)	mg/L	218 ^β	218	0.7	5.5	6.7	0.6	4.9	7.0	11.8	36.0	60.7	2.9	6.4	12.1	2.6	6.1	10.4
/	Aluminum (AI)	mg/L	0.100	0.966	0.121	1.046	0.087	0.230	1.330	0.148	0.170	0.034	0.041	0.216	1.071	0.173	0.204	1.202	0.121
/	Antimony (Sb)	mg/L	0.020^{α}	-	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	<0.00010	<0.00010	<0.00010	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
/	Arsenic (As)	mg/L	0.005	0.005	0.00011	0.00021	0.0001	0.000115	0.000245	0.00010	<0.00010	<0.00010	<0.00010	0.00010	0.00022	0.00010	0.00010	0.00023	0.00010
F	Barium (Ba)	mg/L	-	-	0.0049	0.0159	0.0140	0.0052	0.0178	0.0148	0.0054	0.0165	0.0179	0.0048	0.0160	0.0158	0.0051	0.0156	0.0148
_	Beryllium (Be)	mg/L	0.011 ^α	-	0.0005	0.0001	0.0005	0.0005	0.0001	0.0005	<0.00050	<0.00010	<0.00050	0.0005	0.0001	0.0005	0.0005	0.0001	0.0005
_	Bismuth (Bi)	mg/L	-	-	0.0005	0.00005	0.0005	0.0005	0.00005	0.0005	<0.00050	<0.000050	<0.00050	0.0005	0.00005	0.0005	0.0005	0.00005	0.0005
F	Boron (B)	mg/L	1.5	-	0.01	0.01	0.01	0.01	0.01	0.01	<0.010	<0.010	<0.010	0.01	0.01	0.01	0.01	0.01	0.01
(Cadmium (Cd)	mg/L	0.00012	0.00006	0.000028	0.000005	0.000010	0.00001	0.00001	0.00001	<0.000010	<0.000050	<0.000010	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
	Calcium (Ca)	mg/L	-	-	6.2	16.0	23.9	4.8	14.5	21.4	9.4	29.4	36.7	4.8	15.4	23.1	5.2	15.2	21.9
	Chromium (Cr)	mg/L	0.0089	0.0089	0.0005	0.00198	0.00050	0.00057	0.00260	0.00050	<0.00050	<0.00050	<0.00050	0.00050	0.00225	0.00050	0.00050	0.00185	0.00050
	Cobalt (Co)	mg/L	0.0009 ^α	0.004	0.00010	0.00042	0.00010	0.00017	0.00054	0.00010	0.00016	<0.00010	0.00017	0.00011	0.00047	0.00010	0.00010	0.00041	0.00010
_	Copper (Cu)	mg/L	0.002	0.0024	0.0027	0.0021	0.0010	0.0009	0.0025	0.0012	0.0005	<0.0010	0.0009	0.0007	0.0023	0.0013	0.0008	0.0021	0.0011
_	ron (Fe)	mg/L	0.30	0.874	0.104	0.941	0.080	0.281	1.215	0.125	0.202	0.028	0.050	0.201	0.961	0.176	0.181	0.920	0.111
<u>. ∞</u>	_ead (Pb)	mg/L	0.001	0.001	0.00023	0.00073	0.00009	0.00034	0.00089	0.00013	0.00021	<0.000050	<0.000050	0.00021	0.00075	0.00017	0.00020	0.00074	0.00009
Metals	Lithium (Li)	mg/L	-	-	0.0010	0.0020	0.0010	0.0010	0.0024	0.0010	<0.0010	0.0026	0.0018	0.0010	0.0021	0.0011	0.0010	0.0020	0.0010
Š	Magnesium (Mg)	mg/L	- 0.005 ^β	-	3.4 0.0025	9.0 0.0119	13.3 0.0013	2.6 0.0072	8.8 0.0146	12.4 0.0017	6.7 0.0091	21.4 0.0010	27.8 0.0018	3.1 0.0049	9.1 0.0123	13.8 0.0024	3.2 0.0050	9.1 0.0132	13.1 0.0024
otal	Manganese (Mn)	mg/L	0.935^{β} 0.000026	-	0.0025	0.000005	0.00005	0.0072	0.00000505	0.00017	<0.0000050	<0.00000	<0.000050	0.0049	0.000005	0.0024	0.0000	0.0132	0.0024
. ⊬ ¦;	Mercury (Hg) Molybdenum (Mo)	mg/L mg/L	0.000020	-	0.000003	0.00003	0.00043	0.00005	0.0000303	0.000003	0.0000030	0.00049	0.00041	0.000003	0.000055	0.00059	0.000003	0.000003	0.00059
. 	Nickel (Ni)	ma/L	0.075	0.025	0.00007	0.00043	0.00043	0.00057	0.00036	0.00049	<0.00010	0.00049	<0.00041	0.00007	0.00033	0.00039	0.00011	0.00040	0.00039
_	Potassium (K)	J.	-	-	0.61	1.65	1.45	0.00037	1.71	1.50	0.65	1.81	1.69	0.00030	1.62	1.55	0.00030	1.56	1.47
	Selenium (Se)	mg/L mg/L	0.001	-	0.001	0.00005	0.001	0.001	0.00005	0.001	<0.0010	0.00007	<0.0010	0.001	0.00005	0.001	0.001	0.00005	0.001
	Silicon (Si)	mg/L	-	-	0.69	2.25	0.95	0.001	2.71	0.001	0.64	1.00	1.09	0.001	2.30	1.11	0.75	2.37	0.97
	Silver (Ag)	mg/L	0.00025	0.0001	0.00001	0.00005	0.00001	0.00001	0.00005	0.00001	<0.000010	<0.000050	<0.000010	0.00001	0.00005	0.00001	0.00001	0.00005	0.00001
	Sodium (Na)	mg/L	-	-	0.9	4.6	5.8	0.6	4.0	5.8	0.4	3.2	3.4	0.6	3.8	5.6	0.8	3.9	5.2
_	Strontium (Sr)	mg/L	<u> </u>	-	0.0054	0.0214	0.0252	0.0046	0.0188	0.0244	0.0099	0.0414	0.0373	0.0051	0.0194	0.0257	0.0048	0.0192	0.0237
	Thallium (TI)	mg/L	0.0008	0.0008	0.00010	0.00002	0.00010	0.00010	0.00003	0.00010	<0.00010	<0.000010	<0.00010	0.00010	0.00003	0.00010	0.00010	0.00003	0.00010
	Fin (Sn)	mg/L	-	-	0.0004	0.0001	0.0001	0.0001	0.0001	0.00010	<0.00010	<0.00010	<0.00010	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
_	Fitanium (Ti)	mg/L	_	- 1	0.010	0.065	0.010	0.015	0.082	0.010	0.011	0.002	<0.010	0.012	0.065	0.011	0.010	0.074	0.010
	Jranium (U)	mg/L	0.015	-	0.0004	0.0054	0.0072	0.0003	0.0040	0.0065	0.0003	0.0037	0.0048	0.0003	0.0039	0.0061	0.0003	0.0036	0.0054
	/anadium (V)	mg/L	0.006 ^α	0.006	0.0010	0.00192	0.00100	0.00100	0.00247	0.00100	<0.0010	<0.00050	<0.0010	0.00100	0.00206	0.00100	0.00100	0.00178	0.00100
	Zinc (Zn)	mg/L	0.030	0.030	0.013	0.009	0.003	0.003	0.0037	0.003	<0.0030	<0.0030	<0.0030	0.003	0.0041	0.0146	0.0034	0.0031	0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Mary River

5.1.2 Phytoplankton

Chlorophyll-a concentrations at MRTF were comparable to those reported at upstream reference stations during individual spring, summer, and fall sampling events in 2020 (Appendix Table E.14), and were well below the AEMP benchmark of 3.7 µg/L for each of these sampling events. Low phytoplankton productivity, indicative of oligotrophic conditions, was suggested at MRTF based on comparison of chlorophyll-a concentrations to Dodds et al (1998) trophic status classification for creek environments. Overall, no mine-related influences on phytoplankton density were suggested at MRTF in 2020 based on the chlorophyll-a concentration data.

5.1.3 Benthic Invertebrate Community

No ecologically significant differences in benthic invertebrate density and richness were indicated between the MRTF effluent-exposed and reference study areas during the August 2020 EEM study (Table 5.2)¹⁵. Significantly higher evenness at the MRTF effluent-exposed area compared to the reference area, as well as significantly differing Bray-Curtis Index between these areas, indicated differing benthic invertebrate assemblages between the effluent-exposed and reference areas of MRTF. The primary difference in community composition between the effluentexposed and reference areas of MRTF was a significantly lower relative abundance of Chironomidae at the effluent-exposed area, including those considered metal-sensitive (Table 5.2). A lower relative abundance of metal-sensitive Chironomidae at the effluent-exposed area suggested that the difference in benthic invertebrate assemblage between areas was potentially related to mine effluent, but because aqueous metal concentrations at MRTF were mostly below WQG (Table 5.1), a factor (or factors) other than metal concentrations likely accounted for the differences in assemblage between the MRTF study areas. For instance, a significantly higher relative abundance of the filterer FFG at the MRTF effluent-exposed area suggested that organic inputs from the effluent channel may have contributed to community composition differences relative to the MRTF upstream reference area (Minnow 2020). Overall, influences of mine operations on the benthic invertebrate community of MRTF remained uncertain following the August 2020 EEM study, but did not appear to be related to metal concentrations originating from mine effluent and/or operations.

¹⁵ Under the MDMER, metrics of richness, Simpson's Evenness, and Bray-Curtis Index are calculated using family-level taxonomy, and thus the MRTF benthic invertebrate community results discussed herein evaluated metrics calculated using this level of taxonomy. For all monitoring conducted for the Mary River Project CREMP, the above metrics were calculated using lowest-practical-level taxonomy.

Table 5.2: Benthic Invertebrate Community Metric Statistical Comparisons Between Mary River Tributary-F (MRTF) Mine-Exposed (EXP) and Reference (REF) Areas, Mary River Project Second EEM Study, August 2020

		Endpoint	Data	Test	Test	МС	CT ^a	MOD	
		Enapoint	Transformation	1621	P-value	REF	EXP	(REF _{SD})	
.M ect ator		Density (No./m²)	log10	tequal	0.009	324	87.3	-1.6	
EEM Effect ndicate		Richness (No. of Taxa)	log10	tequal	0.151	12.6	9.17	ns	
		Simpson's Evenness	log10	tequal	0.087	0.372	0.538	1	
ge		Chironomidae	log10	tequal	0.029	76.3	52.8	-3.9	
centage)	Taxa	Metal Sensitive Chironomidae	log10	tequal	0.005	50.8	21.0	-4.1	
_ · _ ·	Таха	Simuliidae	log10(x+1)	tunequal	0.118	2.8	19.2	ns	
_		Tipulidae	log10(x+1)	tequal	0.996	16.3	16.2	ns	
Group	FFG	Collector-Gatherer	log10	tunequal	0.054	77.3	53.5	-3.5	
Ö	11-0	Filterer	log10(x+1)	tequal	0.07	3.3	20.3	11.4	

P-value < 0.1.
P-value < 0.1 and MOD < -2.
P-value < 0.1 and MOD > 2.

Note: MOD = Magnitude of Difference = $(MCT_{Exp} - MCT_{Ref})/SD_{Ref}$. FFG = Functional Feeding Group.

^a MCT = Measure of Central Tendency; MCT reported as median for rank-transformed data and as back-transformed mean for all other cases.

5.1.4 Effects Assessment and Recommendations

Water chemistry at MRTF (Station F0-01) met all AEMP benchmarks consistently over the duration of spring, summer, and fall sampling events in 2020, and for parameters with established AEMP benchmarks, no changes in concentrations were shown relative to baseline. No adverse effects on phytoplankton were indicated at MRTF in 2020. Biological sampling conducted at MRTF to meet MDMER obligations suggested some differences in benthic invertebrate community assemblages between effluent-exposed and reference areas, but these differences did not appear to be related to metal concentrations originating from mine effluent and/or mine operations (Minnow 2021). Under the Mary River Project AEMP Management Response Framework, the absence of a mine-related change in AEMP benchmark parameters over time (or compared to background) requires no further management response (Figure 2.8). Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and to baseline, and no adverse biological effects related to metals were indicated in 2020, no adjustment to the existing AEMP need be applied at MRTF as part of the next monitoring program.

5.2 Mary River

5.2.1 Water Quality

Dissolved oxygen in water at Mary River stations was consistently at or above saturation during all spring, summer, and fall monitoring events, and showed comparable saturation among the G0 09 series reference stations and stations adjacent to (E0 series) and downstream (C0 series) of the Mary River Project for each respective seasonal sampling event in 2020 (Figure 5.1; Appendix Tables C.1 to C.3). Dissolved oxygen concentrations were significantly higher at Mary River benthic study areas located adjacent to (E0-01, E0-20) and downstream (C0-05) of the mine than at the upstream (G0-09, G0-03) study areas in August 2020, suggesting no increased oxygen demand associated with mine operations (Appendix Figure C.22; Appendix Table C.56). In addition, dissolved oxygen concentrations were consistently well above WQG acceptable levels for sensitive life stages of cold-water biota (i.e., 9.5 mg/L) at all Mary River stations in spring, summer, and fall of 2020 (Figure 5.1; Appendix Figure C.18; Appendix Table C.55), indicating that slight differences in dissolved oxygen concentrations among the Mary River study areas were not likely to be ecologically meaningful.

In situ pH at all Mary River mine-exposed stations was generally comparable to pH at the G0-09 series reference stations during the spring, summer, and fall sampling events in 2020 (Figure 5.1). Although significant differences in pH were indicated between area E0-20 adjacent to the mine and the G0-09 reference area, the mean incremental difference in pH between these areas was

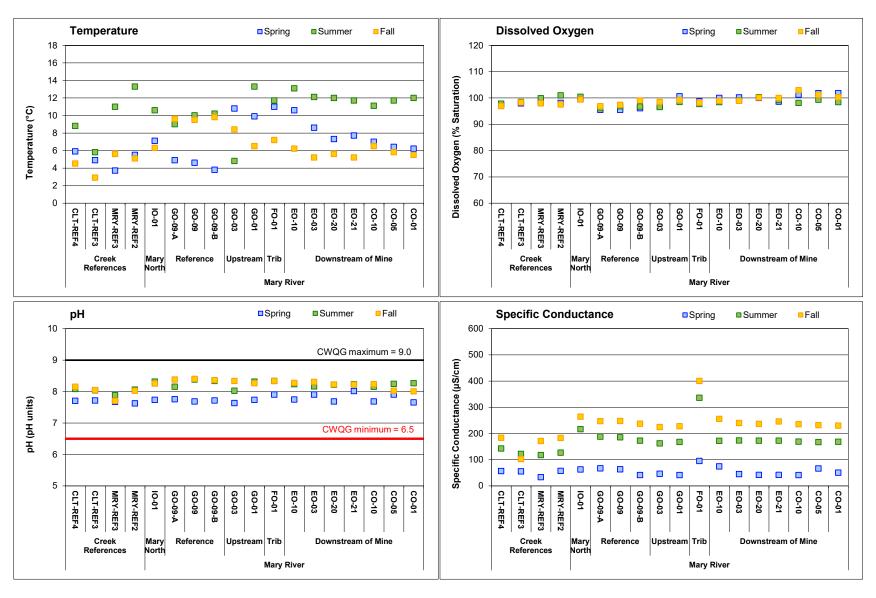


Figure 5.1: Comparison of *In Situ* Water Quality Variables Measured at Mary River Water Quality Monitoring Stations in Spring, Summer, and Fall 2020, Mary River Project CREMP

less than a pH unit, and pH at all Mary River areas were consistently within WQG limits (Figure 5.1; Appendix Table C.57), suggesting that any pH differences among the Mary River study areas were not likely to be ecologically meaningful. Specific conductance was consistently lowest in spring and highest in fall at all Mary River stations (Figure 5.1), reflecting natural seasonal differences related to proportion of flow from surface runoff (e.g., spring snowmelt) and baseflow/groundwater sources. Specific conductance was considerably higher at Mary River Tributary-F than at all other monitoring stations, which suggested that this tributary was a key source of mine-related inputs to Mary River (e.g., MS-08 effluent; Figure 5.1). Within Mary River, specific conductance was significantly higher in the portion of the river adjacent to the mine (immediately downstream of the MRTF confluence) at E0 series stations, but not downstream of the mine at the C0 series sampling locations at the time of biological monitoring in August 2020 (Appendix Figure C.22; Appendix Table C.57), suggesting that mine-related influences on Mary River water quality were of limited spatial scale.

Within Mary River, mean concentrations of aluminum and iron were above their respective AEMP benchmarks at stations located adjacent to (E0 series) and downstream of (C0 series) the mine in 2020, but only during the summer sampling event (Table 5.1). In addition, mean concentrations of total aluminum, copper, and phosphorus were above applicable WQG in spring, summer, and/or fall sampling events in 2020 at the E0 and C0 series stations (Table 5.1). However, in all cases in which the AEMP benchmarks and WQG were exceeded at areas adjacent to and downstream of the mine, the mean concentrations for each of these parameters were similar or higher, and above applicable AEMP benchmark and WQG values, at the Mary River reference stations (G0-09 series) and/or other upstream stations (G0 series) for each given seasonal sampling event (Table 5.1). 16 Relatively high concentrations of these parameters within Mary River at the time of the summer sampling event relative to the spring and fall sampling events appeared to be associated with highly turbid sampling conditions in the summer (Table 5.1). Concentrations of aluminum, copper, iron, and phosphorus were lower at MRTF than at the Mary River reference and mine-exposed stations (Table 5.1), suggesting that this mine-exposed tributary was not a substantial source of these parameters in 2020. Among those parameters with established AEMP benchmarks, nitrate and sulphate concentrations were elevated by factors greater than three only at Station E0-10, downstream of the confluence with MRTF, and only during the spring and fall sampling events in 2020 (Appendix Table C.62). Therefore, elevation in concentrations of nitrate and sulphate in Mary River appeared to be associated with mine deposits to MRTF (e.g., MS-08 effluent). Nitrate, and sulphate to a lesser

¹⁶ Previous CREMP studies also showed total aluminum concentrations above respective WQG and/or AEMP benchmarks at Mary River GO series reference stations, indicating naturally high concentrations of this metal in Mary River.

extent, were also the only two parameters that were elevated at Mary River stations adjacent to (E0 series) and downstream of (C0 series) the mine in 2020 compared to baseline that also did not show an elevation over time at the Mary River reference area (Appendix Figure C.23), indicating that higher concentrations of these parameters was mine-related. Overall, no marked influences on water quality of Mary River were indicated in 2020 as a result of mine operations except for slight enrichment of nitrate and sulphate concentrations near the mine, although to levels that remained well below AEMP benchmarks.

5.2.2 Sediment Quality

Deposited sediment sampled from Mary River study areas was mostly medium-sized coarse sand and some gravel (Appendix Table D.33). Substrate among the Mary River study areas was largely composed of cobble and boulder material with minimal amounts of sand and finer material except at the downstream-most study area C0-05, where medium-sized sand composed approximately 65% of the surficial in-stream substrate (Minnow 2018). Silt precipitate and/or deposits were generally absent from all Mary River mine-exposed study areas during the August 2020 sampling event (Appendix Table D.33). Sediment TOC content was low (i.e., <0.2%) at all Mary River study areas, and generally did not differ between the mine-exposed areas and the upstream reference area (G0-09), suggesting similar depositional characteristics among the Mary River study areas (Table 5.3; Appendix Table D.36).

Metal concentrations in sediment from all Mary River study areas were highly comparable (Table 5.3; Appendix Table D.36). The only notable difference was a slight elevation (i.e., 3-fold) in the concentration of molybdenum at E0-20 compared to the average concentration at the upstream G0-09 reference area (Table 5.3; Appendix Table D.36). Concentrations of metals in deposited sediment were also well below applicable SQG at all Mary River study areas (Table 5.3; Appendix Tables D.34, D.35, and D.37 to D.39).

5.2.3 Phytoplankton

Chlorophyll-a concentrations at Mary River stations located downstream of the mine were generally within the range of, or slightly higher, than the G0 series river reference stations and/or creek reference stations during the 2020 spring, summer, and fall sampling events (Figure 5.2). Chlorophyll-a concentrations were consistently well below the AEMP benchmark of 3.7 µg/L during all winter, summer, and fall sampling events at all Mary River sampling stations in 2020, and were suggestive of low (i.e., oligotrophic) phytoplankton productivity based on Dodds et al (1998) trophic status classification for stream environments. Therefore, no adverse mine-related influences on phytoplankton abundance were indicated at Mary River in 2020. Low to moderate phytoplankton productivity was expected for Mary River reference and mine-exposed stations in

Table 5.3: Sediment Total Organic Carbon and Metal Concentrations at Mary River Mine-Exposed and Reference (GO-09) Sediment Monitoring Stations, Mary River Project CREMP, August 2020

			Mamy Discor	Unatraam	Mary R	iver Mine-Expose	ed Areas
Parameter	Units	SQGª	Mary River Reference (GO-09; n = 3)	Upstream GO-03 (n = 3)	Adjacent EO-01 (n = 3)	Adjacent EO-20 (n = 3)	Downstream CO-05 (n = 3)
			Average ± SD	Average ± SD	Average ± SD	Average ± SD	Average ± SD
TOC	%	10 ^α	0.11 ± 0.012	0.11 ± 0.012	0.11 ± 0.010	0.19 ± 0.10	0.12 ± 0.015
Aluminum (Al)	mg/kg	-	2,757 ± 1,141	2,000 ± 688	2,407 ± 438	4,217 ± 2,456	2,468 ± 1,366
Antimony (Sb)	mg/kg	1	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0
Arsenic (As)	mg/kg	17	0.38 ± 0.10	1.10 ± 1.15	0.41 ± 0.059	0.62 ± 0.12	0.37 ± 0.27
Barium (Ba)	mg/kg	-	12.6 ± 5.05	9.39 ± 3.05	11.3 ± 1.92	20.7 ± 9.70	10.2 ± 5.51
Beryllium (Be)	mg/kg	-	0.14 ± 0.040	0.11 ± 0.023	0.11 ± 0.010	0.24 ± 0.19	0.13 ± 0.044
Bismuth (Bi)	mg/kg		<0.20 ± 0	<0.20 ± 0	0.24 ± 0.075	0.30 ± 0.18	<0.20 ± 0
Boron (B)	mg/kg	-	5.4 ± 0.75	<5.0 ± 0	<5.0 ± 0	6.7 ± 2.9	<5.0 ± 0
Cadmium (Cd)	mg/kg	3.5	<0.020 ± 0	<0.020 ± 0	0.026 ± 0.0053	0.038 ± 0.020	<0.020 ± 0
Calcium (Ca)	mg/kg	-	2,750 ± 894	2,080 ± 249	2,353 ± 454	2,887 ± 1,147	2,046 ± 1,384
Chromium (Cr)	mg/kg	90	13.6 ± 4.34	13.7 ± 3.49	18.7 ± 10.8	26.1 ± 5.37	14.1 ± 10.9
Cobalt (Co)	mg/kg		2.40 ± 0.758	1.96 ± 0.468	2.58 ± 0.850	3.88 ± 1.21	2.32 ± 1.45
Copper (Cu)	mg/kg	110 ^α	4.45 ± 2.50	2.78 ± 1.01	4.05 ± 0.215	7.40 ± 2.27	3.14 ± 1.84
Iron (Fe)	mg/kg	40,000 ^α	11,063 ± 2,423	13,633 ± 3,099	16,950 ± 13,939	19,233 ± 6,401	6,443 ± 4,132
Lead (Pb)	mg/kg	91	3.07 ± 0.857	2.74 ± 0.567	2.78 ± 0.477	4.27 ± 1.48	2.30 ± 1.00
Lithium (Li)	mg/kg	1	5.0 ± 2.3	3.5 ± 1.2	3.4 ± 0.57	6.33 ± 4.44	4.8 ± 2.9
Magnesium (Mg)	mg/kg	-	2,810 ± 1,212	1,793 ± 389	2,630 ± 251	4,440 ± 2,669	3,380 ± 2,370
Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	76 ± 29.4	58.6 ± 14.3	85.4 ± 25.4	137 ± 39	72.5 ± 41.1
Mercury (Hg)	mg/kg	0.486	<0.0050 ± 0	0.0050 ± 0.00006	<0.005 ± 0	<0.0050 ± 0	<0.0050 ± 0
Molybdenum (Mo)	mg/kg	-	0.11 ± 0.023	<0.10 ± 0	0.20 ± 0.085	0.36 ± 0.20	0.12 ± 0.025
Nickel (Ni)	mg/kg	75 ^{α,β}	6.11 ± 1.99	4.83 ± 1.12	8.27 ± 2.03	16.7 ± 6.30	14.2 ± 12.9
Phosphorus (P)	mg/kg	2,000 ^α	350 ± 118	400 ± 50.5	383 ± 136	376 ± 76	270 ± 167
Potassium (K)	mg/kg	-	750 ± 320	507 ± 189	617 ± 129	1,167 ± 650	517 ± 297
Selenium (Se)	mg/kg	-	<0.20 ± 0	<0.20 ± 0	<0.20 ± 0	0.20 ± 0	<0.20 ± 0
Silver (Ag)	mg/kg	-	<0.10 ± 0	<0.10 ± 0	<0.10 ± 0	0.13 ± 0.046	<0.10 ± 0
Sodium (Na)	mg/kg	-	68 ± 21	<50 ± 9	<50 ± 0	67 ± 29	57 ± 12
Strontium (Sr)	mg/kg	-	4.72 ± 1.01	3.99 ± 0.183	3.75 ± 0.376	4.69 ± 1.69	3.28 ± 1.30
Sulphur (S)	mg/kg	-	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0	<1,000 ± 0
Thallium (TI)	mg/kg	-	0.068 ± 0.023	0.053 ± 0.0058	<0.050 ± 0	0.086 ± 0.048	0.062 ± 0.0061
Tin (Sn)	mg/kg	-	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0	<2.0 ± 0
Titanium (Ti)	mg/kg	-	353 ± 123	263 ± 50	294 ± 21	396 ± 133	255 ± 141
Uranium (U)	mg/kg	-	0.922 ± 0.298	0.822 ± 0.199	0.785 ± 0.189	1.09 ± 0.328	0.725 ± 0.586
Vanadium (V)	mg/kg	-	19.5 ± 5.06	23.8 ± 4.93	22.7 ± 18.3	25.9 ± 9.83	9.26 ± 5.56
Zinc (Zn)	mg/kg	315	10.3 ± 4.31	7.8 ± 2.3	10.3 ± 1.04	17.0 ± 7.91	9.17 ± 5.46
Zirconium (Zr)	mg/kg	-	5.8 ± 2.0	4.4 ± 1.4	3.8 ± 0.49	5.7 ± 3.1	3.1 ± 1.5

Indicates parameter concentration above SQG.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

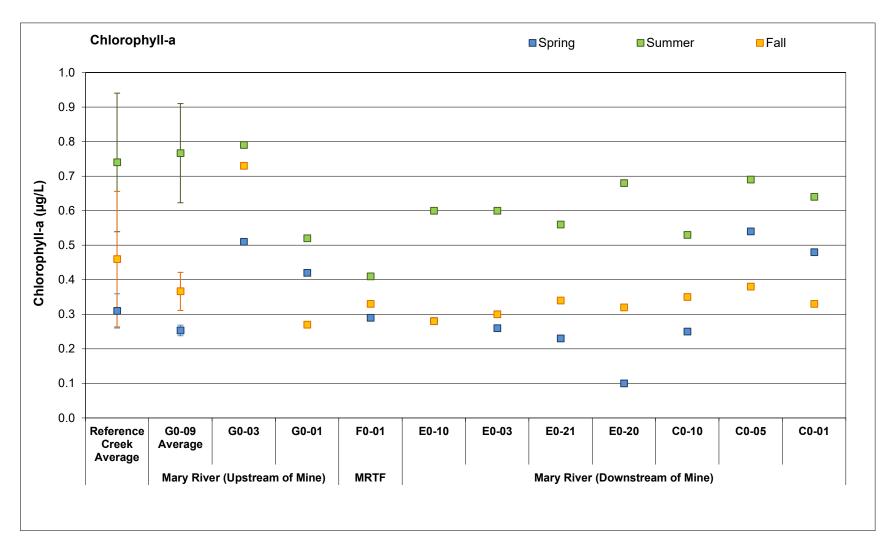


Figure 5.2: Chlorophyll-a Concentrations at Mary River Phytoplankton Monitoring Stations Located Upstream and Downstream of the Mine, Mary River Project CREMP, 2020

Note: Reference creek data represented by average (± SD; n = 4) calculated from CLT-REF and MRY-REF stations.

2020 given 'oligotrophic' to 'mesotrophic' productivity categorizations based on CWQG classifications that use total phosphorus concentrations to define trophic status (Table 5.1; Appendix Table C.58).

Chlorophyll-a concentrations at Mary River mine-exposed and reference stations in fall 2020 were generally similar to those shown at the time of baseline and previous years of mine operation (Figure 5.3). Chlorophyll-a concentrations in fall 2020 were not disproportionately higher or lower compared to baseline at the mine-exposed stations of Mary River compared to the reference stations, suggesting no adverse change/differences in phytoplankton abundance due to mine-related influences over time.

5.2.4 Benthic Invertebrate Community

The Mary River benthic invertebrate community assessment included a spatial statistical analysis of endpoints among an upstream reference area (G0-09), an upstream area with limited mine exposure (G0-03), two near-field mine-exposed areas located near the mine (E0-01, E0 20), and a far-field cumulative effects mine-exposed area located downstream of the mine (C0-05; see Table 2.5). At the Mary River G0-03 study area, no ecologically significant differences in benthic invertebrate density, richness, evenness, and relative abundance of metal-sensitive taxa were indicated compared to the G0-09 reference area, suggesting no marked influences of the mine operation on the benthic invertebrate community. Some differences in community assemblage were suggested between G0-03 and G0-09 study areas by differing Bray-Curtis Index (Appendix Table F.51) and significantly higher and lower relative abundance of Hydracarina and Chironomidae groups, respectively, at G0-03 in 2020 (Table 5.4). However, the relative abundance of these groups at G0-03 in 2020 did not differ significantly from baseline (Appendix Table F.50), suggesting that the differences in assemblage between G0-03 and G0-09 study areas in 2020 reflected natural variability.

At the near-field mine exposed study areas (i.e., E0-01 and E0-20), no ecologically significant differences in density, richness, evenness, and the proportion of metal-sensitive Chironomidae were indicated relative to the reference study area (Table 5.4; Appendix Table F.50). Differing Bray-Curtis Index suggested differing community composition between the E0 and G0-09 study areas, but no significant differences in the relative abundance of any dominant groups were indicated in 2020 (Table 5.4; Appendix Table F.51). Rather, the differences in community composition at E0-01 and E0-20 compared to the G0-09 reference area appeared to reflect lower relative abundance of the collector-gatherer FFG and the sprawler HPG at one or both of the E0 study areas (Appendix Table F.50), potentially indicating habitat differences between the E0 and G0-09 study areas. No ecologically significant differences in density, richness, evenness (E0-20 study area only) and relative abundance of dominant

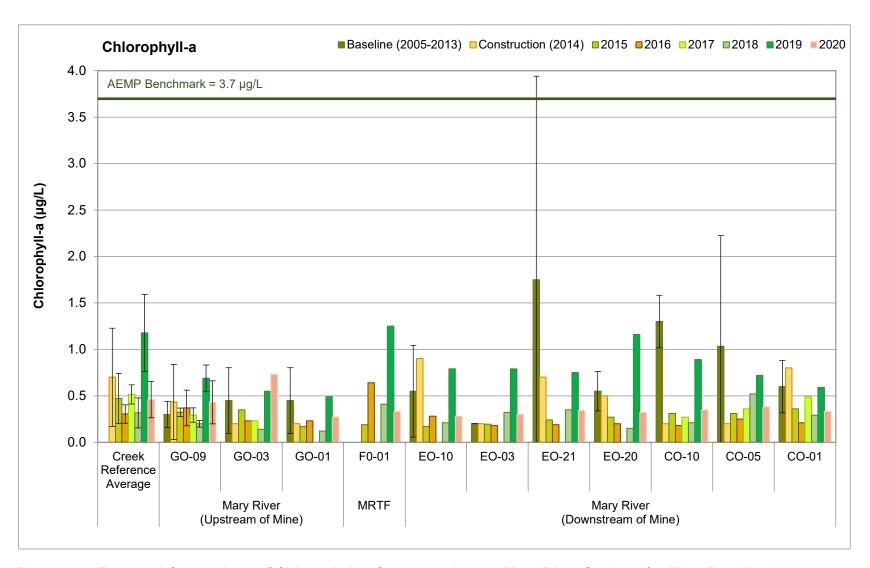


Figure 5.3: Temporal Comparison of Chlorophyll-a Concentrations at Mary River Stations for Mine Baseline (2005 to 2013), Construction (2014), and Operational (2015 to 2020) Periods during the Fall

Note: Reference creek data represented by average (± SD; n = 4) calculated from CLT-REF and MRY-REF stations.

Table 5.4: Benthic Invertebrate Community Metric Statistical Comparison Results among Mary River Reference (GO-09), Upstream (GO-03), and Mine-Exposed (EO-01, EO-20, CO-05) Study Areas, Mary River Project CREMP, August 2020

		Overall 5-Area C	Comparison		Pair-wise	, post-hoc con	nparisons ^a	
Metric	Data Transform-	Significant				Standard	Effect Size	Pairwise
	ation	Difference Among Areas?	P-value	Area	Mean	Deviation	vs. GO-09 Reference	Comparison
				GO-09 Ref	886	831	-	а
				GO-03	196	95.3	-0.8	b
Density (No. per m ²)	rank	YES	0.019	EO-01	513	420	-0.4	а
				EO-20	1,441	553	0.7	а
				CO-05	906	818	0.0	а
				GO-09 Ref	15.0	2.0	-	а
				GO-03	13.6	3.3	-0.7	а
Richness (No. of Taxa)	none	NO	0.710	EO-01	15.6	2.1	0.3	а
(ito: or ruxu)				EO-20	14.0	2.6	-0.5	а
				CO-05	14.2	2.2	-0.4	а
				GO-09 Ref	0.826	0.153	-	ab
Simpson's Evenness				GO-03	0.918	0.024	0.6	а
	rank	YES	0.036	EO-01	0.913	0.016	0.6	а
				EO-20	0.868	0.046	0.3	b
				CO-05	0.839	0.048	0.1	b
Hydracarina (% of community)				GO-09 Ref	1.1	1.3	-	а
	rank		0.058	GO-03	4.3	3.1	2.4	b
		YES		EO-01	3.1	2.9	1.5	ab
community)				EO-20	0.8	0.4	-0.2	а
				CO-05	6.0	4.9	3.8	b
				GO-09 Ref	89.6	5.1	-	а
Chironomidae				GO-03	69.9	13.6	-3.9	b
(% of community)	none	YES	0.002	EO-01	88.2	9.2	-0.3	а
community)				EO-20	95.5	2.5	1.2	а
				CO-05	84.8	8.0	-0.9	а
				GO-09 Ref	1.2	0.5	-	b
Tipulidae				G0-03	6.2	5.1	10.6	b
(% of community)	rank	YES	0.003	E0-01	5.7	4.3	9.5	b
community)				E0-20	0.6	0.9	-1.4	b
				C0-05	1.4	0.9	0.3	b
				GO-09 Ref	32.0	23.7	-	а
Metal Sensitive				GO-03	12.3	5.8	-0.8	ab
Chironomidae (% of	log10	YES	0.043	EO-01	11.0	2.5	-0.9	ab
community)		120		EO-20	9.4	9.1	-1.0	b
				CO-05	19.4	9.6	-0.5	ab

Indicates a significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Post-hoc analysis of 1-way ANOVA among all areas protected for multiple comparisons.

taxonomic groups (including metal-sensitive Chironomids) were indicated between mine operational years (2015 to 2020) and baseline (2007) at either of the E0 near-field study areas (Appendix Tables F.54 and F.56). Although evenness has consistently been significantly higher at an absolute magnitude greater than 2 SDREF in years of mine operation compared to baseline at the E0-01 study area, higher evenness is not associated with an adverse influence and thus was not consistent with effects to the benthic invertebrate community normally attributed to mine operations.

At far-field mine-exposed area CO-05, no ecologically significant differences in benthic invertebrate density, richness, evenness, and relative abundance of metal-sensitive taxa were indicated compared to the G0-09 reference area, suggesting no marked influences of the mine operation on the benthic invertebrate community. Although differences in community assemblage were suggested between the C0-05 and G0-09 study areas by differing Bray-Curtis Index (Appendix Table F.51), only a significantly higher relative abundance of Hydracarina was indicated between these study areas in 2020 (Table 5.4). No ecologically significant differences in density, richness, evenness, and dominant taxonomic groups were indicated at C0-05 for all years of mine operation (2015 to 2020) compared to one or both years of baseline period data (2007 and 2011; Appendix Table F.58). Therefore, no adverse effects of mine-operations on the benthic invertebrate community at Mary River C0-05 were indicated since the commencement of commercial mine operations in 2015.

5.2.5 Fish Community and Population Health

The fish community of Mary River was composed of arctic charr and low numbers of ninespine stickleback, and was comparable to the Angajurjualuk Lake Tributary reference area during the EEM fish survey in August 2020 in terms of both species composition and fish abundance as reflected by CPUE (Table 5.5). Similar fish species composition was indicated within Mary River between EEM studies conducted in 2017 and 2020, and although arctic charr CPUE was higher in 2020, this likely reflected lower water levels resulting in improved sampling efficiency compared to the 2017 study (Minnow 2021).

The length-frequency distribution of arctic charr captured at Mary River adjacent to the mine differed significantly from the distribution shown at the Angajurjualuk Lake Tributary reference area, but did not differ significantly from the distribution shown farther downstream in Mary River near Mary Lake (Table 5.6). Similar length-at-age relationships were indicated for arctic charr sampled at Mary River adjacent to the mine compared to the Angajurjualuk Lake Tributary reference area and Mary River near the outlet to Mary Lake, suggesting that the difference in arctic charr length-frequency distribution between Mary River and Angajurjualuk Lake Tributary was a sampling artifact (Minnow 2021). No significant differences in length, weight, growth

Table 5.5: Summary of Fish Catches at Mary River Project Second EEM Study Fish Population Study Areas, August 2020

	Tota	al Effort	Summary		Fish Specie	s	Catch	Summary	
Study Area	Distance	Electrofishing	Statistic	Arcti	c Char	Ninespine	Totals	Total No.	
702	Sampled (m)	Seconds	Endpoint	YOY b	Non-YOY b	Stickleback	Totals	Species	
Angajurjualuk Lake Tributary Reference	234	2,226	Total No. Caught	0	104	2	106	2	
(ALTR)	204	2,220	CPUE ^a	0	2.80	0.05	2.86	2	
Mary River Reference	200	2,972	Total No. Caught	0	122	35	157	2	
(MRR)	200	2,912	CPUE ^a	0	2.46	0.71	3.17	2	
Mary River Effluent-Exposed	228	2,241	Total No. Caught	0	122	0	122	1	
(MRE)	220	2,241	CPUE ^a	0	3.27	0	3.27	!	

^a Electrofishing catch-per-unit-effort (CPUE) represents number of fish captured per minute of electrofishing.

^b Young-of-the-year (YOY).

Table 5.6: Summary of Arctic Charr Endpoint Statistical Comparison Results Between Effluent-Exposed and Reference Areas Used for the Mary River Project First and Second EEM Studies, August 2017 and 2020

	Applicable	_		Statistically	Significant Dif	ferences Observed? ^b	
Endpoint ^a	Critical	Sample Size	Firs	t EEM (2017)		Second EEM (20	20)
	Effect Size	0.20	Test	MRE vs MRR	Test	MRE vs ALTR	MRE vs MRR
Survival (Age Frequency Distribution)*	none	100°	K-S	No	K-S	Yes (-22%)	No
Survival (Age)*	± 25%	20	n/a	n/a	K-W	Yes (+50%)	No
Body Size (Fork Length)	none	100°	t-test	No	K-W	Yes (+12%)	No
Body Gize (Fork Edilgar)	Hone	20	n/a	n/a	ANOVA	No	No
Body Size (Body Weight)	none	100	t-test	No	K-W	Yes (+36%)	No
Body Olze (Body Weight)	Hone	20	n/a	n/a	ANOVA	No	No
Energy Usage (Length-at-age)	none	20	n/a	n/a	ANCOVA	No	No
Energy Usage (Weight-at-age)*	± 25%	20	n/a	n/a	ANCOVA	No	No
Energy Storage (liver weight at body weight)*	± 25%	20	n/a	n/a	ANOVA	No	No
Energy Storage (condition)*	± 10%	100°	ANCOVA	Yes (-4.5%)	ANCOVA	No	No
Energy Storage (condition)	± 1070	20	n/a	n/a	ANCOVA	No	No

Indicates an absolute magnitude of difference (MOD) greater than applicable Critical Effect Size for fish population survey EEM effect indicators.

Notes: YOY = young-of-the year; MRR = Mary River reference area; MRE = Mary River effluent-exposed area; ALTR = Angajurjualuk Lake Tributary reference area; n/a indicates endpoint not applicable (i.e., endpoint associated with lethal sampling).

^a Endpoints denoted with an asterisk represent primary EEM endpoints used for the determination of "effects" for a lethal fish population study.

b Information provided indicates whether a significant difference occurred between areas (yes/no) and the magnitude of difference for any differences (in parentheses).

^c Sample size varied between areas. In First Study, n=100 at the effluent-exposed and reference area. In Second Study, n=108 for length measures and 100 for weight and condition measures at the effluent-exposed area, and n=100 at the reference areas.

(i.e., body weight-at-age), relative liver size (i.e., liver weight-at-body weight), or condition (i.e., body weight-at-fork length) were indicated for arctic charr sampled at Mary River adjacent to the mine compared to those sampled at either the Angajurjualuk Lake Tributary reference area or Mary River near the outlet to Mary Lake (Table 5.6). In addition, no externally visible abnormalities or parasitic infections were observed on any arctic charr captured at the Mary River effluent exposed area (Minnow 2021). Muscle tissue selenium concentrations in arctic charr captured at Mary River did not differ significantly to those captured at the Angajurjualuk Lake Tributary reference area, and were well below the USEPA (2016) chronic effects criterion of 11.3 mg/kg dry weight for protection of aquatic life (Figure 5.4), suggesting reproductive impairments (e.g., deformities, mortality) to Mary River arctic charr were highly unlikely. Overall, the absence of any significant differences in EEM effect indicators related to growth, relative liver size, condition, and tissue selenium concentrations in arctic charr captured at Mary River compared to applicable reference areas indicated no marked influence of mine operations on the health of arctic charr at Mary River in 2020 (Minnow 2021).

5.2.6 Effects Assessment and Recommendations

At Mary River, the following AEMP benchmarks were exceeded in 2020:

- Aluminum concentration in water was greater than the benchmark of 0.966 mg/L adjacent to (i.e., E0-series stations) and downstream of (i.e., C0-series stations) of the mine during the summer sampling event;
- Copper concentration in in water was greater than the benchmark of 0.0024 mg/L adjacent to (i.e., E0-series stations) and downstream of (i.e., C0-series stations) of the mine during the summer sampling event;
- Iron concentration in water was greater than the benchmark of 0.874 mg/L adjacent to (i.e., E0-series stations) and downstream of (i.e., C0-series stations) of the mine during the summer sampling event; and,
- Lead concentration in water was greater than the benchmark of 0.001 mg/L adjacent to (i.e., E0-series stations) the mine during the summer sampling event.

Within Mary River, concentrations of aluminum, copper, iron, and lead were above respective AEMP benchmarks at stations located adjacent to the mine (i.e., E0 series stations) and, with the exception of lead, downstream of the mine (C0 series) in 2020, but only during the summer

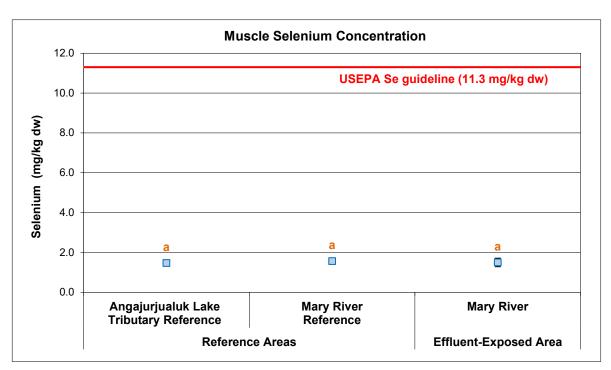


Figure 5.4: Selenium Concentrations (mean \pm SD; n = 8) in Dorsal Muscle Tissue of Arctic Charr Captured at Mary River Effluent-Exposed and Reference Study Areas During the Second EEM Study, August 2020

Note: Data points with the same letters do not differ significantly.

sampling event.¹⁷ However, in all cases in which the AEMP benchmarks were exceeded, the concentrations for each of these parameters were similar or higher, and above applicable AEMP benchmarks, at the Mary River reference stations (G0-09 series) and/or upstream stations (G0 series) at the time of the summer sampling event.¹⁸ Relatively high concentrations of these parameters within Mary River at the time of the summer sampling event appeared to be associated with highly turbid conditions compared to the spring and fall sampling events. Concentrations of aluminum, copper, iron, and lead in water at Mary River stations located adjacent to and downstream of the mine in 2020 were comparable to concentrations at each station in each season during baseline. Therefore, no mine-related changes to parameter concentrations were indicated at Mary River mine-exposed stations in 2020 compared to the reference stations and to Mary River baseline data. In addition, metal concentrations in sediment were well below SQG, and no adverse effects on phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at all Mary River mine-exposed areas in 2020. Under the Mary River Project AEMP Management Response Framework, the absence of a mine-related change in AEMP benchmark parameters over time (or compared to background) requires no further management response (Figure 2.8). Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no management response (i.e., alteration of existing AEMP) is required for Mary River as part of the next monitoring program.

5.3 Mary Lake

5.3.1 Water Quality

Water quality profiles conducted at the north and south basins of Mary Lake showed similar patterns in water temperature from the surface to bottom as those shown at Reference Lake 3 for summer and fall sampling events in 2020 (Figures 5.5 and 5.6). At the north basin, development of an epilimnion occurred through the surficial 5 m and a hypolimnion was evident at depths greater than approximately 11 m in the fall (Figure 5.5). No distinct thermal layering was evident at the north basin of Mary Lake in the winter and fall, or at the south basin for any seasons although a clear gradient in water temperature was evident in summer (Figures 5.5 and 5.6).

¹⁸ Cadmium, copper, and zinc concentrations in water were above AEMP benchmarks at the Mary River upstream reference stations (i.e., Station G0-09) in spring 2020, indicating the potential for natural elevation of these parameters in Mary River adjacent to and downstream of the mine.

¹⁷ The reported concentration of zinc at Station E0-03 was above the AEMP benchmark during the summer sampling event but this result appeared to be an anomaly based on an order of magnitude difference in concentration between this station and data reported for all other Mary River stations in summer 2020 (Appendix Table C.59).

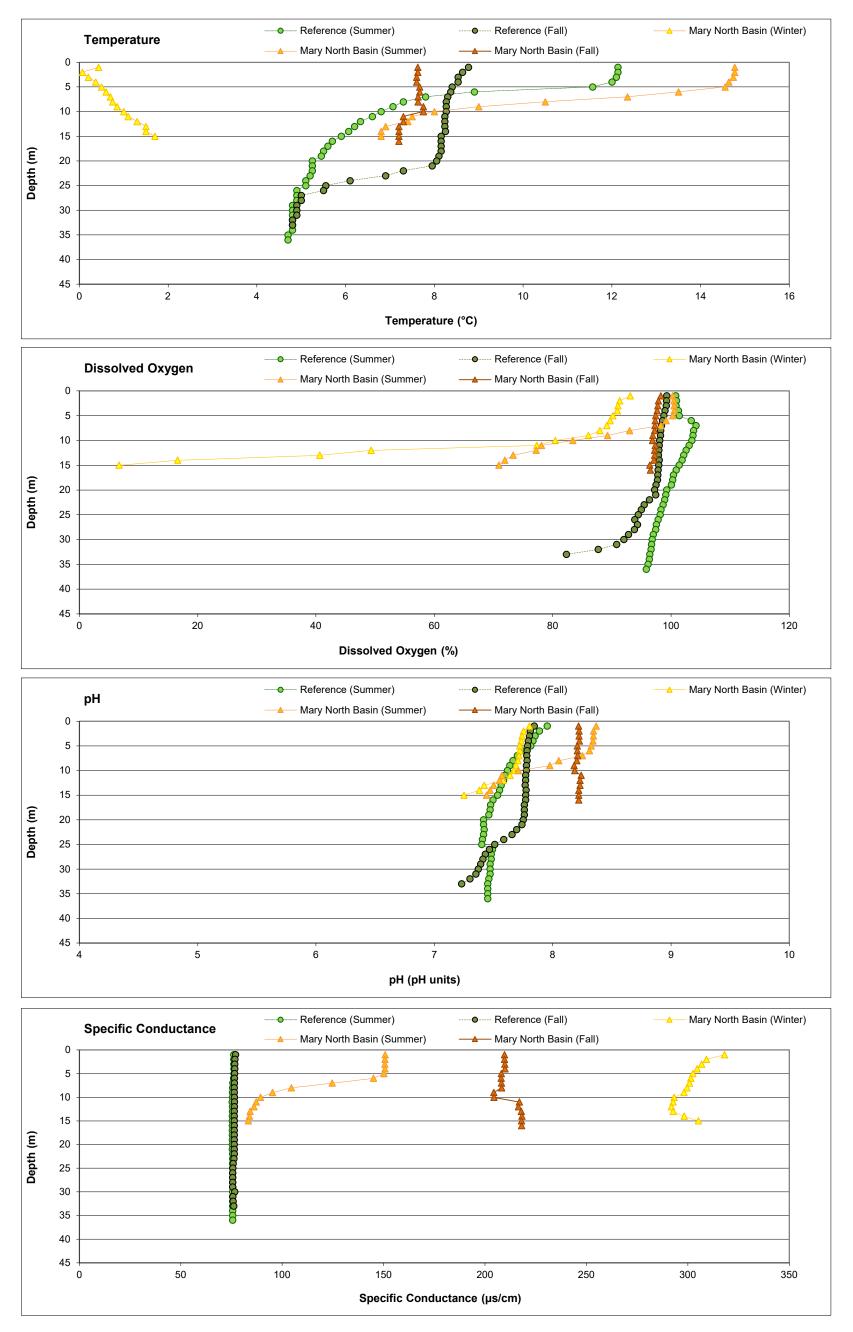


Figure 5.5: Average *In Situ* Water Quality with Depth from Surface at the Mary Lake North Basin (BLO) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

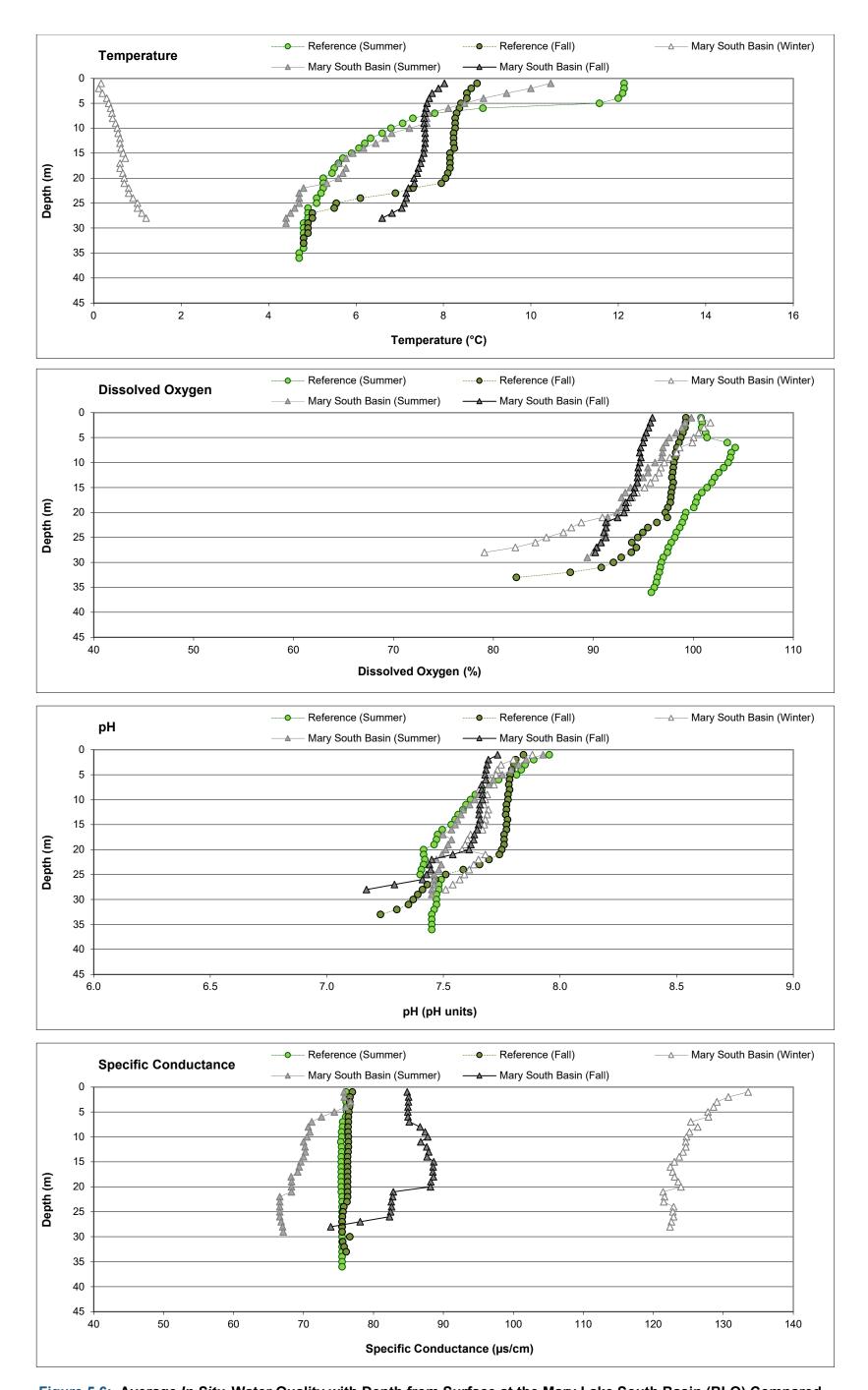


Figure 5.6: Average *In Situ* Water Quality with Depth from Surface at the Mary Lake South Basin (BLO) Compared to Reference Lake 3 during Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

Water temperatures at the bottom of the water column at Mary Lake littoral and profundal stations did not differ significantly from those at like-habitat stations of Reference Lake 3 during the August 2020 biological study (Figure 5.7; Appendix Table C.65). Dissolved oxygen profiles showed the development of moderate to strong oxyclines extending through the entire water column at both the Mary Lake north and south basins for winter and summer sampling events in 2020 (Figures 5.5 and 5.6). The dissolved oxygen profiles conducted during summer and fall at Mary Lake mirrored similar profiles at the reference lake except for in summer at the north basin. Dissolved oxygen concentrations near the bottom of the water column were significantly lower at Mary Lake littoral and profundal stations than like-habitat stations at the reference lake during the August 2020 biological study. However, dissolved oxygen concentrations were above the WQG for the protection of sensitive populations of cold-water species (i.e., 9.5 mg/L) at all littoral and profundal stations of Mary Lake during the August 2020 study (Figure 5.7; Appendix Table C.65).

Water column profiles showed slightly decreasing pH with increased depth at Mary Lake north and south basins, comparable to those at Reference Lake 3, during winter and summer sampling events in 2020, with the changes in pH through the water column at both lakes appearing to coincide with changes in water temperature during each given season (Figures 5.5 and 5.6). The pH near the bottom of the water column at littoral stations of Mary Lake did not differ significantly from the reference lake, but was significantly higher at profundal stations of Mary Lake compared to the reference lake during the August 2020 biological study (Figure 5.7). The mean incremental difference in bottom pH at profundal stations between lakes was small (less than a pH unit) and pH was consistently within WQG limits at all Mary Lake stations (Figure 5.7, Appendix Table C.65), and therefore this pH difference between lakes was not ecologically meaningful. Specific conductance was substantially higher at the north basin compared to the south basin of Mary Lake (Figures 5.5 and 5.6; Appendix Figure C.28), likely reflecting natural differences in dominant inflow sources to Mary Lake (i.e., Tom River inflow to the north basin, and the Mary River inflow to the south basin) and natural differences in geochemistry associated with these inflows. Specific conductance profiles showed variable changes from the surface to bottom of the water column at the north basin, but were relatively uniform at the south basin, over winter, summer, and fall sampling events in 2020 (Appendix Figure C.28). The differences between basins may have reflected differing influence associated with the dominant inflows to the lake and the station location relative to these inflows. Specific conductance near the bottom of the water column at littoral and profundal stations of Mary Lake did not differ significantly from like-habitat stations at Reference Lake 3 during the August 2020 biological study (Figure 5.7). Water clarity, as determined using Secchi depth

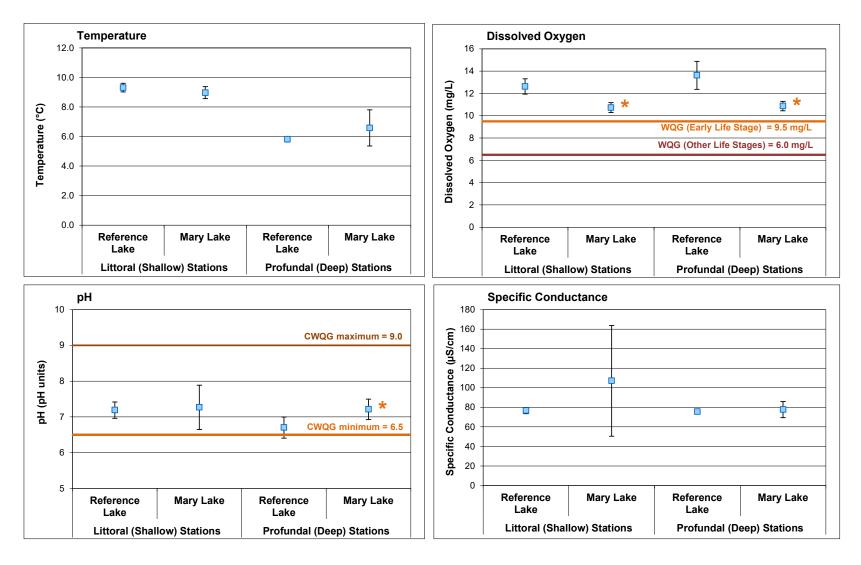


Figure 5.7: Comparison of *In Situ* Water Quality Variables (mean ± SD) Measured at Mary Lake (BLO) and Reference Lake 3 (REF3) Littoral and Profundal Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Note: An asterisk (*) next to data point indicates mean value differs significantly from the Reference Lake 3 mean for the respective littoral or profundal station type.

readings, was significantly lower at Mary Lake compared to Reference Lake 3 in August 2020 (Appendix Table C.64; Appendix Figure C.8).

Water chemistry at Mary Lake north and south basins met all AEMP benchmarks and WQG over the duration of spring, summer, and fall sampling events in 2020 (Table 5.7). Among those parameters with established AEMP benchmarks, chloride concentrations were elevated at the north basin, and aluminum concentrations were elevated at both the north and south basins of Mary Lake compared to Reference Lake 3 in the summer and fall sampling events (Table 5.7; Appendix Table C.69). Of those parameters without AEMP benchmarks, turbidity was elevated at the north and south basins of Mary Lake, and total and dissolved manganese and uranium concentrations were elevated at the north basin of Mary Lake compared to the reference lake in both summer and fall sampling events in 2020 (Appendix Tables C.67). Similar to the Sheardown Lake system, elevated total aluminum concentrations at Mary Lake compared to the reference lake in 2020 were connected to naturally higher turbidity at Mary Lake and thus was unrelated to the mine operations.¹⁹ Average concentrations of all parameters, including those with or without established AEMP benchmarks and, for metals, whether in total or dissolved form, were comparable between 2020 and baseline for the Mary River north basin and south basin (Appendix Figure C.29; Appendix Tables C.68, C.70, C.72, and C.73). Overall, mine-related influences on water quality of Mary Lake in 2020 included a slight elevation in chloride, manganese, and uranium concentrations compared to the reference lake. occurrence of water quality below AEMP benchmarks and lack of water chemistry changes over time suggested no adverse mine-related influences on water chemistry of Mary Lake since the initiation of commercial mine operations in 2015.

5.3.2 Sediment Quality

Surficial sediment of the Mary Lake north basin (BLO-01) was mainly composed of silt with low TOC content (Figure 5.8; Appendix Table D.42). Sediments from the Mary Lake south basin also had low TOC content (i.e., <1.5%) and were predominantly composed of silt except at stations BLO-03 (profundal) and BLO-11 (littoral), which contained 92% and 79% sand, respectively (Figure 5.8; Appendix Table D.42). Substrate from Mary Lake was similar to that of Reference Lake 3 in terms of particle size, but had significantly lower TOC and moisture

¹⁹ Turbidity at Mary Lake in 2020 was comparable to turbidity shown at the lake during baseline (Appendix Table C.69), suggesting that greater turbidity at this lake compared to Reference Lake 3 reflected natural phenomena. The occurrence of similar dissolved concentrations of aluminum between Mary Lake and Reference Lake 3 in 2020 (and historically) indicated that aluminum was associated with particulate material suspended in the water column, and thus was unlikely to be associated with mine-related source.

Table 5.7: Mean Water Chemistry at Mary Lake North Basin (BL0-01) and South Basin (BL0) Monitoring Stations^a, During Winter, Summer, and Fall Sampling Events, Mary River Project CREMP, 2020

			Water Quality	AEMP	Reference I	Lake 3 (n = 3)	Mary L	ake North Basin Stations	s (n = 3)	Mary La	ake South Basin Stations	s (n = 7)
Para	meters	Units	Guideline (WQG) ^b	Benchmark ^c	Summer	Fall	Winter	Summer	Fall	Winter	Summer	Fall
	Conductivity (lab)	umho/cm	-	-	79	79	303	136	221	129	78	88
ntionals	pH (lab)	pН	6.5 - 9.0	-	7.66	7.75	7.66	8.11	8.21	7.65	7.66	7.73
ion	Hardness (as CaCO ₃)	mg/L	-	-	35	38	156	63	106	67	34	41
ent	Total Suspended Solids (TSS)	mg/L	-	-	2.0	2.0	2.0	2.0	2.0	2.0	2.2	2.1
Ž	Total Dissolved Solids (TDS)	mg/L	-	-	41	51	178	83	130	85	50	52
ပိ	Turbidity	NTU	-	-	0.15	0.1	0.1	0.9	0.6	0.1	2.0	1.4
	Alkalinity (as CaCO ₃)	mg/L	-	-	46	34	132	61	96	59	43	38
	Total Ammonia	mg/L	-	0.855	0.010	0.014	0.010	0.010	0.010	0.010	0.010	0.010
ъ	Nitrate	mg/L	3	3	0.020	0.020	0.119	0.008	0.044	0.052	0.037	0.043
and	Nitrite	mg/L	0.06	0.06	0.005	0.005	0.005	0.001	0.005	0.005	0.008	0.005
anic	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.15	0.16	0.16	0.11	0.16	0.16	0.15	0.15
rjer rga	Dissolved Organic Carbon	mg/L	-	-	3.3	3.5	3.5	2.3	2.8	3.1	2.2	1.9
탈이	Total Organic Carbon	mg/L	-	-	4.6	3.8	4.9	1.7	10.5	3.6	3.0	2.3
_	Total Phosphorus	mg/L	0.020 ^α	-	0.004	0.003	0.003	0.005	0.008	0.003	0.005	0.005
	Phenols	mg/L	0.004^{α}	-	0.0010	0.001	0.002	0.001	0.001	0.0016	0.0010	0.0011
nions	Bromide (Br)	mg/L	-	-	0.10	0.10	0.10	0.05	0.10	0.10	0.16	0.10
을	Chloride (CI)	mg/L	120	120	1.4	1.37	17.52	4.18	9.42	4.56	2.75	3.40
₹	Sulphate (SO ₄)	mg/L	218 ^β	218	3.6	3.64	7.32	1.86	4.02	3.87	1.84	2.34
	Aluminum (AI)	mg/L	0.100	0.130	0.0031	0.0032	0.0035	0.0254	0.0199	0.0061	0.0648	0.0383
	Antimony (Sb)	mg/L	0.020^{α}	-	0.0001	0.00010	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Arsenic (As)	mg/L	0.005	0.005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Barium (Ba)	mg/L	-	-	0.0064	0.0070	0.0145	0.0071	0.0107	0.0070	0.0046	0.0051
	Beryllium (Be)	mg/L	0.011 ^α	-	0.0005	0.0005	0.0005	0.0001	0.0005	0.0005	0.0005	0.0005
	Bismuth (Bi)	mg/L	-	-	0.0005	0.0005	0.0005	0.00005	0.0005	0.0005	0.0005	0.0005
	Boron (B)	mg/L	1.5	-	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Cadmium (Cd)	mg/L	0.00012	0.00006	0.00001	0.00001	0.00001	0.000005	0.00001	0.00001	0.00001	0.00001
	Calcium (Ca)	mg/L	-	-	7.2	7.2	31.1	12.7	21.3	13.0	7.0	7.9
	Chromium (Cr)	mg/L	0.0089	0.0089	0.0005	0.0005	0.00050	0.00013	0.00050	0.0005	0.0005	0.0005
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Copper (Cu)	mg/L	0.002	0.0024	0.00073	0.00075	0.00115	0.00092	0.00097	0.00074	0.00059	0.00059
	Iron (Fe)	mg/L	0.30	0.326	0.03	0.030	0.032	0.055	0.030	0.030	0.065	0.040
w	Lead (Pb)	mg/L	0.001	0.001	0.00005	0.00005	0.00005	0.00005	0.00005	0.000050	0.000071	0.000050
Metals	Lithium (Li)	mg/L	-	-	0.0010	0.0010	0.0014	0.0010	0.0014	0.0010	0.0010	0.0010
Me	Magnesium (Mg)	mg/L	-	-	4.24	4.7	19.3	7.7	12.7	7.8	4.1	4.9
<u>ta</u>	Manganese (Mn)	mg/L	0.935 ^β	-	0.00080	0.00068	0.00392	0.00421	0.00240	0.00051	0.00201	0.00115
E	Mercury (Hg)	mg/L	0.000026	-	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005
	Molybdenum (Mo)	mg/L	0.073	-	0.00013	0.00015	0.00037	0.00020	0.00032	0.00024	0.00100	0.00017
	Nickel (Ni)	mg/L	0.025	0.025	0.00050	0.00050	0.00075	0.00052	0.00050	0.00050	0.00050	0.00050
	Potassium (K)	mg/L	-	-	0.86	0.90	1.41	0.87	1.16	0.84	0.57	0.63
	Selenium (Se)	mg/L	0.001	-	0.001	0.001	0.001	0.00005	0.001	0.001	0.001	0.001
	Silicon (Si)	mg/L	-	-	0.495	0.50	1.51	0.67	0.74	0.61	0.53	0.49
	Silver (Ag)	mg/L	0.00025	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
	Sodium (Na)	mg/L	-	-	0.89	0.96	6.88	2.38	4.33	2.10	1.29	1.60
	Strontium (Sr)	mg/L	-	-	0.0084	0.0082	0.0224	0.0098	0.0163	0.0115	0.0062	0.0070
	Thallium (TI)	mg/L	0.0008	0.0008	0.00010	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001
	Tin (Sn)	mg/L	-	-	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Titanium (Ti)	mg/L	-	-	0.01	0.0100	0.0100	0.0009	0.01	0.01	0.01	0.01
1	Uranium (U)	mg/L	0.015	-	0.0003	0.0003	0.0045	0.0012	0.00344	0.00135	0.00070	0.00097
	Vanadium (V)	mg/L	0.006 ^α	0.006	0.0010	0.0010	0.0010	0.0005	0.0010	0.0010	0.0010	0.0010
	Zinc (Zn)	mg/L	0.030	0.030	0.0030	0.0030	0.0030	0.0030	0.003	0.003	0.004	0.003

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

^a Values presented are averages from samples taken from the surface and the bottom of the water column at each lake for the indicated season

^b Canadian Water Quality Guideline (CCME 1999, 2017) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2017). See Table 2.2 for information regarding WQG criteria.

[°] AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data (2006 to 2013) specific to Mary Lake.

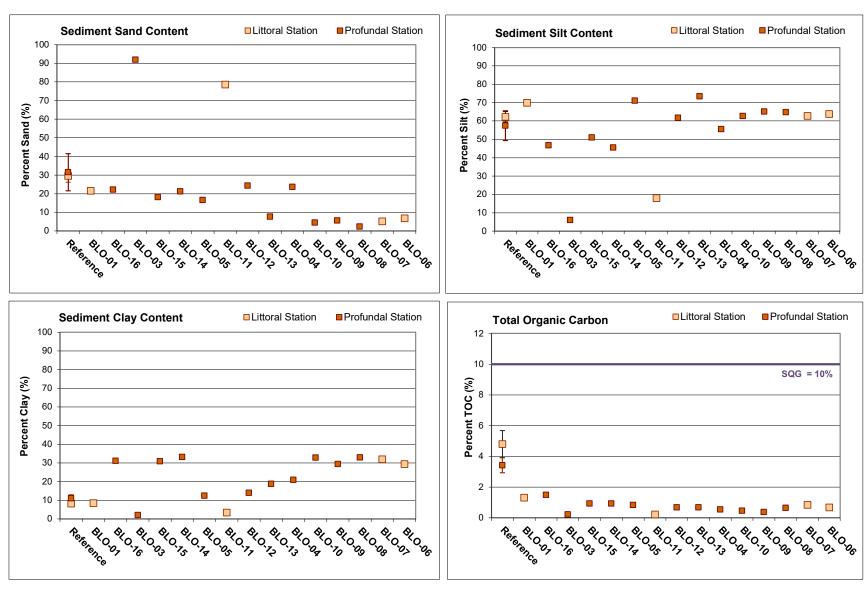


Figure 5.8: Sediment Particle Size and Total Organic Carbon (TOC) Content Comparisons among Mary Lake (BLO) Sediment Monitoring Stations and to Reference Lake 3 (mean ± SE), Mary River Project CREMP, August 2020

content for both littoral and profundal habitat (Appendix Table D.43). Reddish-brown coloured iron (oxy)hydroxide material was evident at various sediment sampling locations throughout Mary Lake (Appendix Tables D.40 and D.41), mirroring similar observations at Reference Lake 3 and the other mine-exposed lakes where such material was commonly visible as a thin, distinct layer or floc on or within surficial sediment. Substrate of Mary Lake also commonly contained sub-surface blackening/dark colouration indicating the presence of reduced sediment, but no distinct redox boundaries were observed (Appendix Tables D.40 and D.41). Similar sub-surface reducing conditions were observed in sediment of the reference lake, including the absence of distinct redox boundaries (Appendix Tables D.3 and D.4), suggesting that factors leading to reduced sediment conditions were comparable between lakes.

Metal concentrations in sediment at Mary Lake were comparable to those of Reference Lake 3 in 2020 except for slightly (i.e., 3- to 5-fold) higher concentrations of zirconium at both littoral and profundal habitat (Appendix Table D.44). At the lone Mary Lake north basin station (i.e., BLO-01), concentrations of all metals in sediment were below applicable SQG and lake-specific AEMP benchmarks except for manganese, which exceeded the SQG only (Table 5.8). In the south basin, concentrations of chromium and iron in sediment from the littoral station, and mean manganese concentrations in sediments from the profundal stations, were above applicable SQG but not lake-specific AEMP benchmarks (Table 5.8). Metal concentrations in sediment at the Mary Lake south basin showed no spatial gradients with progression from the Mary River inlet to the lake outlet among the profundal stations (Appendix Table D.42).²⁰ As indicated previously, mean concentrations of iron and manganese were elevated above SQG in sediment at the reference lake (Table 5.8), suggesting that concentrations of iron and manganese above SQG at Mary Lake likely reflected a natural condition unrelated to mine activity.

Metal concentrations in sediment at littoral and profundal stations of Mary Lake in 2020 have not changed substantially from those observed during the mine baseline (2005 to 2013) period (Figure 5.9; Appendix Table D.44).²¹ On average, metal concentrations in sediment from Mary Lake were within the range of those observed from 2015 to 2019 and there was no evidence of an increasing trend over time for any metals (Figure 5.9). Overall, no changes in metal concentrations in sediment were apparent in sediments at Mary Lake since the initiation of commercial mine operations in 2015.

²¹ See footnote 6 regarding differences in the concentration of boron in sediment between baseline and recent CREMP studies.

²⁰ Spatially, the order of sediment quality from closest to Mary River to the lake outlet were as follows: BLO-12, BLO-10, BLO-09, BLO-08, and BLO-06 (Figure 2.4). All of these stations, except BLO-06, were profundal.

Table 5.8: Sediment Total Organic Carbon and Metal Concentrations at Mary Lake North Basin (BLO-01) and South Basin (BLO), and Reference Lake 3 (REF3) Sediment Monitoring Stations, Mary River Project CREMP, August 2020

					Littoral			Profu	ındal
	Parameter	Units	SQG ^a	AEMP Benchmark ^b	Reference Lake (n = 5) Average ± SD	Mary Lake North (n = 1)	Mary Lake South (n = 1)	Reference Lake (n = 5) Average ± SD	Mary Lake (South Basin) (n = 8) Average ± SD
TOC	\	%	10 ^α	_	4.80 ± 1.96	1.31	0.68	3.42 ± 1.08	0.71 ± 0.34
100	Aluminum (AI)	mg/kg	-	_	16,880 ± 1,785	15,000	29,600	21,800 ± 2,185	22,616 ± 2,156
	Antimony (Sb)	mg/kg			<0.10 ± 0	<0.10	<0.10	<0.10 ± 0	<0.10 ± 0
	Arsenic (As)	mg/kg	17	5.9	3.53 ± 1.09	4.82	3.47	4.07 ± 0.397	3.09 ± 0.43
	Barium (Ba)	mg/kg	-	5.9	117 ± 22.0	79.2	104	122 ± 18.3	86.3 ± 7.97
	Beryllium (Be)	mg/kg			0.65 ± 0.073	0.72	1.33	0.80 ± 0.092	1.02 ± 0.10
	Bismuth (Bi)	mg/kg	-	_	<0.20 ± 0	<0.20	0.23	<0.20 ± 0	0.24 ± 0.0092
	Boron (B)	mg/kg	-	_	12.2 ± 0.853	18.9	43.9	14.7 ± 1.77	30.1 ± 2.29
	Cadmium (Cd)	mg/kg	3.5	1.5	0.173 ± 0.047	0.108	0.145	0.148 ± 0.0172	0.138 ± 0.0117
	Calcium (Ca)	mg/kg	-	-	5,608 ± 1,247	7,720	5,310	5,010 ± 407	4,213 ± 662
	Chromium (Cr)	mg/kg	90	98	54.3 ± 4.40	60.6	94.1	65.0 ± 6.64	79.6 ± 7.46
	Cobalt (Co)	mg/kg	-	-	10.8 ± 1.64	14.0	18.7	15.2 ± 1.56	15.8 ± 1.30
	Copper (Cu)	mg/kg	110	50	71.4 ± 14.2	27.8	36.0	83.8 ± 11.1	31.3 ± 3.16
	Iron (Fe)	mg/kg	40,000 ^α	52,400	50,600 ± 24,939	34,500	46,600	45,080 ± 4,440	39,013 ± 3,068
	Lead (Pb)	mg/kg	91.3	35	13.8 ± 0.799	14.5	25.5	16.7 ± 1.82	20.6 ± 2.15
	Lithium (Li)	mg/kg	91.5	-	26.0 ± 2.51	29.2	50.7	33.7 ± 3.83	39.5 ± 4.06
	Magnesium (Mg)	mg/kg	-	_	11,440 ± 814	14,500	18,700	14,180 ± 1,422	15,421 ± 1,463
<u> </u>	Manganese (Mn)	mg/kg	 1.100 ^{α,β}	4,370	579 ± 258	1,350	778	14,180 ± 1,422 1,230 ± 355	1,693 ± 268
Metals		~ ~	1,100 0.486	0.170	0.0500 ± 0.0178	0.0293	0.0541	0.0583 ± 0.0164	0.0527 ± 0.0074
Ž	Mercury (Hg)	mg/kg		0.170	0.0500 ± 0.0178 4.4 ± 3.31	0.0293	0.0541	2.52 ± 0.273	0.0527 ± 0.0074 0.98 ± 0.14
	Molybdenum (Mo) Nickel (Ni)	mg/kg	- 75 ^{α,β}	72	4.4 ± 3.31 40.0 ± 3.52	51.7	62.0		
	` '	mg/kg		1,580		1,100	849	45.0 ± 4.54 956 ± 47	57.8 ± 5.11 855 ± 82
	Phosphorus (P)	mg/kg	2,000 ^α	1,560	1,167 ± 394 4,100 ± 453	3,470	7,650	5,338 ± 543	5,685 ± 579
	Potassium (K)	mg/kg		-	0.73 ± 0.31	<0.20	0.26	0.61 ± 0.18	0.24 ± 0.008
	Selenium (Se)	mg/kg	-	-		<0.20	0.26		
	Silver (Ag)	mg/kg	-	-	0.14 ± 0.047		453	0.20 ± 0.057	0.15 ± 0.0104
	Sodium (Na)	mg/kg	-	-	304 ± 32	238 11.1	453 16.7	369 ± 50 12.3 ± 1.24	354 ± 35
	Strontium (Sr)	mg/kg	-	-	11.6 ± 1.70				13.5 ± 1.18
	Sulphur (S)	mg/kg	-	-	1,400 ± 387	<1,000	<1,000	1,140 ± 195	<1,000 ± 0
	Thallium (TI)	mg/kg	-	-	0.379 ± 0.0415	0.298	0.603	0.594 ± 0.094	0.461 ± 0.0472
	Tin (Sn)	mg/kg	-	-	<2.0 ± 0	<2.0	<2.0	<2.0 ± 0	<2.0 ± 0
	Titanium (Ti)	mg/kg	-	-	1,006 ± 109	978	1,970	1,136 ± 50	1,466 ± 142
	Uranium (U)	mg/kg	-	-	11.0 ± 2.41	3.35	8.48	19.7 ± 3.76	7.13 ± 0.771
	Vanadium (V)	mg/kg	-	-	54.1 ± 5.40	48.0	78.6	63.4 ± 4.89	61.7 ± 5.63
	Zinc (Zn)	mg/kg	315	135	73.1 ± 7.83	48.1	86.2	83.8 ± 8.52	67.4 ± 6.56
	Zirconium (Zr)	mg/kg	-	-	4.5 ± 1.0	10.4	25.9	3.9 ± 0.32	20.4 ± 2.7

Indicates parameter concentration above SQG.

Indicates parameter concentration above the AEMP Benchmark.

Notes: TOC = total organic carbon. SQG = sediment quality guideline. n = number of samples. SD = standard deviation.

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013). The indicated values are specific to Mary Lake.

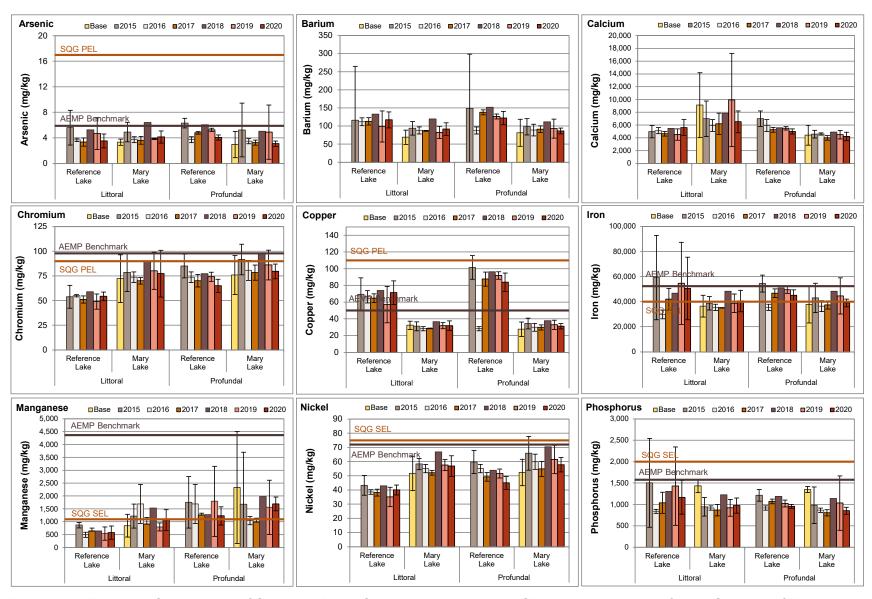


Figure 5.9: Temporal Comparison of Sediment Metal Concentrations (mean ± SD) at Littoral and Profundal Stations of Mary Lake and Reference Lake 3 for Mine Baseline (2005 to 2013) and Operational (2015 to 2020) Periods

5.3.3 Phytoplankton

Chlorophyll-a concentrations at Mary Lake showed no spatial gradients with distance from either the Tom River inlet or the Mary River inlet towards the lake outlet during any of the winter, summer, or fall sampling events in 2020 (Figure 5.10). Chlorophyll-a concentrations were typically lowest in winter and highest in summer at both the north and south basins of Mary Lake (Figure 5.10). Chlorophyll-a concentrations at the Mary Lake north basin did not differ significantly from those at Reference Lake 3 in fall and summer, or between the Mary Lake south basin and Reference Lake 3 in the fall sampling event, but concentrations at the south basin were significantly higher than at the reference lake at the time of the summer sampling event (Appendix Tables E.7 and E.8). Chlorophyll-a concentrations at the Mary Lake north and south basins were well below the AEMP benchmark of 3.7 μ g/L during all winter, summer, and fall sampling events in 2020 (Figure 5.10) and reflected an 'oligotrophic' primary productivity categorization based on Wetzel (2001) classification. This oligotrophic categorization agreed with CWQG trophic status classification that is based on average aqueous total phosphorus concentrations below 10 μ g/L (Table 5.7; Appendix Tables C.68 and C.72).

Temporal comparison of Mary Lake chlorophyll-a concentrations, conducted separately for the north and south basins, did not indicate any consistent direction of significant differences between the 2019 data and data from the mine construction (2014) period or previous years of mine operation (2015 to 2019) during any of the winter, summer, or fall seasons (Figure 5.11; Appendix Figure E.1). In addition, annual average chlorophyll-a concentrations have not shown any consistent direction of change (i.e., increase or decrease) over time since the mine was constructed in 2014 (Figure 5.11; Appendix Figure E.1) suggesting no substantial changes in the trophic status of the lake since mine operations commenced at the Mary River Project. No chlorophyll-a baseline (2005 to 2013) data are available for Mary Lake, precluding comparisons to conditions prior to mine construction.

5.3.4 Benthic Invertebrate Community

Benthic invertebrate density, richness, and evenness at littoral and profundal habitat of Mary Lake did not differ significantly compared to like-habitat stations at Reference Lake 3 in 2020 (Tables 5.9 and 5.10). Benthic invertebrate community compositional differences were indicated between Mary Lake and Reference Lake 3 based on significantly differing Bray-Curtis Index for both littoral and profundal habitat types (Appendix Table F.21), but no significant differences in dominant taxonomic groups were indicated between Mary Lake and the reference lake for either habitat (Tables 5.9 and 5.10). Rather, significantly lower relative abundance of the filterer FFG and the clinger HPG at Mary Lake littoral and profundal stations compared to like-habitat stations at Reference Lake 3 (Tables 5.9 and 5.10) suggested that differences in the community

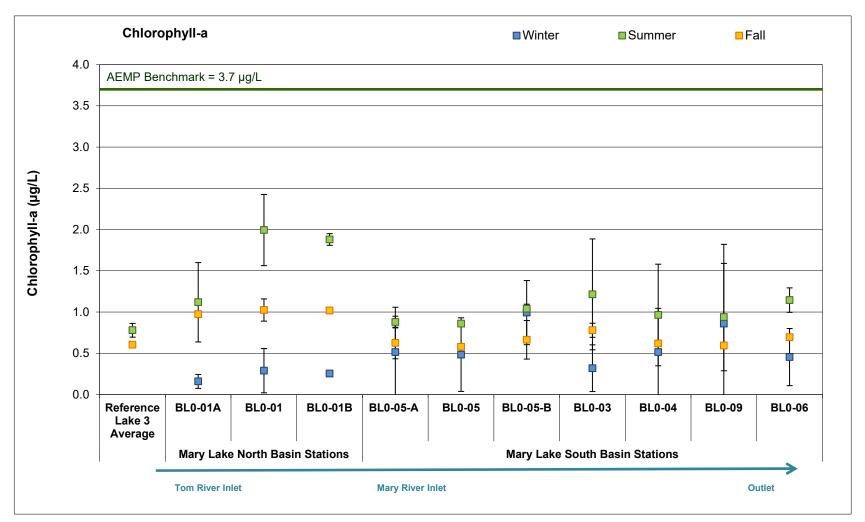


Figure 5.10: Chlorophyll-a Concentrations at Mary Lake (BLO) Phytoplankton Monitoring Stations, Mary River Project CREMP, 2020

Notes: Values presented are averages of samples taken from the surface and the bottom of the water column at each station. Reference lake values represent mean \pm standard deviation (n = 3). Reference Lake 3 was not sampled in winter 2020.

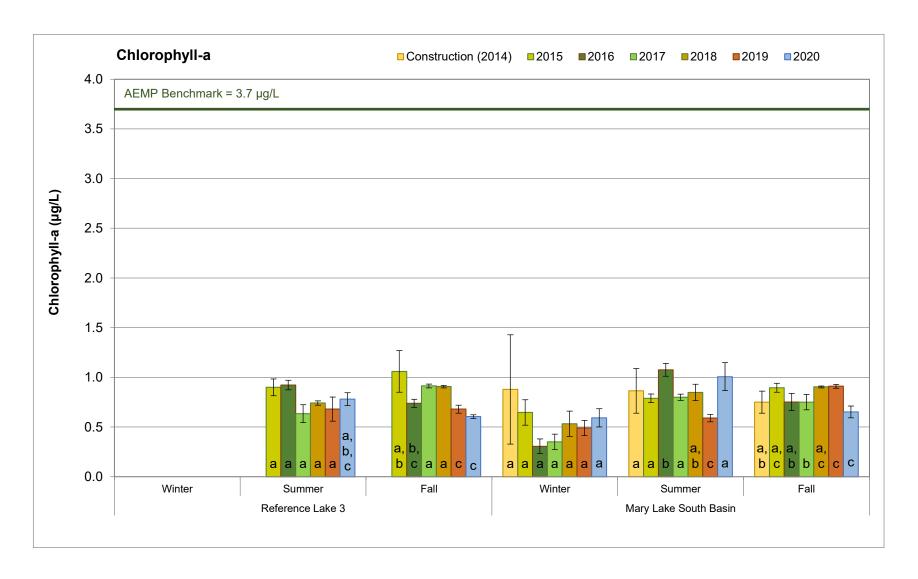


Figure 5.11: Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between the Mary Lake South Basin and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)

Note: Bars with the same letter at the base do not differ significantly between years for the applicable season.

Table 5.9: Benthic Invertebrate Community Statistical Comparison Results between Mary Lake (BLO) and Reference Lake 3 for Littoral Habitat Stations, Mary River Project CREMP, August 2020

		Stati	istical Test Re	sults				Summar	y Statistics			
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Littoral Habitat	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
Density	tunegual	log10	NO	0.401	5.8	Reference Lake 3	1,571	430	193	1,190	1,474	2,310
(Individuals/m²)	turiequai	109 10	NO	0.401	5.6	Mary Lake Littoral	4,086	3,955	1,978	966	3,017	9,345
Richness	t-unequal	log10	NO	0.244	-1.2	Reference Lake 3	14.6	2.5	1.1	13.0	14.0	19.0
(Number of Taxa)	t-unequal	10910	NO	0.244	-1.2	Mary Lake Littoral	11.5	4.2	2.1	7.0	11.5	16.0
Simpson's Evenness	t oqual	none	NO	0.464	-0.4	Reference Lake 3	0.810	0.110	0.049	0.630	0.847	0.923
(E)	t-equal	none	NO	0.404	-0.4	Mary Lake Littoral	0.765	0.041	0.021	0.707	0.775	0.802
Hydracarina (%)	t-equal	log10	NO	0.241	-0.6	Reference Lake 3	5.3	2.6	1.2	3.5	4.4	9.9
riyuracarina (70)	t-equal	10910	NO	0.241	-0.0	Mary Lake Littoral	3.7	2.9	1.4	1.7	2.7	7.8
Ostracoda (%)	t-equal	log10	NO	0.606	0.3	Reference Lake 3	37.9	14.5	6.5	26.7	36.2	62.6
Ostracoda (70)	t-equal	10910	NO	0.000	0.3	Mary Lake Littoral	42.7	12.7	6.4	23.8	48.2	50.7
Chironomidae (%)	t-equal	none	NO	0.987	0.0	Reference Lake 3	52.6	15.6	7.0	26.9	59.0	66.4
Chilohomidae (70)	t-equal	none	NO	0.907	0.0	Mary Lake Littoral	52.5	14.7	7.4	43.8	45.8	74.4
Metal-Sensitive	t-equal	none	YES	0.008	-2.2	Reference Lake 3	28.8	9.5	4.3	15.6	32.5	38.7
Chironomidae (%)	t-equal	none	TLS	0.000	-2.2	Mary Lake Littoral	8.1	6.6	3.3	3.9	5.2	17.9
Collector-Gatherers	t-equal	none	NO	0.661	0.5	Reference Lake 3	63.1	11.4	5.1	53.6	60.3	81.5
(%)	t-equal	none	NO	0.001	0.5	Mary Lake Littoral	68.8	24.9	12.5	34.5	73.2	94.1
Filterers (%)	t agual	log10(v+1)	YES	0.009	-2.2	Reference Lake 3	27.1	9.8	4.4	14.4	29.2	38.0
Fillerers (%)	t-equal	log10(x+1)	150	0.009	-2.2	Mary Lake Littoral	5.5	8.3	4.2	0.0	2.1	17.6
Shredders (%)	tunoqual	none	YES	0.064	-1.1	Reference Lake 3	3.9	3.3	1.5	0.6	3.2	7.4
Silleddels (%)	t-unequal	none	TES	0.004	-1.1	Mary Lake Littoral	0.1	0.2	0.1	0.0	0.0	0.4
Clingers (0/)	togual	log10	YES	0.004	-2.5	Reference Lake 3	31.9	9.3	4.2	17.9	33.5	41.6
Clingers (%)	t-equal	log10	TES	0.004	-2.5	Mary Lake Littoral	8.7	6.2	3.1	3.6	6.8	17.6
Sprawlers (%)	t oqual	log10	YES	0.033	1.9	Reference Lake 3	57.9	12.1	5.4	41.0	57.2	73.8
Sprawiers (%)	t-equal	10910	123	0.033	1.9	Mary Lake Littoral	80.7	11.8	5.9	65.6	83.6	90.2
Durrayyara (0/)	t ogual	lo #10	NO	0.582	0.1	Reference Lake 3	10.2	4.9	2.2	4.6	8.3	17.3
Burrowers (%)	t-equal	log10	NO	0.582	0.1	Mary Lake Littoral	10.6	12.1	6.1	2.3	5.7	28.5

Grey shading indicates statistically significant difference between study areas based on p-value ≤ 0.10.

Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

Table 5.10: Benthic Invertebrate Community Statistical Comparison Results between Mary Lake (BLO) and Reference Lake 3 for Profundal Habitat Stations, Mary River Project CREMP, August 2020

		Stati	istical Test Re	sults				Summar	y Statistics			
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Study Lake Profundal Habitat	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
Density	t-equal	log10	NO	0.308	2.1	Reference Lake 3	479	142	63	336	491	681
(Individuals/m²)	t-equal	10910	110	0.500	2.1	Mary Lake Profundal	779	452	184	216	625	1,362
Richness	t-equal	log10	NO	0.814	0.3	Reference Lake 3	7.0	1.9	0.8	5.0	8.0	9.0
(Number of Taxa)	t-equal	10910	110	0.014	0.5	Mary Lake Profundal	7.5	2.8	1.2	5.0	6.0	12.0
Simpson's Evenness	t-unequal	none	NO	0.140	-3.2	Reference Lake 3	0.731	0.045	0.020	0.689	0.721	0.795
(E)	t-unequal	none	NO	0.140	-3.2	Mary Lake Profundal	0.586	0.201	0.082	0.322	0.564	0.834
Hydracarina (%)	t-equal	log10(x+1)	NO	0.166	0.9	Reference Lake 3	2.8	2.0	0.9	0.0	3.5	5.1
riyuracanna (70)	t-equal	log 10(X+1)	NO	0.100	0.9	Mary Lake Profundal	4.7	2.1	0.9	2.5	4.3	8.0
Ostracoda (%)	t-unequal	log10	NO	0.810	3.6	Reference Lake 3	8.6	4.1	1.8	3.5	7.7	14.5
Ostracoda (%)	t-unequal	109 10	NO	0.610	3.0	Mary Lake Profundal	23.4	28.9	11.8	1.3	14.2	76.0
Chironomidae (%)	Mann	rank	NO	0.792	-4.0	Reference Lake 3	87.9	4.2	1.9	82.3	87.2	92.7
Cililonomidae (70)	Whitney	Talik	NO	0.792	-4.0	Mary Lake Profundal	71.3	30.2	12.3	16.0	80.5	94.6
Metal-Sensitive	t-equal	none	YES	0.007	-1.5	Reference Lake 3	31.5	17.6	7.9	7.9	38.0	49.3
Chironomidae (%)	i-equai	Tione	TLO	0.007	-1.5	Mary Lake Profundal	5.6	5.2	2.1	0.0	4.1	14.7
Collector-Gatherers	t oqual	nono	YES	0.006	1.6	Reference Lake 3	62.9	15.0	6.7	45.4	56.1	79.0
(%)	t-equal	none	163	0.000	1.0	Mary Lake Profundal	86.6	5.9	2.4	76.3	87.7	92.1
Filterers (%)	t-equal	log10(x+1)	YES	0.004	-1.6	Reference Lake 3	30.7	17.5	7.8	7.9	38.0	49.3
Fillerers (%)	t-equal	log 10(X+1)	163	0.004	-1.0	Mary Lake Profundal	3.2	5.3	2.2	0.0	0.7	13.6
Shredders (%)	t-equal	log10(x+1)	NO	0.261	-0.7	Reference Lake 3	2.2	2.3	1.0	0.0	2.5	5.3
Silleddels (%)	t-equal	log 10(X+1)	NO	0.201	-0.7	Mary Lake Profundal	0.8	1.9	0.8	0.0	0.0	4.5
Clingers (%)	t ogual	log10	YES	0.036	-1.2	Reference Lake 3	33.5	16.9	7.6	13.1	41.5	52.8
Cilligers (70)	t-equal	10910	123	0.030	-1.2	Mary Lake Profundal	12.5	11.1	4.5	2.7	9.1	32.0
Sprawlers (%)	Mann	rank	NO	0.177	0.7	Reference Lake 3	64.8	16.2	7.2	45.5	58.5	87.0
opiawieis (70)	Whitney	Idlik	INO	0.177	0.7	Mary Lake Profundal	75.5	32.9	13.4	9.3	88.5	93.8
Burrowers (%)	Mann	rank	NO	0.191	3.6	Reference Lake 3	1.7	2.9	1.3	0.0	0.0	6.7
Dullowels (70)	Whitney	Idlik	INO	0.191	3.0	Mary Lake Profundal	12.0	23.0	9.4	0.0	3.4	58.7

Grey shading indicates statistically significant difference between study areas based on p-value ≤ 0.10.

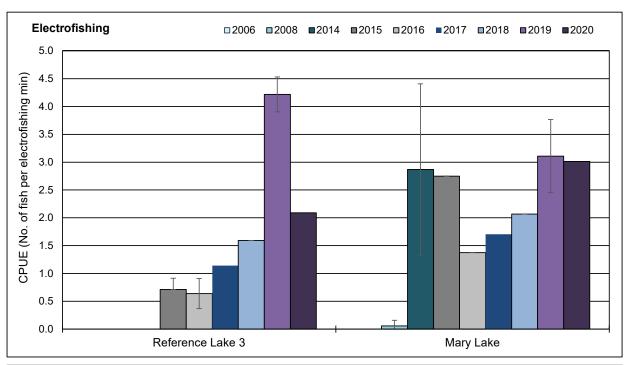
Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD_{REF}, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

between lakes reflected slight differences in dominant food resources available to benthic invertebrates and/or physical habitat features, respectively. Although the relative abundance of metal-sensitive Chironomidae was significantly lower at Mary Lake than at Reference Lake 3 (Tables 5.9 and 5.10), metal concentrations in water and sediment of Mary Lake were comparable to those at the reference lake (Tables 5.7 and 5.8), suggesting that differences in benthic invertebrate community features between lakes were not related to metal concentrations.

No significant differences in benthic invertebrate density, richness, evenness, relative abundance of dominant groups, and relative abundance of FFG were shown consistently at Mary Lake littoral and profundal habitat over years of mine operation (2015 to 2020) compared to baseline (Appendix Figures F.15 and F.16; Appendix Tables F.61 and F.62). In addition, no significant differences in the relative abundance of metal-sensitive Chironomidae were indicated for years of mine-operation relative to baseline (Appendix Tables F.61 and F.62), indicating that the differences in the relative abundance of this group between Mary Lake and Reference Lake 3 in 2020 likely reflected natural variability. Therefore, consistent with no substantial changes in water and sediment quality since the mine baseline period, no ecologically significant changes in benthic invertebrate community features were indicated at littoral and profundal habitat of Mary Lake since the commencement of commercial mine operation in 2015.

5.3.5 Fish Population


5.3.5.1 Mary Lake (South) Fish Community

Arctic charr and ninespine stickleback were captured in Mary Lake in 2020 (Table 5.6), consistent with the previous five years of sampling (Minnow 2020). Electrofishing and gill netting CPUE were each higher at Mary Lake than at Reference Lake 3 (Table 5.11), suggesting greater densities and/or productivity of both arctic charr and ninespine stickleback at Mary Lake. Consistent with the other mine-exposed lakes, greater numbers of arctic charr together with greater density of benthic invertebrates suggested that overall biological productivity was higher at Mary Lake than at Reference Lake 3. Arctic charr CPUE associated with electrofishing in 2020 at Mary Lake was comparable to highest CPUE from other years of mine operation and substantially greater than baseline monitoring conducted in 2008 (Figure 5.12). Gill netting CPUE at Mary Lake in 2020 was within the range of observed during previous years of mine operation (2015 to 2019), and also greater than CPUE during baseline (2006 and 2007; Figure 5.12). Based on the CPUE data, arctic charr abundances at nearshore and littoral/profundal habitats of Mary Lake were likely comparable to or greater than during the baseline period, indicating no mine-related influences on arctic charr abundance in the lake.

Table 5.11: Fish Catch and Community Summary from Backpack Electrofishing and Gill Netting Conducted at Mary Lake (BLO) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Lake	Meth	od ^a	Arctic Charr	Ninespine Stickleback	Total by Method	Total No. of Species
	Electrofishing	No. Caught	134	1	135	
Reference	Liectionsimig	CPUE	2.09	0.016	2.11	2
Lake 3	Gill netting	No. Caught	69	0	69	2
	Gill Hetting	CPUE	0.956	0	0.956	
	Electrofishing	No. Caught	105	26	131	
Mary	Electronstillig	CPUE	3.01	0.746	3.76	2
Lake	Gill netting	No. Caught	94	0	94	2
	Gill Helling	CPUE	4.60	0	4.60	

^a Catch-per-unit-effort (CPUE) for electrofishing represents the number of fish captured per electrofishing minute, and for gill netting represents the number of fish captured per 100 m hours of net.

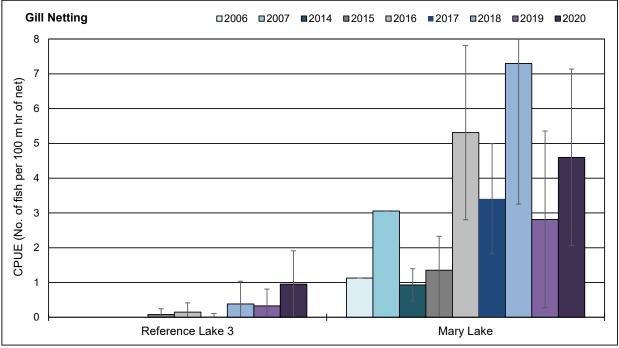


Figure 5.12: Catch-per-unit-effort (CPUE; mean ± SD) of Arctic Charr Captured by Back-pack Electrofishing and Gill Netting at Mary Lake (BLO), Mary River Project CREMP, 2006 to 2020

Note: Data presented for fish sampling conducted in fall during baseline (2006, 2007), construction (2014), and operational (2015 to 2020) mine phases.

5.3.5.2 Mary Lake (South) Fish Population Assessment

Nearshore Arctic Charr

A total of 100 arctic charr were captured from nearshore habitats in each of Mary Lake and Reference Lake 3 in August 2020. Arctic charr YOY were distinguished from non-YOY using fork length cut-offs of 4.1 cm and 4.3 cm for the Mary Lake and Reference Lake 3 data sets, respectively, based on evaluation of length-frequency distributions coupled with supporting age determinations (Figure 5.13; Appendix Tables G.4 and G.25). However, due to small sample sizes of nearshore arctic charr YOY at Mary Lake (i.e., only two individuals), statistical comparisons of endpoints fish health were conducted using non-YOY population only. Arctic charr of nearshore habitat showed differing length-frequency distributions between Mary Lake and Reference Lake 3, reflecting fewer YOY and a more limited size distribution of fish at Mary Lake compared to the reference lake (Table 5.12; Figure 5.13; Appendix Table G.26). Arctic charr non-YOY from Mary Lake were similar in size to reference lake fish, and although condition of non-YOY was significantly greater at Mary Lake than at the reference lake, the magnitude of this difference was well within the CES_C of ±10% indicating that this difference was not ecologically meaningful (Table 5.12; Appendix Table G.26). No consistent differences in size or condition of non-YOY arctic charr from nearshore habitat of Mary Lake relative were indicated relative to the reference lake from 2015 to 2020, suggesting that differences between lakes over time reflected natural variability (Table 5.12). No nearshore arctic charr baseline data were collected at Mary Lake, precluding data analysis using a beforeafter design. Collectively, the data indicated no adverse effects on arctic charr from nearshore areas in Mary Lake since the commencement of mine operations in 2015.

Littoral/Profundal Arctic Charr

A total of 94 and 69 arctic charr were sampled from littoral/profundal habitat of Mary Lake and Reference Lake 3, respectively, in August 2020. The length-frequency distribution for littoral/profundal arctic charr differed significantly between lakes due to a greater number of larger fish being caught at Mary Lake (Table 5.12; Figure 5.13; Appendix Table G.30). Arctic charr sampled from littoral/profundal habitat of Mary Lake were also significantly longer, heavier, and of greater condition than those from Reference Lake 3 in 2020 (Table 5.12; Appendix Table G.30). The absolute magnitude of difference in body condition was greater than the CES_C of 10%, suggesting that this difference may be ecologically significant (Table 5.12; Appendix Table G.30). An on-going significant difference in length-frequency distribution was the only consistent difference shown for arctic charr captured from littoral/profundal habitat of Mary Lake from 2015 to 2020 compared to the reference lake data for the same period and Mary Lake baseline data (Table 5.12; Appendix Table G.30). No consistent differences in arctic charr size and condition

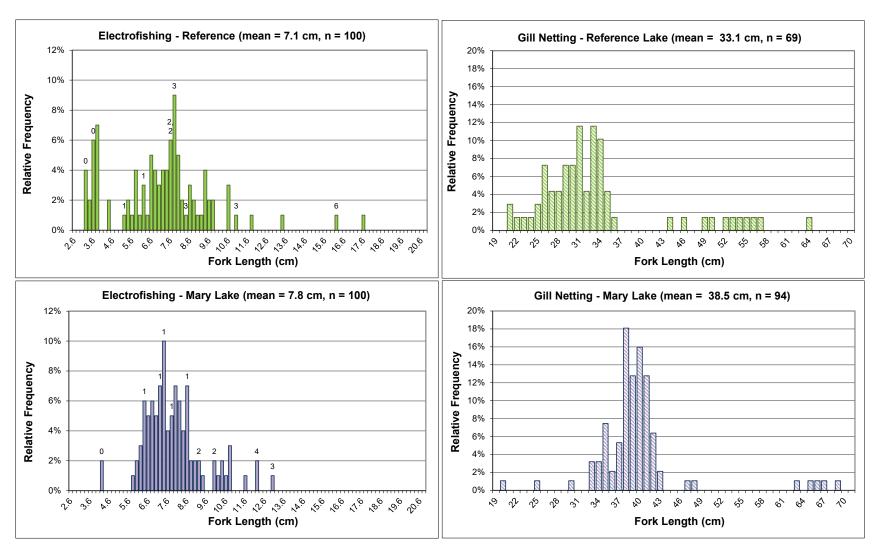


Figure 5.13: Length-Frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Mary Lake (BLO) and Reference Lake 3 (REF3), Mary River Project CREMP, August 2020

Note: Fish ages are shown above the bars, where available

Table 5.12: Summary of Statistical Results for Arctic Charr Population Comparisons between Mary Lake and Reference Lake 3 from 2015 to 2020, and between Mary Lake Mine Operational and Baseline Period Data, for Fish Captured by Electrofishing and Gill Netting Methods

Data Set						Statis	tically Sig	nificant Di	fferences	Observe	d? ^a			
by Sampling	Response Category	Endpoint		ve	ersus Refe	rence Lak	e 3			ba	versus M aseline pe	-		
Method			2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020
es	Survival	Length-Frequency Distribution	No	Yes	Yes	Yes	Yes	Yes (-27%)	-	-	-	-	-	-
Electrofishing Samples	Survivai	Age	Yes (-43%)	No	No	-	-	-	-	-	-	-	-	-
shing	Energy Use	Size (mean fork length)	No	No	Yes (+17%)	Yes (+10%)	Yes (-27%)	No	-	-	-	-	-	-
ctrofi	(non-YOY)	Size (mean weight)	No	No	Yes (+51%)	No	Yes (-61%)	No	-	-	-	-	-	-
	Energy Storage (non-YOY)	Condition (body weight-at- fork length)	Yes (+3%)	No	No	Yes (-8%)	Yes (+4%)	Yes (+2.6%)	-	-	-	-	-	-
	Survival	Length Frequency Distribution	-	-	-	Yes	Yes	Yes (-64%)	Yes	Yes	Yes	Yes	Yes	Yes (+21%)
v	Survivai	Age	-	-	-	-	-	-	No	Yes (-14%)	No	-	-	-
mples		Size (mean fork length)	-	-	-	Yes (+12%)	Yes (+24%)	Yes (+23%)	Yes (+6%)	No	Yes (-5%)	No	Yes (-4%)	No
ing Sa	Frankling	Size (mean weight)	-	-	-	Yes (+51%)	Yes (+96%)	Yes (+118%)	Yes (+19%)	No	Yes (-9%)	No	Yes (-14%)	No
Gill Netting Samples	Energy Use	Growth (fork length-at- age)	-	-	-	-	-	-	No	Yes (nc)	No	-	-	-
Θ		Growth (weight-at-age)	-	-	-	-	-	-	No	Yes (nc)	No	-	-	-
	Energy Storage	Condition (body weight-at- fork length)	-	-	-	Yes (+3%)	Yes (+3%)	Yes (+14%)	No	Yes (+3%)	Yes (+5%)	Yes (-3%)	Yes (-5%)	No

BOLD indicates a significant difference related to the comparison.

^a Values in parentheses indicate direction and magnitude of any significant differences.

b No baseline period data collected for nearshore electrofishing; baseline period littoral/profundal gill netting data included combined 2006 and 2007 information.

^c Due to low catches of arctic charr in gill nets at Reference Lake 3 in 2015, 2016, and 2017, no comparison of fish health was conducted for gill netted fish.

endpoints for fish captured at littoral/profundal habitat of Mary Lake have occurred from 2015 to 2020 compared to baseline (Table 5.12). This suggested that natural and/or sampling variability likely accounted for the variable differences in arctic charr health endpoints between years of mine operation and baseline at Mary Lake.

5.3.6 Effects Assessment and Recommendations

At Mary Lake, the following AEMP benchmark was exceeded in 2020:

 Manganese concentration in sediment was greater than the benchmark of 4,370 mg/kg at one profundal monitoring station (BL0-09), although the average concentration of manganese in sediment at profundal stations was below this benchmark.

The AEMP benchmarks for sediment quality were exceeded only at a single profundal station and only for a single parameter (manganese) at Mary Lake in 2020. The isolated occurrence of this exceedance, and the fact that average manganese concentrations in sediment at Mary Lake were not particularly elevated compared to concentrations at the reference lake or to those at Mary Lake during baseline, indicated no mine-related change in manganese concentrations at Mary Lake since commercial mine operations commenced in 2015. No AEMP benchmarks for water quality were exceeded over the duration of spring, summer, and fall sampling events in 2020 at Mary Lake. In addition, no adverse effects on phytoplankton, benthic invertebrates, nor on fish (arctic charr) health were indicated at Mary Lake in 2020 based on comparisons to reference lake conditions and to Mary Lake baseline data. Under the Mary River Project AEMP Management Response Framework, the absence of a mine-related change in AEMP benchmark parameters over time (or compared to background) requires no further management response (Figure 2.8). Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no management response (i.e., alteration of existing AEMP) is required for Mary Lake as part of the next monitoring program.

6 CONCLUSIONS

6.1 Overview

The objective of the Mary River Project 2020 CREMP was to evaluate potential mine-related influences on chemical and biological conditions at aquatic environments located near the mine following the sixth full year of mine operation. The CREMP employs an effects-based approach that includes standard environmental effects monitoring (EEM) techniques that were conducted as the basis for determining potential mine-related effects at key receiving waterbodies. Under this approach, water quality and sediment quality data were used to support the interpretation of phytoplankton, benthic invertebrate community, and fish population survey data collected at mine-exposed areas of the Camp Lake, Sheardown Lake, Mary River and Mary Lake systems. The evaluation of potential mine-related effects within these systems was based upon comparisons of the 2020 data to applicable reference data, baseline data, and to guidelines that included site-specific AEMP benchmarks. The latter were developed to guide management response decisions within a four-step Management Response Framework as outlined in the Mary River Project AEMP (Baffinland 2015). An effects determination was conducted for all key waterbodies located within each of the Camp Lake, Sheardown Lake, Mary River, and Mary Lake systems, which was based on weight-of-evidence that considered incidences in which the AEMP benchmarks were exceeded and a commensurate adverse influence on aquatic biota occurred. Where appropriate, recommendations for future study were provided to assist Baffinland with decisions regarding appropriate management actions for cases in which AEMP benchmarks were not achieved. Potential mine-related effects identified in the 2020 CREMP are provided separately below for the Camp, Sheardown and Mary River/Lake systems.

6.2 Camp Lake System

Within the Camp Lake system, AEMP monitoring is conducted at Camp Lake Tributary 1 (CLT1), Camp Lake Tributary 2 (CLT2), and Camp Lake (JL0). At CLT1, AEMP water quality benchmarks were exceeded in 2020 for copper at the north branch, and for aluminum and iron at the main stem portions of the system (Table 6.1). Copper concentrations at the CLT1 north branch were elevated compared to concentrations at reference creeks, but were comparable to those shown during baseline. Although elevated aluminum concentrations at the CLT1 main stem were not attributable to mine operations, iron concentrations at the CLT1 upper main stem in 2020 were elevated compared to those at reference creeks and to baseline suggesting a potential minerelated influence on CLT1 water quality. Metal concentrations in sediment at CLT1 were well below SQG. In addition, no adverse effects on phytoplankton (chlorophyll-a) or benthic invertebrates were indicated at CLT1 in 2020 compared to reference creek and CLT1 baseline

Table 6.1: Summary of AEMP Benchmark Exceedances and Effects Determination for the Mary River Project 2020 CREMP and Monitoring Recommendations Based on the Results

Waterbody	AEMP Benchmark Exceedance	Effects Determination Summary	Recommendation
Camp Lake Tributary 1 (North Branch)	Aqueous total copper concentration greater than 0.0022 mg/L benchmark in spring and summer at the north branch (0.00221 mg/L and 0.00226 mg/L, respectively).		Low action response includes an expanded spatial water quality sampling program to identify the source(s) of copper to the watercourse.
Tributary 1	Aqueous total aluminum concentration greater than 0.179 mg/L benchmark in spring at upper main stem (0.270 mg/L). Aqueous total iron concentration greater than 0.326 mg/L benchmark in spring, summer, and fall at upper main stem (0.420 mg/L, 0.423 mg/L, and 0.522 mg/L, respectively).	imine-related change. No adverse effects on phytopiankion of beninic invertentates	Low action response includes establishing benthic invertebrate community monitoring stations at CLT1 upper main stem to evaluate/track effects to biota.
Camp Lake Tributary 2	Water quality met all AEMP benchmarks in 2020.		No changes recommended to monitoring program for CLT2 based on comparison to AEMP benchmarks.
Camp Lake	 Sediment arsenic concentration > 5.9 mg/kg benchmark at single littoral monitoring station (9.0 mg/kg). Sediment iron concentration > 52,400 mg/kg benchmark at single littoral monitoring station (61,000 mg/kg). Sediment nickel concentration > 72 mg/kg benchmark at single littoral monitoring station (72.5 mg/kg). Sediment arsenic, copper, iron, manganese, nickel, and phosphorus concentrations above respective benchmarks at individual stations, but below benchmarks on average, at profundal stations. 	under the AEMP, and thus it is unclear whether the change in arsenic concentration is	Low action response to harmonize lake sediment quality and benthic invertebrate monitoring stations, focusing primarily on littoral habitat, to improve the ability of the program to evaluate changes in metal concentrations in littoral sediment and to track mine-related effects to biota.
Sheardown Lake Tributary 1	Aqueous total copper concentration greater than 0.0022 mg/L benchmark in spring, summer, and fall (0.0029 mg/L, 0.0024, and 0.0023 mg/L, respectively).	adverse effects on phytoplankton or benthic invertebrates based on comparisons to	Low action response includes an expanded spatial water quality sampling program to identify the source(s) of copper to the watercourse.
Sheardown Lake Tributaries 9 and 12	Water quality met all AEMP benchmarks in 2020.	, ,	Low action response to add water quality monitoring stations to each of these tributaries to assist in determination of effects to biota in the future.
Sheardown Lake Northwest and Southeast basins	Arsenic concentration in sediment greater than AEMP benchmark. Chromium concentration in sediment greater than AEMP benchmark. Iron concentration in sediment greater than AEMP benchmark. Manganese concentration in sediment greater than AEMP benchmark. Nickel concentration in sediment greater than AEMP benchmark.	No AEMP water quality benchmarks were exceeded at Sheardown Lake in 2020. For all parameters, no change in concentration in sediment was shown compared to background and/or baseline, indicating the change was not mine-related.	Low action response to examine the relevance of site- specific sediment quality AEMP benchmarks for Sheardown Lake SE and, if necessary, establish new AEMP benchmarks taking into consideration data from the reference lake and applicable sediment quality guidelines.
Mary River	Aluminum concentration in water greater than AEMP benchmark in summer. Copper concentration in water greater than AEMP benchmark in summer. Iron concentration in water greater than AEMP benchmark in summer. Lead concentration in water greater than AEMP benchmark in summer.	Concentrations of metals in water of Mary River during the summer occurred as a result of high turbidity in 2020, and were comparable to background and/or baseline indicating that the elevated concentrations in 2020 were not mine-related. No adverse effects on phytoplankton, benthic invertebrates, or fish were indicated at Mary River compared to reference data or to baseline conditions.	No changes recommended to monitoring program for Mary River due to exceedances of AEMP benchmarks.
IIVIARV I AKA	Manganese concentration in sediment greater than AEMP benchmark at a single profundal station.		No changes recommended to monitoring program for Mary Lake due to exceedance of AEMP benchmark.

conditions. Applying the Mary River Project AEMP Management Response Framework, low action responses including implementation of an expanded spatial water quality sampling program to identify the source(s) of copper to the CLT1 north branch, and establishment of benthic invertebrate community sampling stations to evaluate possible mine-related effects on biota in the upper main stem portion of CLT1, are recommended.

At CLT2, water chemistry met all AEMP benchmarks, sediment quality met all SQG, and no adverse effects on phytoplankton or benthic invertebrates were indicated relative to reference creek conditions and CLT2 baseline data in 2020. Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no adjustments to the existing AEMP are recommended.

At Camp Lake, no AEMP water quality benchmarks were exceeded, but arsenic concentrations in sediment at a single littoral station that were above the AEMP sediment quality benchmark possibly indicated a mine-related change in 2020 relative to background and/or baseline conditions (Table 6.1). No adverse effects on phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at Camp Lake in 2020 based on comparisons to reference lake conditions and to Camp Lake baseline data. No identifiable mine-related sources of arsenic to the Camp Lake system were evident, and the current AEMP does not adequately capture variability in sediment chemistry at littoral habitat of Camp Lake. Considering arsenic concentrations in sediment, sources of arsenic to the system, and the current AEMP design, a low action response is recommended at Camp Lake under the AEMP Management Response Framework. To this end, harmonizing lake sediment quality and benthic invertebrate community monitoring stations, focusing on littoral habitat, is recommended to improve the ability of the program to evaluate mine-related effects to sediment quality at littoral areas and to potentially allow linkages to be determined between metal concentrations in sediment and benthic invertebrate community responses in the future.

6.3 Sheardown Lake System

Within the Sheardown Lake system, AEMP monitoring is conducted at Sheardown Lake Tributaries 1, 12, and 9 (SDLT1, SDLT12, and SDLT9, respectively), Sheardown Lake NW (DL0-01) and Sheardown Lake SE (DL0-02). At the Sheardown Lake tributaries, AEMP water quality benchmarks were exceeded in 2020 for copper at SDLT1 (Table 6.1), but because no elevation in copper concentrations was indicated compared to baseline conditions, copper concentrations naturally appeared to be near the AEMP benchmark at this tributary. No adverse effects to phytoplankton or benthic invertebrates were indicated at SDLT1 or at either SDLT12 or SDLT9 in 2020 based on comparison to reference creek concentrations and respective Sheardown Lake Tributary baseline data. Because no adverse effects to biota were associated

with copper concentrations above the AEMP benchmark at SDLT1, a low action response to identify the likely source(s) of copper to the system is recommended to meet obligations under the AEMP Management Response Framework. Although no mine-related changes to phytoplankton or benthic invertebrates were indicated at SDLT12 and SDLT9 in 2020, a low action response to add a water quality monitoring station at each of these two tributaries under the AEMP is recommended to improve the ability of the program to interpret biological data in the future.

At Sheardown Lake NW, no AEMP benchmarks for water quality were exceeded in 2020. Lake-specific AEMP benchmarks for sediment quality were exceeded for arsenic, iron, manganese, and nickel in 2020, but none of these metals were elevated in the sediment of Sheardown Lake NW compared to the reference lake and to concentrations at Sheardown Lake NW during baseline (Table 6.1). No adverse effects to phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at Sheardown Lake NW in 2020 based on comparisons to reference conditions and to Sheardown Lake NW baseline conditions. Because no mine-related changes in metal concentrations occurred in sediment at Sheardown Lake NW in 2020, and no adverse effects to biota were associated with concentrations of metals above AEMP sediment quality benchmarks, a low action response is recommended to meet obligations under the AEMP Management Response Framework. Specifically, it is recommended that, because concentrations of metals in Sheardown Lake NW sediment have been similar to those shown at the reference lake, consideration should be given to updating the AEMP sediment quality benchmarks for Sheardown Lake NW to reflect not only baseline data, but also reference lake data.

At Sheardown Lake SE, no AEMP benchmarks for water quality were exceeded in 2020. Lake-specific AEMP benchmarks for sediment quality were exceeded for chromium, iron, manganese, and nickel concentrations at Sheardown Lake SE in 2020 (Table 6.1). However, none of these metals occurred at concentrations in sediment of Sheardown Lake SE that were elevated compared to the reference lake, or to concentrations shown at Sheardown Lake SE during the baseline period. In addition, concentrations of these metals were above the Sheardown Lake SE AEMP benchmarks in sediment at the reference lake, suggesting naturally high concentrations of each of the indicated metals in sediments of area lakes. No adverse effects to phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at Sheardown Lake SE in 2020 based on comparisons to reference conditions and to applicable Sheardown Lake SE baseline conditions. Because no mine-related changes in metal concentrations occurred in sediment at Sheardown Lake SE in 2020 and no adverse effects to biota were associated with concentrations of metals above AEMP benchmarks for sediment quality, a low action response is recommended to meet obligations under the AEMP Management Response Framework. Specifically, it is recommended that the relevance of site-specific sediment quality AEMP

benchmarks for Sheardown Lake SE be assessed and, if necessary, determined anew taking into consideration data from the reference lake and applicable sediment quality guidelines.

6.4 Mary River and Mary Lake Systems

Within the Mary River and Mary Lake systems, AEMP monitoring is conducted at Mary River Tributary-F (MRTF), Mary River, and Mary Lake (BL0). At MRTF, no AEMP benchmarks for water quality were exceeded in 2020, and for parameters with established AEMP benchmarks, no changes in concentrations were shown relative to baseline. No adverse effects on phytoplankton were indicated at MRTF in 2020. Biological sampling conducted at MRTF to meet MDMER obligations suggested some differences in benthic invertebrate community assemblages between effluent-exposed and reference areas, but these differences did not appear to be related to metal concentrations originating from mine effluent and/or mine operations (Minnow 2021). Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and to baseline, and no adverse biological effects related to metals were indicated in 2020, no changes to the existing sampling program at MRTF are recommended.

At Mary River, concentrations of aluminum, copper, iron, and lead were above respective AEMP benchmarks at stations located adjacent to the mine (i.e., E0 series stations) and, with the exception of lead, downstream of the mine (C0 series) in 2020 (Table 6.1). However, the concentrations for each of these parameters were similar or higher, and above applicable AEMP benchmarks, at the Mary River reference stations (G0-09 series) and/or upstream stations (G0 series), reflecting highly turbid sampling conditions that occurred in 2020. No mine-related changes to parameter concentrations were indicated at Mary River mine-exposed stations in 2020 compared to the reference stations and to Mary River baseline data. In addition, metal concentrations in sediment were well below SQG, and no adverse effects on phytoplankton, benthic invertebrates, and fish (arctic charr) health were indicated at all Mary River mine-exposed areas in 2020. Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no changes to AEMP monitoring at Mary River are recommended as per the AEMP Management Response Framework.

At Mary Lake, no AEMP benchmarks for water quality were exceeded in 2020. Lake-specific AEMP benchmarks for sediment quality were exceeded for manganese concentrations at a single profundal station in 2020 (Table 6.1). The isolated occurrence of this exceedance, and the fact that average manganese concentrations in sediment at Mary Lake were not elevated compared to concentrations at the reference lake or to those at Mary Lake during baseline, indicated no mine-related change in manganese concentrations at Mary Lake since commercial mine operations commenced in 2015. No adverse effects on phytoplankton, benthic invertebrates, nor

on fish (arctic charr) health were indicated at Mary Lake in 2020 based on comparisons to reference lake conditions and to Mary Lake baseline data. Because no changes in concentrations of AEMP benchmark parameters occurred relative to background and baseline and no adverse biological effects were indicated in 2020, no changes to AEMP monitoring at Mary Lake are recommended as per the AEMP Management Response Framework.

7 REFERENCES

- Anderson, M.J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253.
- Armitage, P., P.S. Cranston, and L.C.V. Pinder. 1995. The Chironomidae: The Biology and Ecology of Non-Biting Midges. Chapman and Hall, London, U.K. 572 pp.
- Baffinland (Baffinland Iron Mines Corporation). 2015. Mary River Project Aquatic Effects Monitoring Plan. Document No. BAF-PH1-830-P16-0039. Rev 1.
- BCMOE (British Columbia Ministry of the Environment). 2006. A Compendium of Working Water Quality Guidelines for British Columbia. Environmental Protection Division, Victoria, British Columbia.
- BCMOE. 2019. British Columbia Approved Water Quality Guidelines. http://www2.gov.bc.ca/gov/content/environment/air-land-water/water-quality/water-quality-guidelines Accessed December 2019.
- Borcard, D. and P. Legendre. 2013. Review of the pros and cons of available indices applicable to the Environmental Effects Monitoring (EEM) to evaluate changes in benthic invertebrate community structure in response to effluent exposure. Final report, Environment Canada, project #K2A80-12-0010.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. Winnipeg, MB. With Updates to 2017.
- CCME. 2020. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/resources/water-quality. Accessed December 2020.
- Dodds, W.K., J.R. Jones and E.B. Welch. 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Resources 12: 1455 1462.
- Environment Canada. 2012. Metal Mining Technical Guidance for Environmental Effects Monitoring. ISBN 978-1-100-20496-3.
- Intrinsik (Intrinsik Environmental Sciences Inc.). 2014. Development of Water and Sediment Quality Benchmarks for Application in Aquatic Effects Monitoring at the Mary River Project. Report Prepared for Baffinland Iron Ore. June 26 2014.
- Intrinsik. 2015. Establishment of Final Sediment Quality Aquatic Effects Monitoring Program Benchmarks. Report Prepared for Baffinland Iron Ore. March 2015.
- KP (Knight Piesold Ltd.) 2014a. Baffinland Iron Mines Corporation Mary River Project Water and Sediment Quality Review and CREMP Monitoring Report. KP Ref. No. NB102-181/33-1. June 25, 2014.

- KP 2014b. Baffinland Iron Mines Corporation Mary River Project Detailed Review of Baseline Stream Water Quality. KP Ref. No. NB102-181/33-1C. May 30, 2014.
- KP. 2015. Baffinland Iron Mines Corporation Mary River Project 2014 Water and Sediment CREMP Monitoring Report. KP Ref. No. NB102-181/34-6. March 19, 2015.
- Mandaville, S.M. 2002. Benthic Macroinvertebrates in Freshwaters Taxa Tolerance Values, Metrics and Protocols. Project H-1. Soil and Water Conservation Society of Metro Halifax.
- Merritt, R.L., K.M. Cummins, and M.B. Berg. 2008. An Introduction to the Aquatic Insects of North America. 4th Ed. Kendall/Hunt Publishing, Dubuque. 1214 pp.
- Minnow (Minnow Environmental Inc.). 2016a. Mary River Project 2015 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2016.
- Minnow. 2016b. Mary River Project CREMP Recommendations for Future Monitoring. Letter report to Jim Millard, Baffinland Iron Mines Corp. March 17, 2016.
- Minnow. 2017. Mary River Project 2016 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2017.
- Minnow. 2018. Mary River Project 2017 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2018. Project 177202.0033.
- Minnow. 2019. Mary River Project 2018 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2019. Project 187202.0025.
- Minnow. 2020. Mary River Project 2019 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2019. Project 197202.0032.
- Minnow. 2021. Mary River Project Second Environmental Effects Monitoring (2020) Interpretive Report. Prepared for Baffinland Iron Mines Corp. January 2021. Project 207202.0046.
- Munkittrick, K.R., C.J. Arens, R.B. Lowell, and G.P. Kaminski. 2009. A review of potential methods of determining critical effect size for designing environmental monitoring programs. Environmental Toxicology and Chemistry 8: 1361 1371.
- Namayandeh, A., K.S. Heard, E.A. Luiker, and J.M.Culp. 2016. Chironomidae (Insecta: Diptera) from the Eastern Canadian Arctic and Subarctic with descriptions of new life stages, a possible new genus, and new geographical records. Journal of Entomological and Acarological Research Vol. 48, No. 2 (2016): Special Issue on Chironomidae.
- NSC (North/South Consultants Inc.). 2014. Mary River Project Core Receiving Environment Monitoring Program: Freshwater Biota. Report prepared for Baffinland Iron Mines Corporation. June 2014.
- OMOE (Ontario Ministry of Environment). 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. August 1993, Reprinted October, 1996.

- OMOEE (Ontario Ministry of Environment and Energy). 1994. Water Management: Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy. July, 1994. Reprinted February 1999.
- Pennak, R.W. 1989. Freshwater invertebrates of the United States. Third edition. John Wiley and Sons, Inc., New. York. 628 pp.
- Smith, B. and J.B. Wilson. 1996. A consumer's guide to evenness indices. Oikos 76: 70 82.
- USEPA (United States Environmental Protection Agency). 2016. Aquatic Life Ambient Water Quality Criterion for Selenium Freshwater. EPA 822-R-16-006.
- Ward, J.V. 1992. Aquatic Insect Ecology, Part 1, Biology and Habitat. John Wiley and Sons, Inc. New York. 456 pp.
- Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. Third Edition. Academic Press. San Diego, CA, USA. 1006 pp.
- Wetzel, R.G. and G. E. Likens 2000. Limnological Analysis. Third Edition. Springer Science + Business Media Inc. New York, NY, USA. 429 pp.

Mary River Project 2020 Core Receiving Environment Monitoring Program Report

Part 2 of 3 (Appendices A to D)

Prepared for: **Baffinland Iron Mines Corporation** Oakville, Ontario

Prepared by: **Minnow Environmental Inc.**Georgetown, Ontario

March 2021

APPENDIX A DATA QUALITY REVIEW

APPENDIX A DATA QUALITY REVIEW

A 1	INTRODUCTION1
A2. A2. A2.2 A2.	RESULTS 3 Water Quality 3 1.1 Sample Blanks 3 1.2 Precision – Field Duplicates 7 Benthic Invertebrate Community Samples 7 2.1 Subsampling Accuracy 7 2.2 Organism Recovery 7 DATA QUALITY STATEMENT 12
AU	DATA COALITI OTATEMENT
LIST O	F TABLES
Table <i>F</i>	A.1: Water Sample Trip Blank Results with Reference to Data Quality Objectives, Mary River CREMP, 20204
Table A	A.2: Water Sample Field Blank Results with Reference to Data Quality Objectives, Mary River CREMP, 20205
Table <i>F</i>	A.3: Water Sample Equipment Blank Results with Reference to Data Quality Objectives, Mary River CREMP, 20206
Table A	A.4: Water Quality Field Duplicate Results with Reference to Relative Percent Differences, Mary River CREMP, 20208
Table A	A.5: Proportion of Benthic Invertebrates Samples Sorted for the 2019 CREMP11
Table <i>I</i>	A.6: Subsampling Error for Benthic Invertebrate Community Samples, 2019 CREMP11
Table A	A.7: Percent Recovery from Benthic Invertebrate Samples, Mary River Project CREMP, 201911

A1 INTRODUCTION

Data Quality Review (DQR) was conducted on data collected as part of the Mary River Project 2020 CREMP to define the overall quality of the data collected for the program, and by extension, the confidence with which the data could be used to derive conclusions. A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study and thus affect the accuracy and/or precision of the data. Depending on the magnitude of these influences, inaccuracy or imprecision have the potential to affect the reliability of conclusions drawn from the available data. Therefore, it is important to ensure that programs incorporate appropriate steps to control the non-natural sources of data variability (i.e., minimize the variability that does not reflect natural spatial and temporal variability in the environment) and thus assure the quality of the data.

The Mary River Project 2020 CREMP DQR involved comparison of field performance to generic environmental study data quality objectives (DQO) for the evaluation of sample blanks, data precision, and data accuracy. DQO were established *a priori* to reflect reasonable and achievable performance expectations. Overall, the intent of comparing data to DQO was not to reject any measurement that did not meet the DQO, but rather to evaluate whether, based on the available data and using a weight-of-evidence approach, the field and/or analytical sample data adequately reflected actual conditions and thus could be used with confidence to derive study conclusions. Using this approach, questionable data received more scrutiny to determine what effect, if any, this had on interpretation of results within the context of this project. Quality Control (QC) samples assessed for the Mary River Project CREMP included water sample trip blanks, field blanks, equipment blanks, and field duplicates, and verification of the accuracy of sub-sampling and organism recovery for the benthic invertebrate component, defined as follows:

- Blanks (water quality samples) are samples of deionized water and/or appropriate reagent(s) that are handled and analyzed the same way as regular samples. Blank samples reflect contamination that occurred from the equipment (in the case of equipment blanks), in the field (in the case of trip or field blanks), or in the laboratory (in the case of laboratory or method blanks). Analyte concentrations should be non--detectable, although a data quality objective of five times the laboratory reportable detection limit (RDL) allowed for slight "noise" around the detection limit.
- **Trip Blanks** are meant to detect any widespread contamination resulting from the container (including caps) and preservative during transport and storage. A trip blank is a bottle set to which deionized water has been added in a laboratory prior to

the field sample collections, which is transported with the regular sample bottles in the field, and remains unopened throughout the trip.

- **Field Blanks** mimic the sampling and preservative process but do not come in contact with ambient water. Field blanks are exposed to the sampling environment at the sample site. Consequently, they provide information on contamination resulting from the handling technique and through exposure to the atmosphere. They are processed in the same manner as the associated field samples (i.e., they are exposed to all the same potential sources of contamination as the field sample), including handling and, in some cases, filtration and/or preservation.
- Equipment Blanks are samples of deionized water collected from the sampling
 equipment following decontamination (i.e., rinsing of the sampling device using
 deionized water) in the field between sampling stations and/or events. These blanks
 are useful in identifying cross contamination of samples in the field as a result of the
 sampling device.
- Field Duplicates (water quality samples) are sub-sample pairs collected from randomly selected field stations using identical collection and handling methods that are then analyzed separately in the laboratory. The duplicate samples are handled and analyzed in an identical manner in the laboratory. The data from field duplicate samples reflect natural variability, as well as the variability associated with sample collection methods, and therefore provide a measure of field precision.
- Sub-Sampling Checks (benthic invertebrate community samples) are used when excessive sample volume and/or organism density results in only a fraction of the original sample being analyzed. By comparing the numbers of benthic invertebrates recovered between at least two sub-samples, this measure provides an evaluation of how effective the sub-sampling method was in evenly dividing the original sample during processing in the laboratory. Therefore, sub-sampling error provides a measure of analytical precision. The processing of entire samples in representative sample fractions also allows an evaluation of sub-sampling accuracy.
- Organism Recovery Checks (benthic invertebrate community samples) involve the
 re-processing of previously sorted material from a randomly selected sample to
 determine the number of invertebrates that were not recovered during the original
 sample processing. The reprocessing is conducted by an analyst not involved during
 the original processing to reduce bias. This check allows the determination of accuracy
 through assessment of recovery efficiency.

A2 RESULTS

A2.1 Water Quality

A2.1.1 Sample Blanks

Trip blank samples were taken on field sampling campaigns a total of nine times during the 2020 CREMP, including two during the winter lake monitoring event (April), one during the spring stream monitoring event (early July), three during the summer lake/stream monitoring event (late July/early August), and three during the fall lake/stream monitoring event (late August). Of the 755 total analyses conducted on the trip blank samples, only 11 (1.5%) resulted in analyte detection above the trip blank DQO of less than five-times the laboratory reporting limit (LRL; Appendix Table A.1). No parameters showed concentrations that were consistently elevated above the trip blank DQO among sampling events, or between total and dissolved sample fractions (metals only; Appendix Table A.1), suggesting no widespread contamination from the bottle, bottle caps, or preservative or through the transport of the samples.

Field blank samples were assessed a total of eight times during the 2020 CREMP, including two during the winter lake monitoring event, one during the spring stream monitoring event, two during the summer lake/stream monitoring event, and three during the fall lake/stream monitoring event. Of the 678 determinations made, 32 (4.7%) resulted in analyte detections above the DQO of less than five-times the laboratory LRL (Appendix Table A.2). The majority of these exceedances were from a single sample collected during the fall lake/stream monitoring event (JLO-01-S02), which had 26 of the 32 detections above the DQO (Appendix Table A.2). Overall, with the exception of the fall lake/stream sample (JLO-01-S02), frequency of detected parameter concentrations in field blanks was low, no pervasive contamination of samples resulting from the handling technique or through exposure to the atmosphere was suggested by the field blank analyses.

Equipment blank samples were collected a total of six times during the 2020 CREMP, including two during the winter lake monitoring event, two during the summer lake monitoring event, and three during the fall lake monitoring event. Of the 503 determinations conducted, 3 (0.60%) resulted in analyte detection above the DQO of less than five-times the laboratory LRL (Appendix Table A.3). Due to the infrequency of detected parameter concentrations in field equipment blanks, minimal cross contamination of samples likely occurred in the field due to the use of the sampling device itself and/or the field sampling procedures.

Table A.1: Water Sample Trip Blank Results with Reference to Data Quality Objectives, Mary River CREMP, 2020

	Sample ID		DL0-02-04-S03		G0-09-A03	BLO-01-A-B03		GO-0303		REF3-01-B03	E0-2103
	Sampled e Sampled	Lowest	14-Apr-2020 13:40	17-Apr-2020 10:15	4-Jul-2020 11:35	30-Jul-2020 11:00	2-Aug-2020 10:00	2-Aug-2020 10:15	28-Aug-2020 14:20	29-Aug-2020 10:05	28-Aug-2020 11:28
	Sample ID	LRLª	L2436713-2	L2438141-2	L2470180-26	L2482114-7	L2482822-8	L2482823-2	L2496051-11	L2496136-7	L2496071-15
Dhysical Toots	Units										
Physical Tests Conductivity	umhos/cm	3	<3.0	<3.0	<3.0	7.2	7.9	<3.0	<3.0	<3.0	<3.0
Hardness (as CaCO ₃)	mg/L	0.500	<0.50	<0.50	<0.50	1.58	1.48	<0.50	<0.50	<0.50	<0.50
Total Suspended Solids Total Dissolved Solids	mg/L mg/L	2 10.0	<2.0 <10	<2.0 13	<2.0 74	<2.0 18	<2.0 <10	<2.0 <10	<2.0 <10	<2.0 11	<2.0 <10
Turbidity	NTU	0.100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions and Nutrients (Water											
Alkalinity, Total (as CaCO ₃) Ammonia, Total (as N)	mg/L mg/L	10.0 0.0100	<10 <0.010	<10 <0.010	<10 0.012	2.9 <0.0050	<10 <0.010	<10 <0.010	<10 <0.010	<10 0.026	<10 0.014
Bromide (Br)	mg/L	0.100	<0.10	<0.10	<0.10	<0.050	<0.10	<0.10	<0.10	<0.10	<0.10
Chloride (Cl) Nitrate and Nitrite as N	mg/L mg/L	0.500 0.0210	<0.50 <0.021	<0.50 <0.021	<0.50 <0.021	0.64	0.68 0.03	<0.50 <0.021	<0.50 <0.021	<0.50 <0.021	<0.50 <0.021
Nitrate (as N)	mg/L	0.0210	<0.021	<0.021	<0.021	0.0319	0.030	<0.021	<0.021	<0.021	<0.021
Nitrite (as N)	mg/L	0.00500	<0.0050	<0.0050	<0.0050	<0.0010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Total Kjeldahl Nitrogen Phosphorus, Total	mg/L mg/L	0.150 0.00300	<0.15 <0.0030	<0.15 <0.0030	<0.15 <0.0030	<0.050 <0.0020	<0.15 <0.0030	<0.15 <0.0030	<0.15 <0.0030	<0.15 <0.0030	<0.15 <0.0030
Sulfate (SO ₄)	mg/L	0.300	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Organic / Inorganic Carbon											
Dissolved Organic Carbon Total Organic Carbon	mg/L mg/L	0.500 0.500	1.62 1.18	1.24 2.98	0.68 1.46	<0.50 <0.50	<0.50 1.55	1.00 1.61	<0.50 1.00	0.54 1.01	0.95 1.07
Total Metals (Water)	mg/L	0.500	1.10	2.30	1.40	10.50	1.00	1.01	1.00	1.01	1.07
Aluminum (AI)	mg/L	0.00300	0.0034	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Antimony (Sb)	mg/L	0.000100 0.000100	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Arsenic (As) Barium (Ba)	mg/L mg/L	0.000100	<0.00010 0.000156	<0.00010	<0.00010	<0.00010 0.00015	0.00010	0.000010	<0.00010	<0.00010	<0.00010
Beryllium (Be)	mg/L	0.000100	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi) Boron (B)	mg/L mg/L	0.000500 0.0100	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.000050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010
Cadmium (Cd)	mg/L	0.0000100	<0.000010	<0.000010	<0.000010	<0.0000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Calcium (Ca)	mg/L	0.0500	0.105	<0.050	<0.050	0.308	0.305	<0.050	<0.050	<0.050	<0.050
Chromium (Cr) Cobalt (Co)	mg/L mg/L	0.000500 0.000100	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00010 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010
Copper (Cu)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Iron (Fe) Lead (Pb)	mg/L mg/L	0.0300 0.0000500	<0.030 <0.000050	<0.030 <0.00050	<0.030 <0.000050	<0.010 <0.000050	<0.030 <0.000050	<0.030 <0.000050	<0.030 <0.000050	<0.030 <0.000050	<0.030 <0.000050
Lithium (Li)	mg/L	0.0000300	<0.0010	<0.000030	<0.000030	<0.0010	<0.000030	<0.000030	<0.0000	<0.000030	<0.000030
Magnesium (Mg)	mg/L	0.0500	<0.050	<0.050	<0.050	0.199	0.187	<0.050	<0.050	<0.050	<0.050
Manganese (Mn) Mercury (Hg)	•	0.0000700	0.000120 <0.0000050	<0.000070 <0.000050	<0.000070 <0.0000050	<0.00010 <0.000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.000070 <0.0000050
Molybdenum (Mo)		0.0000500	0.000139	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Nickel (Ni)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Potassium (K) Selenium (Se)	mg/L mg/L	0.0500 0.00100	<0.20 <0.0010	<0.20 <0.0010	<0.20 <0.0010	0.199 <0.000050	<0.20 <0.0010	<0.20 <0.0010	<0.20 <0.0010	<0.20 <0.0010	<0.20 <0.0010
Silicon (Si)	mg/L	0.100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Silver (Ag) Sodium (Na)	mg/L	0.0000100 0.0500	<0.000010 <0.050	<0.00010 <0.050	<0.000010 <0.050	<0.000010 0.857	<0.000010 0.752	<0.000010 <0.050	<0.000010 <0.050	<0.000010 <0.050	<0.000010 <0.050
Strontium (Sr)	mg/L mg/L	0.000100	<0.00010	<0.00010	<0.00010	0.00028	0.00026	<0.00010	<0.00010	<0.00010	<0.00010
Thallium (TI)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin (Sn) Titanium (Ti)	mg/L mg/L	0.000100 0.0100	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.00030	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010
Uranium (U)	mg/L	0.0000100	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	<0.00010	0.000011
Vanadium (V)	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Zinc (Zn) Dissolved Metals (Water)	mg/L	0.00300	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Aluminum (AI)	mg/L	0.00300	<0.0030	<0.0030	<0.0030	0.0011	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Antimony (Sb) Arsenic (As)	mg/L mg/L	0.000100 0.000100	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Barium (Ba)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	0.00016	0.00010	<0.00010	0.000079	<0.00010	<0.00010
Beryllium (Be)	mg/L	0.000100	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi) Boron (B)	mg/L mg/L	0.000500 0.0100	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.000050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010
Cadmium (Cd)	mg/L	0.0000100	<0.000010	<0.000010	<0.000010	<0.0000050	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010
Calcium (Ca)	mg/L	0.0500	0.058	<0.050	<0.050	0.315	0.292	<0.050	<0.050	<0.050	<0.050 <0.00050
Chromium (Cr) Cobalt (Co)	mg/L mg/L	0.000500 0.000100	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00010 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050
Copper (Cu)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.00020	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Iron (Fe) Lead (Pb)	mg/L mg/L	0.0300 0.0000500	<0.030 <0.000050	<0.030 <0.00050	<0.030 <0.000050	<0.010 <0.00050	<0.030 <0.00050	<0.030 <0.000050	<0.030 <0.000050	<0.030 <0.00050	<0.030 <0.000050
Lithium (Li)	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.0010
Magnesium (Mg)	mg/L	0.0500	<0.050	<0.050	<0.050	0.192	0.183	<0.050	<0.050	<0.050	<0.050
Manganese (Mn) Mercury (Hg)	mg/L mg/L	0.0000700 0.0000100	<0.000070 <0.0000050	<0.000070 <0.000050	<0.000070 <0.0000050	<0.00010 <0.000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.000070 <0.0000050
Molybdenum (Mo)	mg/L	0.0000500	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Nickel (Ni)	mg/L	0.000500 0.0500	<0.00050 <0.20	<0.00050 <0.20	<0.00050 <0.20	<0.00050 0.199	<0.00050 <0.20	<0.00050 <0.20	<0.00050 <0.20	<0.00050 <0.20	<0.00050 <0.20
Potassium (K) Selenium (Se)	mg/L mg/L	0.0500	<0.20	<0.20	<0.20	<0.000050	<0.20	<0.20	<0.20	<0.20	<0.20
Silicon (Si)	mg/L	0.100	<0.10	<0.10	<0.10	0.062	<0.10	<0.10	<0.10	<0.10	<0.10
Silver (Ag) Sodium (Na)	mg/L mg/L	0.0000100 0.0500	<0.00010 <0.050	<0.00010 <0.050	<0.000010 <0.050	<0.000010 0.829	<0.000010 0.763	<0.000010 <0.050	<0.000010 <0.050	<0.000010 <0.050	<0.000010 <0.050
Strontium (Sr)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	0.00027	0.703	<0.00010	<0.00010	<0.00010	<0.00010
Thallium (TI)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin (Sn) Titanium (Ti)	mg/L mg/L	0.000100 0.0100	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.00030	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010
Uranium (Ù)	mg/L	0.0000100	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000013
Vanadium (V)	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Zinc (Zn) Aggregate Organics (Water	mg/L r)	0.00300	<0.0030	<0.0030	<0.0030	0.0012	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Phenols (4AAP)	mg/L	0.00100	<0.0010	0.0022	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	0.0012	0.0033
Plant Pigments (Water)		0.400	.0.10	.0.40	.0.10	0.44	0.00	201	:0.40	.0.40	0.11
Chlorophyll a	μg/L	0.100	<0.10 0.22	<0.10 0.24	<0.10 0.26	0.11	0.22 0.92	0.24	<0.10 0.43	<0.10	0.11

Parameter concentration did not meet the data quality objective of \leq 5x the LRL. Note: LRL = Laboratory Reporting Limit.

^a For some analytes, a range of LRLs were achieved in different laboratory reports. Each blank was compared to the LRL applicable to that sample.

Table A.2: Water Sample Field Blank Results with Reference to Data Quality Objectives, Mary River CREMP, 2020

			DL0-02-03-S02	BL0-01-S02	L1-08-02	JLO-02-S02	DLO-02-08-S02	JLO-01-S02	DLO-01-04-S02	L1-0902
Parameter		Lowest LRL ^a	15-Apr-2020	19-Apr-2020	4-Jul-2020	29-Jul-2020	28-Jul-2020	30-Aug-2020	27-Aug-2020	30-Aug-2020
		LKL	9:45 L2437255-2	10:20 L2438194-2	9:45 L2470180-22	13:30 L2481531-2	11:40 L2480819-19	9:30 L2496168-1	10:00 L2495475-5	8:25 L2496202-3
Physical Tests	Units									
Conductivity Hardness (as CaCO ₃)	umhos/cm mg/L	3 10.0	<3.0 <0.50	<3.0 <0.50	<3.0 <0.50	5.5 1.43	<2.0 0.83	155 78.7	<3.0 <0.50	<3.0 <0.50
рН	pH units	-	6.67	5.91	6.75	6.55	6.59	8.09	6.06	6.38
Total Suspended Solids	mg/L	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Total Dissolved Solids Turbidity	mg/L NTU	20.0 0.100	20 <0.10	13 <0.10	43 <0.10	12 <0.10	<10 <0.10	171 0.27	<10 <0.10	74 <0.10
Anions and Nutrients (Wat			0.10	0.10	0.10				00	00
Alkalinity, Total (as CaCO ₃) Ammonia, Total (as N)	mg/L mg/L	10.0 0.0200	<10 <0.010	<10 <0.010	<10 <0.010	2.7 <0.0050	1.4 <0.0050	70 <0.010	<10 <0.010	<10 <0.010
Bromide (Br)	mg/L	0.0200	<0.10	<0.10	<0.10	<0.0050	<0.050	<0.10	<0.10	<0.010
Chloride (CI)	mg/L	0.500	<0.50	<0.50	<0.50	<0.50	<0.50	4.87	<0.50	<0.50
Nitrate and Nitrite as N Nitrate (as N)	mg/L mg/L	0.0210 0.0200	<0.021 <0.020	<0.021 <0.020	<0.021 <0.020	0.0226	<0.0050	0.032 0.032	<0.021 <0.020	<0.021 <0.020
Nitrite (as N)	mg/L	0.00500	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010	<0.0050	<0.0050	<0.0050
Total Kjeldahl Nitrogen Phosphorus, Total	mg/L mg/L	0.150 0.00300	<0.15 <0.0030	<0.15 <0.0030	<0.15 <0.0030	<0.050 <0.0020	<0.050 <0.0020	<0.15 <0.0030	<0.15 <0.0030	<0.15 <0.0030
Sulfate (SO ₄)	mg/L	0.300	<0.30	<0.30	<0.30	<0.30	<0.30	4.76	<0.30	<0.30
Organic / Inorganic Carbor		0.500	0.00	4.00	0.50	0.50	0.50		0.50	0.00
Dissolved Organic Carbon	mg/L	0.500	0.88	1.23	<0.50	<0.50	<0.50	2.5	<0.50	0.89
Total Organic Carbon	mg/L	0.500	1.06	2.69	1.30	0.57	<0.50	3.23	0.89	1.09
Total Metals (Water) Aluminum (AI)	mg/L	0.00300	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0049	<0.0030	<0.0030
Antimony (Sb)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic (As) Barium (Ba)	mg/L mg/L	0.000100 0.0000500	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 0.00015	<0.00010 0.00017	<0.00010 0.00742	<0.00010 0.000103	<0.00010 <0.000050
Beryllium (Be)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050
Boron (B) Cadmium (Cd)	mg/L mg/L	0.0100 0.0000100	<0.010 <0.000010	<0.010 <0.000010	<0.010 <0.000010	<0.010 <0.000050	<0.010 <0.000050	<0.010 <0.000010	<0.010 <0.000010	<0.010 <0.000010
Calcium (Ca)	mg/L	0.0500	<0.050	<0.050	<0.050	0.286	0.207	15.3	<0.050	<0.050
Chromium (Cr) Cobalt (Co)	mg/L mg/L	0.000500 0.000100	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010
Copper (Cu)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00088	<0.00010	<0.00010
Iron (Fe)	mg/L	0.0300	<0.030	<0.030	<0.030	<0.010	<0.010	<0.030	<0.030	<0.030
Lead (Pb) Lithium (Li)	mg/L mg/L	0.0000500	<0.000050 <0.0010	<0.000050 <0.0010	<0.000050 <0.0010	<0.000050 <0.0010	<0.000050 <0.0010	<0.000050 0.0012	<0.000050 <0.0010	<0.000050 <0.0010
Magnesium (Mg)	mg/L	0.0500	<0.050	<0.050	<0.050	0.172	0.0904	9.45	<0.050	<0.050
Manganese (Mn)	mg/L mg/L	0.0000700 0.0000100	<0.000070 <0.000050	<0.000070 <0.0000050	<0.000070 <0.0000050	<0.00010 <0.000050	<0.00010 <0.000050	0.00121 <0.000050	<0.000070 <0.0000050	<0.000070 <0.0000050
Mercury (Hg) Molybdenum (Mo)	mg/L	0.0000100	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000397	<0.000050	<0.000050
Nickel (Ni)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00059	<0.00050	<0.00050
Potassium (K) Selenium (Se)	mg/L mg/L	0.200 0.00100	<0.20 <0.0010	<0.20 <0.0010	<0.20 <0.0010	0.125 <0.000050	<0.050 <0.00050	1.31 <0.0010	<0.20 <0.0010	<0.20 <0.0010
Silicon (Si)	mg/L	0.100	<0.10	<0.10	<0.10	<0.10	<0.10	0.35	<0.10	<0.10
Silver (Ag)	mg/L	0.0000100 0.0500	<0.00010 <0.050	<0.000010 <0.050	<0.000010 <0.050	<0.000010 0.553	<0.000010 0.096	<0.000010	<0.00010 <0.050	<0.000010 <0.050
Sodium (Na) Strontium (Sr)	mg/L mg/L	0.000100	<0.00010	<0.00010	<0.00010	0.00024	<0.00020	0.0111	<0.00010	<0.00010
Thallium (TI)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010
Tin (Sn) Titanium (Ti)	mg/L mg/L	0.000100 0.0100	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.00030	<0.00010 <0.00030	<0.00010 <0.010	<0.00010 <0.010	<0.00010 <0.010
Uranium (U)	mg/L	0.0000100	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.00133	<0.000010	0.000013
Vanadium (V) Zinc (Zn)	mg/L mg/L	0.00100 0.00300	<0.0010 <0.0030	<0.0010 <0.0030	<0.0010 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.0010 <0.0030	<0.0010 <0.0030	<0.0010 <0.0030
Dissolved Metals (Water)	IIIg/L	0.00300	<0.0030	<0.0030	<0.0030	\0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Aluminum (AI)	mg/L	0.00300	<0.0030	<0.0030	<0.0030	<0.0010	<0.0010	<0.0030	<0.0030	<0.0030
Antimony (Sb) Arsenic (As)	mg/L mg/L	0.000100 0.000100	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Barium (Ba)	mg/L	0.0000500	<0.000050	<0.000050	<0.000050	0.00015	<0.00010	0.00763	0.000093	<0.000050
Beryllium (Be) Bismuth (Bi)	mg/L mg/L	0.000500 0.000500	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050
Boron (B)	mg/L mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050
Cadmium (Cd)	mg/L	0.0000100	<0.000010	<0.000010	<0.000010	<0.0000050	<0.000050	<0.000010	<0.000010	<0.000010
Calcium (Ca) Chromium (Cr)	mg/L mg/L	0.0500 0.000500	<0.050 <0.00050	<0.050 <0.00050	<0.050 <0.00050	0.294 <0.00010	0.185 <0.00010	15.5 <0.00050	<0.050 <0.00050	0.108 <0.00050
Cobalt (Co)	mg/L	0.000100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu) Iron (Fe)	mg/L mg/L	0.000500 0.0300	<0.00050 <0.030	<0.00050 <0.030	<0.00050 <0.030	<0.00020 <0.010	<0.00020 <0.010	0.00087 <0.030	<0.00050 <0.030	<0.00050 <0.030
Lead (Pb)	mg/L	0.0000500	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Lithium (Ĺi)	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	<0.0010
Magnesium (Mg) Manganese (Mn)	mg/L mg/L	0.0500 0.0000700	<0.050 <0.00070	<0.050 <0.000070	<0.050 <0.000070	0.170 <0.00010	0.0891 <0.00010	9.73 0.000151	<0.050 <0.00070	<0.050 <0.000070
Mercury (Hg)	mg/L	0.0000100	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050
Molybdenum (Mo) Nickel (Ni)	mg/L	0.000500	<0.000050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.000050 <0.00050	<0.000050 <0.00050	0.00039 0.00061	<0.00050 <0.00050	<0.00050 <0.00050
Potassium (K)	mg/L mg/L	0.200	<0.20	<0.20	<0.00050	0.130	<0.00050	1.33	<0.00050	<0.00050
Selenium (Se)	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010
Silicon (Si) Silver (Ag)	mg/L mg/L	0.100 0.0000100	<0.10 <0.000010	<0.10 <0.000010	<0.10 <0.000010	<0.050 <0.000010	<0.050 <0.00010	0.34 <0.000010	<0.10 <0.000010	<0.10
Sodium (Na)	mg/L	0.0500	<0.050	<0.050	<0.050	0.551	0.112	2.24	<0.050	0.062
Strontium (Sr) Thallium (TI)	mg/L	0.000100 0.000100	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010	0.00026	0.00022	0.0111	<0.00010	<0.00010
Thallium (TI) Tin (Sn)	mg/L mg/L	0.000100	<0.00010 <0.00010	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.000010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Titanium (Ti)	mg/L	0.0100	<0.010	<0.010	<0.010	<0.00030	<0.00030	<0.010	<0.010	<0.010
Uranium (U) Vanadium (V)	mg/L mg/L	0.0000100	<0.000010 <0.0010	<0.000010 <0.0010	<0.000010 <0.0010	<0.000010 <0.00050	<0.000010 <0.00050	0.00133 <0.0010	<0.000010 <0.0010	0.000014 <0.0010
Zinc (Zn)	mg/L	0.00300	<0.0010	<0.0010	<0.0010	<0.00030	<0.00030	<0.0010	<0.0010	<0.0010
Aggregate Organics (Wate	,	0.00400	<0.0040	0.0000	ZO 0040	0.0027	0.0004	ZO 0010	<0.0040	ZO 0040
Phenols (4AAP) Plant Pigments (Water)	mg/L	0.00100	<0.0010	0.0028	<0.0010	0.0037	0.0024	<0.0010	<0.0010	<0.0010
Chlorophyll a	ug/L	0.100	<0.10	<0.10	<0.10	0.13	0.29	1.45	0.12	<0.10
Phaeophytin a	ug/L	0.200	0.22	0.23	0.26	0.50	1.30	1.01	0.52	0.28

Parameter concentration did not meet the data quality objective of ≤ 5x the LRL.

Note: LRL = Laboratory Reporting Limit.

a For some analytes, a range of LRLs were achieved in different laboratory reports. Each blank was compared to the LRL applicable to that sample.

Table A.3: Water Sample Equipment Blank Results with Reference to Data Quality Objectives, Mary River CREMP, 2020

Carbot-Cify		Client Sample ID		JL0-0204	BL0-05-A04	DD-HAB9-STN-1-S04	REF3-03-B04	JLO-02-B04	DLO-02-04-S0
Physical Tests									26-Aug-2020
Project Test			LKL	L2436314-1	L2439027-7	L2480819-14	L2482822-7	L2496168-12	L2494774-12
Mariene Mari	-								
Troops State product South Program (1) 20 470 450 470 450 470 450 470 450 470 450 470 450 470 450 470 470 470 470 470 470 470 470 470 47			_						<3.0
Total Disease Page 20	,								<0.50 <2.0
Turbulay Mile Mil									<10
Selection Total (c) Color Co	Turbidity	NTU							<0.10
Amoreanic (1997) Amoreanic (T				1
Semente (Pr)	•	-,			-				<10
Chemiss (C)									<0.010 <0.10
Winter and Nimits as N									<0.50
Winter (sen k)	Nitrate and Nitrite as N	mg/L	0.0210	<0.021	<0.021		<0.021	<0.021	0.099
Common C									0.099
Prospinent Train Train 0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.000000 <0.000000 <0.000000 <0.000000 <0.0									<0.0050 <0.15
Souther (SQs)									0.003
									<0.30
Cold Organic Carbon mg/L 0.000 <0.0000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.000000 <0.00000 <0.000000 <0.00000 <0.000000 <0.000000 <0.000000 <0.000000 <0.0000									
Food Markets (Water) mg.L									0.56
Subminson (A) mgL 0.00000 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010		mg/L	0.500	<0.50	2.49	<0.50	2.16	1.22	0.92
waterwork(9b) mgl. 0,000100		mg/L	0.00300	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Nameric (As)									<0.00010
Samuru (Be)		mg/L		<0.00010		<0.00010		<0.00010	<0.00010
Semanth (8)	. ,								0.00164
Soron (B)									<0.00050
Calcimit (Col.) mg/L 0.000010 0.000010 0.000010 0.0000010 0.000	. ,								<0.00050
	. ,								<0.010 <0.000010
District District Color mgl. 0.000500 40.00050 40.00									<0.000010
Cobat (Co)	· · · · · · · · · · · · · · · · · · ·								<0.00050
Desper (CU)									<0.00010
	Copper (Cu)	mg/L	0.000500	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Influm (L)		mg/L							<0.030
	. ,								<0.000050
Alenganese (Mh)	` '								<0.0010
	0 (0/								<0.050
Adoptionarium (No) mg/L 0,0000500									0.000113 <0.000050
Islacke (Ni)									<0.000050
Polassium (K)	, , ,								<0.00050
	Potassium (K)		0.200	<0.20	<0.20	<0.050	<0.20	<0.20	<0.20
Silver (Ag)	Selenium (Se)	mg/L	0.00100	<0.0010	<0.0010	<0.000050	<0.0010	<0.0010	<0.0010
Decision Na mg/L	` '								<0.10
Strontium (Sr)									<0.000010
Thaillum (T)									0.109
Tin (Sn)									0.00011 <0.00010
Italianium (Ti)	` ,								<0.00010
Jranium (U)									<0.010
Dissolved Metals (Water) Dissolved Metals (W									<0.000010
	/anadium (V)		0.00100	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.0010
Numinum (A)			0.00300	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Antimory (Sb) mg/L 0.000100 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000001 <0.000001 <0.000001 <0.000001 <0.000000 <0.000000 <0.0000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.000000 <0.000000 <0.000			0.0000		2 2224	0.0010			20.0000
Avenic (As) mg/L 0.000100 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.00011 <0.00011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.0011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.000011 <0.0000									<0.0030 <0.00010
Barium (Ba)									<0.00010
Beryllium (Be) mg/L 0.000500 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.0010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0	` '								0.00078
Sismuth (Bi) mg/L 0.000500 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.0010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050									<0.00050
Soron (B)									<0.00050
Calcium (Ca)	Boron (B)		0.0100	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Chromium (Cr)									<0.000010
Cobalt (Co)									0.051
Copper (Cu) mg/L 0.000500 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000050 <0.00050 <0.0050 <0.0050 <0.0050 <0.000050 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0005	. ,								<0.00050
Non (Fe)	. ,								<0.00010 <0.00050
Dead (Pb)									<0.000
dithium (Li) mg/L 0.00100 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.0000070 <0.000070 <0.000070 <0.000070 <0.000070 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.0000050 <0.0	. ,								<0.00050
Manganese (Mh) mg/L 0.0000700 <0.000070 0.000074 <0.00010 <0.000070 <0.000070 <0.000070	ithium (Ĺi)		0.00100	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Alercury (Hg) mg/L 0.0000100 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00010 <0.00010 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.0									<0.050
Molybdenum (Mo) mg/L 0.0000500 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000010 <0.00010 <0.00010 <0.00010 <0.000050 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010									0.000106
Alickel (Ni) mg/L 0.000500 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010	• • • •								<0.0000050
Potassium (K) mg/L 0.200 <0.20 <0.20 <0.050 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <td>• • • • • • • • • • • • • • • • • • • •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.00050 <0.00050</td>	• • • • • • • • • • • • • • • • • • • •								<0.00050 <0.00050
Selenium (Se)									<0.00050
Silicon (Si) mg/L 0.100 <0.10 <0.10 <0.050 <0.10 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000									<0.0010
Silver (Ag) mg/L 0.0000100 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010<									<0.10
Strontium (Sr) mg/L 0.000100 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010									<0.000010
Thallium (TI) mg/L 0.000100 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010									0.110
Tin (Sn) mg/L 0.000100 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.0010 <0.00010 <0.0010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010									<0.00010 <0.00010
Titanium (Ti) mg/L 0.0100 <0.010 <0.00030 <0.010 <0.010 Jranium (U) mg/L 0.000010 <0.000010									<0.00010
Uranium (U) mg/L 0.0000100 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.									<0.00010
/anadium (V) mg/L 0.00100 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 Zinc (Zn) mg/L 0.00300 <0.0030 <0.0030 <0.0010 <0.0030 <0.0030 <0.0030 Aggregate Organics (Water) Phenols (4AAP) mg/L 0.00100 <0.0010 0.0023 0.0018 0.0012 <0.0010 Plant Pigments (Water)	Jranium (U)			<0.000010			<0.000010	<0.000010	<0.000010
Aggregate Organics (Water) Phenols (4AAP) mg/L 0.00100 <0.0010 0.0023 0.0018 0.0012 <0.0010 Plant Pigments (Water)	/anadium (V)								<0.0010
Phenols (4AAP) mg/L 0.00100 <0.0010 0.0023 0.0018 0.0012 <0.0010 Plant Pigments (Water)			0.00300	<0.0030	<0.0030	<0.0010	<0.0030	<0.0030	<0.0030
Plant Pigments (Water)			0.00100	<0.0010	0 0033	0.0019	0.0012	<0.0010	<0.0010
			0.00100	~U.UU1U	0.0023	0.0010	0.0012	\U.UU1U	<u>\0.0010</u>
лногоргіуна µg/∟ ∪.1∪∪ \0.1∪ \0.1∪ U.23 <0.10	Chlorophyll a	μg/L	0.100	<0.10	<0.10	1.72	0.23	<0.10	<0.10

Parameter did not meet the data quality objective of ≤ 5x the RDL.

Note: LDL = Laboratory Reporting Limit.

^a For some analytes, a range of LRLs were achieved in different laboratory reports. Each blank was compared to the LRL applicable to that sample.

A2.1.2 Precision – Field Duplicates

In total, eight field duplicates were collected over the course of the 2020 CREMP water quality monitoring, including two during the winter lake monitoring event, one during the spring stream monitoring event, three during the summer stream/lake monitoring event, and two during the fall stream/lake monitoring event. In general, close agreement in parameter concentrations was observed between duplicate samples, with 94% of field duplicate analyte pairs meeting the water quality field duplicate DQO of ≤25% Relative Percent Difference (RPD) in parameter concentrations of the 608 duplicate analyses conducted (Appendix Table A.4). Total phosphorus, total lead, dissolved aluminum, and chlorophyll a were the key parameters that most frequently did not meet the DQO between duplicate samples (Appendix Table A.4). In some cases in which DQO were not met, measured concentrations in one or both duplicate samples were close to the LRL (i.e., two- to three-times the LRL) such that small differences in concentrations between duplicate samples resulted in relatively high RPD. No seasonal patterns were suggested for those duplicate samples in which concentrations in duplicate samples failed to achieve the DQO, suggesting no consistent methodological issues. Overall, in the majority of cases, and for key parameters of concern, the RPD in analyte concentrations was sufficiently low as to not affect interpretation of the data.

A2.2 Benthic Invertebrate Community Samples

A2.2.1 Subsampling Accuracy

Sub-sampling of benthic invertebrate community samples was conducted on 25 of 63 stream samples (40%) and 50 of 50 lake samples (100%; total of 66% for the 2020 project). The sorted fraction for these samples was mainly 100% (whole; 77% of all samples) and 50% (half; 23% of all samples) of the sample material evaluated (average of 89%; Appendix Table A.5a,b). Sub-sampling error estimates indicated that, on average, precision and accuracy of the sub-sampled benthic invertebrate community samples met the DQO of ≤ 20% (Appendix Table A.6a,b). This indicated that precision and accuracy for sub-sampling of the benthic invertebrate community samples was acceptable.

A2.2.2 Organism Recovery

Sorting efficiency (i.e., percent recovery) of benthic invertebrate samples was high, averaging 97% for lotic samples (6 samples) and 99% for lentic samples (5 samples; Appendix Tables A.7a,b). Sorting efficiency for these samples achieved the DQO of \geq 90% recovery, and therefore the benthic invertebrate community sample recovery was considered acceptable.

Figure A.4: Water Sample Field Duplicate Results with Reference to the Data Quality Objective, Mary River CREMP, 2020

Sample ID			JL0-07-S	JL0-07-S01		JL0-02-S	11.0.02.504		F0-01	F0.0404	
Date Sampled	Units	LRL	13-Apr-2020	13-Apr-2020	RPD	12-Apr-2020	JL0-02-S01 12-Apr-2020	RPD	3-Jul-2020	F0-0101 3-Jul-2020	RPD
ALS Sample ID			L2436315-5	L2436315-6		L2436314-2	L2436314-3	1.1	L2470180-16	L2470180-17	0.00
Conductivity Hardness (as CaCO ₃)	umhos/cm mg/L	3 10.0	176 96	176 96.3	0.31	186 102	188 103	1.1	108 49.9	107 48.2	0.93 3.5
pH	pH units	0.100	7.82	7.82	0	7.90	7.91	0	7.89	7.95	0.76
Total Suspended Solids	mg/L	2	<2.0	<2.0		<2.0	<2.0	-	9.8	9.7	1.0
Total Dissolved Solids Turbidity	mg/L NTU	20.0 0.100	128 0.14	113 0.12	12 15	93 0.13	81 0.19	14 38	90 2.19	99 2.49	10 13
Anions and Nutrients (Wa	_	0.100	0.14	0.12	13	0.10	0.19	30	2.10	2.40	10
Alkalinity, Total (as CaCO ₃)		10.0	79	80	1.3	84	84	0	39	39	0
Ammonia, Total (as N)	mg/L	0.0200	0.020	0.021	4.9	0.042 <0.10	0.020 <0.10	71	<0.010	<0.010	-
Bromide (Br) Chloride (CI)	mg/L mg/L	0.100 0.500	<0.10 5.39	<0.10 5.51	2.2	5.73	5.72	0.17	<0.10 1.34	<0.10 1.47	9.3
Nitrate and Nitrite as N	mg/L	0.0210	0.031	0.034	9.2	0.096	0.03	105	0.187	0.285	42
Nitrate (as N)	mg/L	0.0200	0.031	0.034	9.2	0.096	0.030	105	0.187	0.285	42
Nitrite (as N) Total Kjeldahl Nitrogen	mg/L mg/L	0.00500 0.150	<0.0050 0.17	<0.0050 0.27	45	<0.0050 <0.15	<0.0050 <0.15	-	<0.0050 <0.15	<0.0050 <0.15	-
Phosphorus, Total	mg/L	0.00300	0.0043	0.0035	21	0.0092	0.0036	88	0.0377	0.0261	36
Sulfate (SO ₄)	mg/L	0.300	5.01	5.02	0	5.53	5.31	4.1	11.8	11.7	1
Organic / Inorganic Carbo Dissolved Organic Carbon		0.500	2.24	2.20	1.8	2.20	2.61	17	2.12	1.90	11
Total Organic Carbon	mg/L mg/L	0.500	2.24	2.20	0.75	3.00	2.01	8.0	2.12	2.72	7.8
Total Metals (Water)	19.=					0.00					
Aluminum (Al)	mg/L	0.00300	0.0539	0.0060	160	0.0183	0.0157	15	0.170	0.168	1.2
Antimony (Sb) Arsenic (As)	mg/L mg/L	0.000100 0.000100	<0.00010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.00010	<0.00010 <0.00010	-
Barium (Ba)	mg/L	0.000100	0.00904	0.00906	0.22	0.00010	0.00890	3.1	0.00544	0.00556	2.2
Beryllium (Be)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Bismuth (Bi)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Boron (B) Cadmium (Cd)	mg/L mg/L	0.0100 0.0000100	<0.010 0.000016	<0.010 <0.000010	46	<0.010 0.000017	<0.010 <0.000010	- 52	<0.010 <0.000010	<0.010 <0.000010	-
Calcium (Ca)	mg/L	0.0500	19.1	18.4	3.7	19.7	19.3	2.1	9.35	9.13	2.4
Chromium (Cr)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Cobalt (Co) Copper (Cu)	mg/L	0.000100 0.000500	<0.00010 0.00195	<0.00010 0.00113	- 53	<0.00010 0.00142	<0.00010 0.00118	- 18	0.00016 0.00051	0.00014 0.00052	13 1.9
Iron (Fe)	mg/L mg/L	0.000500	<0.030	<0.030	53	<0.00142	<0.030	-	0.00051	0.00052	0
Lead (Pb)	mg/L	0.0000500	0.000091	<0.000050	58	0.000108	0.000053	68	0.000212	0.000159	29
Lithium (Li)	mg/L	0.00100	0.0019	0.0016	17	0.0016	0.0016	0	<0.0010	<0.0010	-
Magnesium (Mg) Manganese (Mn)	mg/L	0.0500 0.0000700	11.8 0.00123	11.9 0.000262	0.84	12.4 0.000479	12.2 0.000304	2	6.67 0.00905	6.59 0.00911	1.2 0.66
Mercury (Hg)	mg/L mg/L	0.0000700	<0.00123	<0.000262	130	<0.000479	<0.000304	45	<0.00905	<0.0000050	-
Molybdenum (Mo)	mg/L	0.0000500	0.000584	0.000459	24	0.000505	0.000476	5.9	0.000099	0.000110	11
Nickel (Ni)	mg/L	0.000500	0.00098	0.00078	23	0.00087	0.00081	7.1	<0.00050	<0.00050	-
Potassium (K) Selenium (Se)	mg/L mg/L	0.200 0.00100	1.57 <0.0010	1.53 <0.0010	2.6	1.61 <0.0010	1.57 <0.0010	2.5	0.65 <0.0010	0.64 <0.0010	1.6
Silicon (Si)	mg/L	0.100	0.43	0.40	7.2	0.42	0.42	0	0.64	0.66	3.1
Silver (Ag)	mg/L	0.0000100	<0.000010	<0.000010	-	<0.000010	<0.000010	-	<0.000010	<0.000010	-
Sodium (Na) Strontium (Sr)	mg/L mg/L	0.0500 0.000100	2.64 0.0153	2.47 0.0147	6.7 4.0	2.56 0.0156	2.53 0.0153	1.2 1.9	0.439 0.00994	0.419 0.00933	4.7 6.3
Thallium (TI)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010	<0.00933	-
Tin (Sn)	mg/L	0.000100	0.00014	<0.00010	33	<0.00010	<0.00010	-	<0.00010 0.011	<0.00010	-
Titanium (Ti) Uranium (U)	mg/L mg/L	0.0100 0.0000100	<0.010 0.00132	<0.010 0.00129	2.3	<0.010 0.00134	<0.010 0.00133	0.7	0.000349	0.011 0.000331	5.3
Vanadium (V)	mg/L	0.00100	<0.0010	<0.0010	-	<0.0010	<0.0010	-	<0.0010	<0.0010	-
Zinc (Zn)	mg/L	0.00300	0.0304	<0.0030	164	0.0032	<0.0030	6.5	<0.0030	<0.0030	-
Dissolved Metals (Water) Aluminum (Al)	mg/L	0.00300	<0.0030	0.0048	46	0.0033	0.0031	6	0.0099	0.0088	12
Antimony (Sb)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Arsenic (As)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Barium (Ba) Beryllium (Be)	mg/L mg/L	0.0000500 0.000500	0.00879 <0.00050	0.00883 <0.00050	0.45	0.00931 <0.00050	0.00941 <0.00050	1.1	0.00405 <0.00050	0.00391 <0.00050	3.5
Bismuth (Bi)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Boron (B)	mg/L	0.0100	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
Cadmium (Cd)	mg/L	0.0000100	<0.000010	<0.000010	-	<0.000010	<0.000010		<0.000010	<0.000010	- 0.4
Calcium (Ca) Chromium (Cr)	mg/L mg/L	0.0500 0.000500	18.4 <0.00050	19.1 <0.00050	3.7	19.7 <0.00050	20.1 <0.00050	2.0	9.23 < 0.00050	8.95 <0.00050	3.1
Cobalt (Co)	mg/L	0.000300	<0.00030	<0.00010		<0.00010	<0.00010		<0.00010	<0.00010	
Copper (Cu)	mg/L	0.000500	0.00108	0.00115	6.3	0.00117	0.00109	7.1	<0.00050	<0.00050	-
Iron (Fe) Lead (Pb)	mg/L mg/L	0.0300 0.0000500	<0.030 <0.00050	<0.030 <0.000050	-	<0.030 <0.00050	<0.030 <0.000050	-	<0.030 <0.00050	<0.030 <0.00050	-
Lithium (Li)	mg/L	0.00100	0.0019	0.0019	0	0.0018	0.0019	5.4	<0.0010	<0.0010	-
Magnesium (Mg) Manganese (Mn)	mg/L mg/L	0.0500 0.0000700	12.1 0.000143	11.8 0.000175	2.5 20	12.8 0.000222	12.9 0.000206	0.78 7.5	6.51 0.00240	6.27 0.00242	3.8 0.83
Mercury (Hg)	mg/L	0.0000100	<0.000143	<0.000175	-	<0.000222	<0.000206	-	<0.00240	<0.00242	-
Molybdenum (Mo)	mg/L	0.0000500	0.000474 0.00072	0.000497	4.7 6.7	0.000478	0.000487 0.00079	1.9 3.7	0.000111	0.000118	6.1
Nickel (Ni) Potassium (K)	mg/L mg/L	0.000500 0.200	0.00072 1.54	0.00077 1.54	0.7	0.00082 1.65	1.64	0.61	<0.00050 0.57	<0.00050 0.55	3.6
Selenium (Se)	mg/L	0.00100	<0.0010	<0.0010	-	<0.0010	<0.0010	-	<0.0010	<0.0010	-
Silicon (Si)	mg/L	0.100 0.0000100	0.42 <0.000010	0.42 <0.000010	0	0.43 <0.000010	0.44 <0.000010	2.3	0.420 <0.000010	0.400 <0.000010	4.9
Silver (Ag)	mg/L mg/L	0.0000100	<0.000010 2.43	<0.000010 2.50	2.8	<0.000010 2.60	<0.000010 2.62	0.8	<0.000010 0.433	<0.000010 0.412	5.0
Sodium (Na)		0.000100	0.0150	0.0149	0.67	0.0154	0.0157	1.9	0.00971	0.00910	6.5
Sodium (Na) Strontium (Sr)	mg/L			-0.00010	-	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Strontium (Sr) Thallium (TI)	mg/L	0.000100	<0.00010	<0.00010		20 00010	20 00010		-0.00040	20 00010	
Strontium (Sr) Thallium (TI) Tin (Sn)	mg/L mg/L	0.000100 0.000100	<0.00010	<0.00010	-	<0.00010 <0.010	<0.00010 <0.010	-	<0.00010 <0.010	<0.00010 <0.010	-
Strontium (Sr) Thallium (TI)	mg/L	0.000100				<0.00010 <0.010 0.00140	<0.00010 <0.010 0.00141		<0.00010 <0.010 0.000309	<0.00010 <0.010 0.000306	
Strontium (Sr) Thallium (TI) Tin (Sn) Titanium (Ti) Uranium (U) Vanadium (V)	mg/L mg/L mg/L mg/L mg/L	0.000100 0.000100 0.0100 0.0000100 0.00100	<0.00010 <0.010 0.00130 <0.0010	<0.00010 <0.010 0.00129 <0.0010	-	<0.010 0.00140 <0.0010	<0.010 0.00141 <0.0010	-	<0.010 0.000309 <0.0010	<0.010 0.000306 <0.0010	-
Strontium (Sr) Thallium (TI) Tin (Sn) Titanium (Ti) Uranium (U) Vanadium (V) Zinc (Zn)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.000100 0.000100 0.0100 0.0000100	<0.00010 <0.010 0.00130	<0.00010 <0.010 0.00129	0.77	<0.010 0.00140	<0.010 0.00141	0.7	<0.010 0.000309	<0.010 0.000306	-
Strontium (Sr) Thallium (TI) Tin (Sn) Titanium (Ti) Uranium (U) Vanadium (V)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.000100 0.000100 0.0100 0.0000100 0.00100	<0.00010 <0.010 0.00130 <0.0010 <0.0030	<0.00010 <0.010 0.00129 <0.0010	0.77	<0.010 0.00140 <0.0010 <0.0030	<0.010 0.00141 <0.0010	0.7	<0.010 0.000309 <0.0010	<0.010 0.000306 <0.0010	-
Strontium (Sr) Thallium (TI) Tin (Sn) Titanium (Ti) Uranium (U) Vanadium (V) Zinc (Zn) Aggregate Organics (Water Phenols (4AAP) Plant Pigments (Water)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.000100 0.000100 0.0100 0.0000100 0.00100 0.00300	<0.00010 <0.010 0.00130 <0.0010 <0.0030 <0.0030	<0.00010 <0.010 0.00129 <0.0010 0.0035	- 0.77	<0.010 0.00140 <0.0010 <0.0030 0.0115	<0.010 0.00141 <0.0010 <0.0030 <0.0010	- 0.7	<0.010 0.000309 <0.0010 <0.0030 <0.0010	<0.010 0.000306 <0.0010 <0.0030 <0.0010	- 1.0 - -
Strontium (Sr) Thallium (TI) Tin (Sn) Titanium (Ti) Uranium (U) Vanadium (V) Zinc (Zn) Aggregate Organics (Wate	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.000100 0.000100 0.0100 0.0000100 0.00100 0.00300	<0.00010 <0.010 0.00130 <0.0010 <0.0030	<0.00010 <0.010 0.00129 <0.0010 0.0035	0.77	<0.010 0.00140 <0.0010 <0.0030	<0.010 0.00141 <0.0010 <0.0030	0.7	<0.010 0.000309 <0.0010 <0.0030	<0.010 0.000306 <0.0010 <0.0030	- 1.0 - -

Values exceeding the DQO of ≤ 25% RPD.

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. LDL = Laboratory Detection Limit, RPD = Relative Percent Difference, DQO = Data Quality Objective.

Figure A.4: Water Sample Field Duplicate Results with Reference to the Data Quality Objective, Mary River CREMP, 2020

Description United 15 1999		$\overline{}$		DI O 00 00 0	DI O 00 00 004		DI 0 00 0	DI O 00 004		FO 04	50.0404	
Main	Sample ID	Units	LRL	DLO-02-03-S	DLO-02-03-S01	RPD	BLO-03-S	BLO-03-S01	RPD	FO-01	FO-0101	RPD
Contention minrocoles 2 121 392 572 572 573 574 575		-				2			- ""			5
		umhos/cm	3			0.76			0.39			0.58
Good Paperson Store Table	Hardness (as CaCO ₃)	mg/L	10.0	63.1	63.1	0	35.3	33.9	4.0	166	164	1.2
From 100						0			0.89			0
Name	·					-						-
Assent and Interfect Graups Assent Part of Section 1997. Assent												2.6
Asselante, 1920 (1920) Assela	,		0.100	0.72	0.81	12	1.13	1.15	1.8	0.41	0.40	2.5
Amenine Tanka (w. N)	-		10.0	50.6	49 7	1.8	44	43	2.3	122	121	0.82
Note Proceeding Procedure Procedure Procedure Process	3, (0,	3							+			-
Name and Name on mgb	Bromide (Br)		0.100	<0.050	<0.050	-	<0.10	<0.10	-	<0.10	<0.10	-
Name Name May 0.2000 0.0781 0.0781 0.0781 0.000 -0.0000 -0.0000 -0.00000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.00000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000	Chloride (CI)	mg/L	0.500	3.36	3.36	0	2.59	2.56	1.2	13.7	13.7	0
Nate let No. 1914	Nitrate and Nitrite as N	mg/L		-	-				-			0
Table Part	, ,								-			0
Proportions Imple Columb	, ,											-
Subtem (ROC.) myb. 0.300 9.08 9.08 0.0 1.00	,											22
Digrant Energy Carbon Prop.												0
Description Carbon regit	· · · · · · · · · · · · · · · · · · ·				3.00							
Troat Menistry Ward 0.05300			0.500	1.56	1.67	6.8	2.36	2.57	8.5	1.69	1.73	2.3
Authorson (46)	Total Organic Carbon	mg/L	0.500	1.79	1.62	10	2.02	3.02	40	2.74	2.83	3.2
Ammery (Sa)					1		ı	1		1		Т
Assemble (As)	· /					1.0						3.2
Seaturn (Re)	, ,					-						-
September Popt 0,000000 0,000000 0,000000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,00000000	` '					- n						5.0
Bearstri, (B)	· /								+			5.0
Soon B	, , ,					-						_
Cadmann (CG)	` '					-						-
Chromismic(r)	` '											-
Coast Co.)		mg/L							0.86			1.4
Copper (CO)	, , ,					18						-
	, ,					-						-
Lead [Ph]												- 6.0
Emburn (L)	` '					4.3						6.9
Magneses (Mp)	, ,					0						3.8
Mangames (hrin mgil. 0.0000700 0.00335 0.00237 0.00 0.00144 0.00172 6.7 0.00103 0.0000000 0.00000000000 0.00000000	, ,								3.5			4.3
Molybeamun (No)	· · · · · · ·											3.0
Nexies (NS) mg/L 0,000500 0,00053 0,00063 0 0,00050 0,000500 - 0,00057 0,00051 1 0,00050 0,000500 0,000500 0 - 0,00050 0 - 0,0	Mercury (Hg)	mg/L	0.0000100	<0.0000050	<0.0000050	-	<0.0000050	<0.0000050	-	<0.0000050	<0.000050	-
Polassium (K) mg/L 0.200 1.04 1.07 2.9 0.58 0.55 5.3 1.81 1.75 3.3 Silentum (K) mg/L 0.00100 0.000050	Molybdenum (Mo)	mg/L	0.0000500	0.000662	0.000657	0.76	0.000114	0.000125	9.2	0.000491	0.000486	1.0
Seinemum (Se)	. ,											11
Saloon (S) mg/L 0.100 0.48 0.48 0 0.45 0.41 9.3 1.00 1.05 1.05	` /											3.4
Samer (Ag)												4.9
Sodium (Na) mg/L 0.0500 1.40 1.36 2.9 1.34 1.24 7.8 3.23 3.99 4	· /											-
Thaillum (TI)						2.9			7.8			4.4
Tin (Sn)	Strontium (Sr)	mg/L		0.00897		2.4	0.00584	0.00591	1.2	0.0414		1.5
Tianium (Ti)	· /											-
Uranlum (I)												- 10
Vanadium (V)	` '											3.0
Dissolved Metals (Water)	. ,											-
Aluminum (A)	Zinc (Zn)								-			65
Antimony (Sb) mg/L 0.000100 <0.000101 <0.000101 - 0.000101 <0.000101 - 0.0000101 - 0.0000101 - 0.000101 - 0.000101 - 0.00	Dissolved Metals (Water)											
Arsenic (As)	· /					46			21			6.2
Barium (Ba)	, ,					-						-
Beryllium (Be) mg/L 0.000500 <0.00010 <0.00010 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	` '					- 1 G						2.4
Bimuth (Bi)	· /											2.4
Boron (B)	, ,					-						-
Cadmium (Cd) mg/L 0.0000100 <0.0000050 <0.0000050 <0.0000050 <0.000010 <0.000010 <0.000010 <0.000010 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00052 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	. ,					10						-
Calcim(Ca)	` '											=
Cobalt (Co) mg/L 0.000100 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <	, ,	mg/L				0.83			2.9			0.65
Copper (Cu)	, ,					-			-			-
Iron (Fe)	· · ·					-			-			-
Lead (Pb)												6.2
Lithium (Li) mg/L 0.00100 0.0010 0.0011 10 <0.0010 <-0.0032 0.0035 9 Magnesium (Mg) mg/L 0.0500 8.06 7.96 1.2 4.51 4.04 11 21.6 21.1 2 Manganese (Mn) mg/L 0.0000700 0.00056 0.00055 1.8 0.000416 0.000342 20 <0.000050	· ,					-						-
Magnesium (Mg) mg/L 0.0500 8.06 7.96 1.2 4.51 4.04 11 21.6 21.1 2 2 2 2 2 2 2 2 2	` '	-	0.00100	0.0010		10				0.0032		9.0
Mercury (Hg) mg/L 0.0000100 <0.0000050 <0.0000050 - <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.0	Magnesium (Mg)	mg/L	0.0500	8.06	7.96	1.2	4.51	4.04		21.6	21.1	2.3
Molybdenum (Mo) mg/L 0.000500 0.000593 0.000599 1.0 0.000109 0.000113 3.6 0.000561 0.000562 0.000562 0.000561 0.000562 0.000561 0.000562 0.000561 0.000562 0.000561 0.000562 0.000561 0.000564 0.000562 0.000564 0.000079 3.0005664 0.000662 0.00												-
Nickel (Ni) mg/L 0.000500 0.00051 <0.000500 2.0 <0.000500 <0.000500 - 0.00054 0.00051 5												0.18
Selenium (Se) mg/L 0.00100 <0.000050 <0.000050 - <0.0010 <0.0010 - 0.000082 0.000079 3 3 3 3	Nickel (Ni)	mg/L	0.000500	0.00051	<0.00050	2.0	<0.00050	<0.00050	-	0.00054	0.00051	5.7
Silicon (Si) mg/L 0.100 0.407 0.415 1.9 0.39 0.39 0 1.10 1.10 0.0000000 0.0000000 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000010 0.0000010 0.000010	` /								+			2.8
Silver (Ag) mg/L 0.0000100 <0.000010 <0.000010 - <0.000010 - <0.000010 - <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000560 <0.00566 <0.71 0.0430 0.0439 22 <0.00566 <0.71 0.0430 0.0439 22 <0.00561 <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010												3.7 0
Sodium (Na) mg/L 0.0500 1.55 1.48 4.6 1.36 1.21 12 3.32 3.21 3 Strontium (Sr) mg/L 0.000100 0.00860 1.2 0.00562 0.00566 0.71 0.0430 0.0439 2 Thallium (Ti) mg/L 0.000100 <0.00010												-
Strontium (Sr) mg/L 0.000100 0.00850 0.00860 1.2 0.00562 0.00566 0.71 0.0430 0.0439 2	:											3.4
Thallium (TI)	. ,											2.1
Tin (Sn) mg/L 0.000100 <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00030 - <0.00030 - <0.0010 - <0.0010 - <0.00030 <0.00030 - <0.00030 - <0.00030 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00010 - <0.00010 - <0.00050 - <0.00050 - <0.00050 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 - <0.0010 -	Thallium (TI)	mg/L	0.000100	<0.000010	<0.000010		<0.00010	<0.00010		0.000010	<0.000010	-
Uranium (U) mg/L 0.000100 0.000904 0.000885 2.1 0.000583 0.000604 3.5 0.00373 0.00371 0.000010	Tin (Sn)					-			-			-
Vanadium (V)	` '											-
Zinc (Zn) mg/L 0.00300 <0.0010 <0.0010 - <0.0030 <0.0030 - <0.0010 <0.0010 - Aggregate Organics (Water) Phenols (4AAP) mg/L 0.00100 0.0022 0.0025 13 <0.0010 <0.0010 - <0.0010 - <0.0010 - <0.0010 <0.0010 - <0.0010 - <0.0010 <0.0010 - <0.0010 <0.0010 - <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <	- (-)											0.54
Aggregate Organics (Water) Phenols (4AAP) mg/L 0.00100 0.0022 0.0025 13 <0.0010	()					=			-			-
Phenols (4AAP) mg/L 0.00100 0.0022 0.0025 13 <0.0010 <0.0010 - <0.0010 <0.0010 - <0.0010 - <0.0010 <0.0010 - <0.0010 <0.0010 - <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00			0.00300	\U.UU1U	\U.UU IU	-	\U.UU3U	<u>\0.0030</u>		\U.UU1U	\U.UU1U	
Plant Pigments (Water) Chlorophyll a μg/L 0.100 1.60 2.56 46 1.69 2.18 25 0.41 0.43 4	• • • • • • • • • • • • • • • • • • • •	•	0.00100	0.0022	0.0025	13	<0.0010	<0.0010	-	<0.0010	<0.0010	-
	` '		-				-		•			*
IDheannhuin e 1,12/1 0,400 4,00 0,07 0,0 4,40 4,00 4,5												4.8
r-naeopnyun a μg/∟ υ.100 1.93 2.37 20 1.48 1.68 13 1.02 1.05 2	Phaeophytin a	μg/L	0.100	1.93	2.37	20	1.48	1.68	13	1.02	1.05	2.9

Values exceeding the DQO of ≤ 25% RPD.

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. LDL = Laboratory Detection Limit, RPD = Relative Percent Difference, DQO = Data Quality Objective.

Figure A.4: Water Sample Field Duplicate Results with Reference to the Data Quality Objective, Mary River CREMP, 2020

Sample ID			DLO-02-06-B	DLO-02-06-B01		BLO-01B-S	BLO-01B-S01	
Date Sampled	Units	LRL	26-Aug-2020	26-Aug-2020	RPD	27-Aug-2020	27-Aug-2020	RPD
ALS Sample ID Conductivity	umhos/cm	3	L2494774-6 142	L2494774-7 141	0.71	L2495476-3 217	L2495476-5 229	5.4
Hardness (as CaCO ₃)	mg/L	10.0	68.7	67.5	1.8	106	105	0.95
Н	pH units	0.100	8.03	8.01	0.25	8.18	8.22	0.49
Total Suspended Solids	mg/L	2	2.6	<2.0	26	<2.0	<2.0	
Total Dissolved Solids	mg/L	20.0	75	75	0	129	133	3.1
Turbidity	NTU	0.100	2.16	2.27	5.0	0.67	0.77	14
Anions and Nutrients (Wa Alkalinity, Total (as CaCO ₃)		10.0	56	57	1.8	96	98	2.1
Ammonia, Total (as CaCO ₃₎	mg/L	0.0200	0.011	0.011	0	<0.010	0.028	95
Bromide (Br)	mg/L	0.100	<0.10	<0.10	-	<0.10	<0.10	-
Chloride (CI)	mg/L	0.500	3.92	3.93	0.25	9.51	9.48	0.32
Nitrate and Nitrite as N	mg/L	0.0210	0.079	0.082	3.7	0.037	0.038	2.7
Nitrate (as N)	mg/L	0.0200	0.079	0.082	3.7	0.037	0.038	2.7
Nitrite (as N)	mg/L	0.00500	<0.0050	<0.0050	•	<0.0050	<0.0050	•
Total Kjeldahl Nitrogen	mg/L	0.150	<0.15	0.19	24	0.17	0.19	11
Phosphorus, Total	mg/L	0.00300	0.0079	0.0063	23	0.0066	0.0116	55
Sulfate (SO ₄)	mg/L	0.300	9.76	9.79	0	4.02	4.05	0.74
Organic / Inorganic Carbo Dissolved Organic Carbon	mg/L	0.500	2.53	2.07	20	2.35	2.36	0
Total Organic Carbon	mg/L	0.500	2.41	2.44	1.2	24.8	2.88	158
Total Metals (Water)	mg/L	0.000	2.11	2.11	1	21.0	2.00	100
Aluminum (AI)	mg/L	0.00300	0.0585	0.0594	1.5	0.0178	0.0200	12
Antimony (Sb)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	ī
Arsenic (As)	mg/L	0.000100	<0.00010	<0.00010	ū	<0.00010	<0.00010	1
Barium (Ba)	mg/L	0.0000500	0.00767	0.00775	1.0	0.0107	0.0111	3.7
Beryllium (Be)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Bismuth (Bi)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Boron (B) Cadmium (Cd)	mg/L mg/L	0.0100 0.0000100	0.012 <0.000010	0.013 <0.000010	8.0	<0.010 <0.000010	<0.010 <0.000010	-
Calcium (Ca)	mg/L	0.0500	13.5	13.5	0	21.2	22.0	3.7
Chromium (Cr)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	J.1 -
Cobalt (Co)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	_
Copper (Cu)	mg/L	0.000500	0.000820	0.000800	2.5	0.00097	0.00098	1.0
ron (Fe)	mg/L	0.0300	0.0610	0.0610	0	<0.030	<0.030	-
₋ead (Pb)	mg/L	0.0000500	0.0000550	0.0000510	7.5	<0.000050	<0.000050	-
_ithium (Li)	mg/L	0.00100	0.0014	0.0015	6.9	0.0013	0.0014	7.4
Magnesium (Mg)	mg/L	0.0500	8.35	8.53	2.1	12.5	12.7	1.6
Manganese (Mn)	mg/L	0.0000700	0.00345	0.00328	5.1	0.00238	0.00237	0.42
Mercury (Hg) Molybdenum (Mo)	mg/L mg/L	0.0000100 0.0000500	<0.000050 0.000645	<0.0000050 0.000647	0.31	<0.0000050 0.000317	<0.0000050 0.000316	0.32
Nickel (Ni)	mg/L	0.000500	0.00060	0.000647	6.5	<0.000517	0.000516	3.9
Potassium (K)	mg/L	0.200	1.15	1.16	0.87	1.15	1.16	0.87
Selenium (Se)	mg/L	0.00100	<0.0010	<0.0010	-	<0.0010	<0.0010	-
Silicon (Si)	mg/L	0.100	0.49	0.51	4.0	0.74	0.71	4.1
Silver (Ag)	mg/L	0.0000100	<0.000010	<0.000010	-	<0.000010	<0.000010	-
Sodium (Na)	mg/L	0.0500	1.75	1.71	2.3	4.38	4.35	0.69
Strontium (Sr) Fhallium (TI)	mg/L mg/L	0.000100 0.000100	0.0101 <0.00010	0.0103 <0.00010	2.0	0.0166 <0.00010	0.0168 <0.00010	1.2
Tin (Sn)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Titanium (Ti)	mg/L	0.0100	<0.010	<0.010	-	<0.010	<0.010	-
Jranium (U)	mg/L	0.0000100	0.00121	0.00119	1.7	0.00348	0.00345	0.87
Vanadium (V)	mg/L	0.00100	<0.0010	<0.0010	-	<0.0010	<0.0010	-
Zinc (Zn)	mg/L	0.00300	<0.0030	<0.0030	-	<0.0030	<0.0030	-
Dissolved Metals (Water) Aluminum (AI)	ma/l	0.00300	0.0132	0.0105	23	0.0045	0.0071	45
Antimony (Sb)	mg/L mg/L	0.00300	<0.0010	<0.00010	-	<0.0043	<0.0071	-
Arsenic (As)	mg/L	0.000100	<0.00010	<0.00010	=	<0.00010	<0.00010	-
Barium (Ba)	mg/L	0.0000500	0.00727	0.00724	0.41	0.0108	0.011	1.8
Beryllium (Be)	mg/L	0.000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Bismuth (Bi)	mg/L	0.000500	<0.00050	<0.00050		<0.00050	<0.00050	
Boron (B)	mg/L	0.0100	0.012	0.012	0	<0.010	<0.010	-
Cadmium (Cd)	mg/L	0.0000100	<0.000010	<0.000010	-	<0.000010	<0.000010	-
Calcium (Ca)	mg/L	0.0500	13.5	13.4	0.74	21.8	21.1	3.3
Chromium (Cr)	mg/L	0.000500 0.000100	<0.00050 <0.00010	<0.00050	-	<0.00050	<0.00050	-
Cobalt (Co) Copper (Cu)	mg/L mg/L	0.000100	<0.00010 0.00075	<0.00010 0.00073	2.7	<0.00010 0.00096	<0.00010 0.00101	- 5.1
ron (Fe)	mg/L	0.000300	<0.030	<0.030	-	<0.030	<0.030	J. I -
-ead (Pb)	mg/L	0.0000500	<0.00050	<0.00050	-	<0.00050	<0.00050	-
_ithium (Li)	mg/L	0.00100	0.0013	0.0013	0	0.0013	0.0012	8.0
Magnesium (Mg)	mg/L	0.0500	8.48	8.29	2.3	12.5	12.8	2.4
Manganese (Mn) Mercury (Hg)	mg/L mg/L	0.0000700 0.0000100	0.000525 <0.0000050	0.000518 <0.000050	1.3	0.000479 <0.0000050	0.000547 <0.0000050	13
Molybdenum (Mo)	mg/L	0.0000500	0.000626	0.000643	2.7	0.000306	0.000322	5.1
Nickel (Ni)	mg/L	0.000500	0.00052	0.00054	3.8	<0.00050	0.00051	2.0
Potassium (K) Selenium (Se)	mg/L	0.200 0.00100	1.15 <0.0010	1.11 <0.0010	3.5	1.14 <0.0010	1.17 <0.0010	2.6
Selenium (Se) Silicon (Si)	mg/L mg/L	0.00100	<0.0010 0.41	<0.0010 0.38	7.6	<0.0010 0.7	<0.0010 0.72	2.8
Silver (Ag)	mg/L	0.000100	<0.00010	<0.00010	-	<0.000010	<0.00010	2.8
Sodium (Na)	mg/L	0.0500	1.76	1.72	2.3	4.38	4.44	1.4
Strontium (Sr)	mg/L	0.000100	0.0101	0.0100	1.0	0.0161	0.0167	3.7
Γhallium (TI) ΄	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Tin (Sn)	mg/L	0.000100	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Fitanium (Ti)	mg/L	0.0100	<0.010	<0.010	-	<0.010	<0.010	-
Jranium (U)	mg/L	0.0000100	0.00117	0.00117	0	0.00341	0.00341	0
/anadium (V) Zinc (Zn)	mg/L mg/L	0.00100 0.00300	<0.0010 <0.0030	<0.0010 <0.0030	-	<0.0010 <0.0030	<0.0010 <0.0030	-
Aggregate Organics (Wate		0.00000	~U.UUUU	~0.0000		-0.0000	-0.0000	
Phenols (4AAP)	mg/L	0.00100	<0.0010	<0.0010	-	<0.0010	0.0073	152
Plant Pigments (Water)								
	ua/l	0.100	1.14	1.41	24	4.00	1.14	11
Chlorophyll a Phaeophytin a	μg/L μg/L	0.100	0.68	0.92	21 30	1.02 0.82	0.86	4.8

Values exceeding the DQO of ≤ 25% RPD.

Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. LDL = Laboratory Detection Limit, RPD = Relative Percent Difference, DQO = Data Quality Objective.

Table A.5: Proportion of Benthic Invertebrates Samples Sorted for the 2020 CREMP

(a) Lotic (creek and river) samples

Station	Fraction	Station	Fraction	Station	Fraction	Station	Fraction Sorted	Station	Fraction
CLT1-US-B1	Whole	CLT1-DS-B2	Whole	CLT2-US-B3	Whole	CLT2-DS-B4	Whole	REF-CRK-B5	Whole
CLT1-US-B2	Whole ^a	CLT1-DS-B3	Whole	CLT2-US-B4	Whole	CLT2-DS-B5	Whole	-	-
CLT1-US-B3	1/2 ^a	CLT1-DS-B4	Whole	CLT2-US-B5	Whole	REF-CRK-B1	Whole	-	-
CLT1-US-B4	Whole	CLT1-DS-B5	Whole	CLT2-DS-B1	1/2	REF-CRK-B2	Whole	-	-
CLT1-US-B5	Whole	CLT2-US-B1	Whole	CLT2-DS-B2	Whole	REF-CRK-B3	Whole	-	-
CLT1-DS-B1	Whole	CLT2-US-B2	Whole	CLT2-DS-B3	Whole	REF-CRK-B4	Whole	-	-

(b) Lentic (lake) samples

Station	Fraction	Station	Fraction	Station	Fraction	Station	Fraction Sorted	Station	Fraction
REF-03-01	Whole	BLO-04	Whole	DLO-01-09	1/2	DLO-02-10	1/2	JLO-20	Whole
REF-03-02	1/2	BLO-05	1/2	DLO-01-10	1/2	DLO-02-11	1/2	JLO-21	1/2
REF-03-03	Whole	BLO-06	Whole	DLO-01-11	Whole	DLO-02-12	Whole	-	-
REF-03-04	Whole	BLO-07	Whole	DLO-01-12	Whole	DLO-02-13	Whole	-	-
REF-03-05	Whole	BLO-11	1/2	DLO-01-14	1/2	JLO-01	Whole	ı	1
REF-03-06	Whole	BLO-13	Whole	DLO-01-15	Whole	JLO-02	1/2	ı	1
REF-03-07	Whole	BLO-14	Whole	DLO-02-01	Whole	JLO-07	Whole	-	-
REF-03-08	Whole	BLO-15	Whole	DLO-02-02	Whole	JLO-11	1/2	-	-
REF-03-09	Whole	DLO-01-02	Whole	DLO-02-03	Whole	JLO-12	Whole	-	-
REF-03-10	Whole	DLO-01-03	1/2	DLO-02-04	1/2	JLO-16	Whole	-	_
BLO-01	Whole ^a	DLO-01-04	1/2	DLO-02-08	Whole	JLO-18	1/2	-	-
BLO-03	Whole	DLO-01-05	Whole	DLO-02-09	Whole ^a	JLO-19	Whole ^a	-	-

^a Two halves were sorted for subsampling error.

QA/QC Notes: Pupae were not counted toward total number of taxa unless they were the sole representative of their taxa group. Immatures were not counted toward total number of taxa unless they were the sole representative of their taxa group. The exceptions to this rule are immature tubificidae with and without hairs. Immature oligochaetes are counted as taxa as the probability of the immature being a unique taxa is high. Indeterminates are unique taxa that could not be identified further for whatever reason, e.g., (small, damaged). Densities expressed per sampled area.

Table A.6: Subsampling Error for Benthic Invertebrate Community Samples, 2020 CREMP

(a) Lotic (creek and river) samples

Station	Whole Organisms	No. of No. of Organisms in Organis	No. of	_	No. of		Prec	ision	sion Accuracy	
			Organisms in Fraction 2		Organisms in Fraction 4	Actual Density*	% range	ange	min	max
CLT1-US-B2	-	282	304	-	-	586	7.2	-	3.8	-

(b) Lentic (lake) samples

Station	Whole Organisms	No. of Organisms in	No. of Organisms	No. of Organisms in	No. of Organisms	Actual Densitv*	Precision Accurac		racy	
	Organisms	Fraction 1	in Fraction 2 Fraction 3		in Fraction	Delisity	% ra	ange	min	max
BLO-01	0	285	286	-	-	571	0.3	-	0.2	-
DLO-02-09	0	315	324	-	-	639	2.8	-	1.4	-
JLO-19	0	306	329	-	-	635	7.0	-	3.6	-

Notes: whole large organisms excluded in calculations; min = minimum absolute % error; max = maximum absolute % error.

Table A.7: Percent Recovery from Benthic Invertebrate Samples, Mary River Project CREMP, 2020

(a) Lotic (creek and river) samples

Station	Station Number of Organisms Recovered		Percent Recovery
CLT1-US-B5	278	300	92.7%
CLT2-US-B3	307	314	97.8%
REF-CRK-B5	160	168	95.2%
SDLT1-R1-B2	235	237	99.2%
GO-03-B1	42	43	97.7%
GO-09-B2	97	98	99.0%
		Average % Recovery	96.9%

Notes: All samples were sorted in their entirety. The Chironomidae genera of Pseudosmittia has been split into Pseudosmittia and Hydrosmittia.

QA/QC Notes (all sampling areas): Pupae were not counted toward total number of taxa unless they were the sole representative of their taxa group. Immatures were not counted toward total number of taxa unless they were the sole representative of their taxa group. The exceptions to this rule are immature tubificidae with and without hairs. Immature oligochaetes are counted as taxa as the probability of the immature being a unique taxa is high. Indeterminates are unique taxa that could not be identified further for whatever reason, e.g., (small, damaged). Densities expressed per sampled area.

(b) Lentic (lake) samples

Station	Number of Organisms Recovered	Number of Organisms in Re-sort	Percent Recovery
BLO-01	568	571	99.5%
DLO-01-05	95	96	99.0%
DLO-02-08	350	351	99.7%
DLO-02-12	383	387	99.0%
JLO-16	188	195	96.4%
		Average % Recovery	98.7%

A3 DATA QUALITY STATEMENT

The DQR results generally indicated that the water and benthic invertebrate community data were of acceptable quality. Few water quality parameters did not meet acceptable DQO. In general, most parameters that did not meet respective DQO typically showed very low margins of error relative to respective criteria and/or were observed at low concentrations often near LRL which led to relatively small incremental differences in concentrations between replicates resulting in failure to meet DQO. The benthic invertebrate community data quality was also acceptable, meeting all precision, accuracy, and percent recovery benchmarks. Overall, the data associated with the 2020 CREMP were considered defensible and acceptable for interpretation and derivation of conclusions with a good level of confidence.

APPENDIX B REFERENCE AREA DESCRIPTIVE OVERVIEW

APPENDIX B OVERVIEW OF REFERENCE CONDITIONS

B1	INTRODUCTION	1
B2	HABITAT	
	Creek/Tributary Environments	
	River EnvironmentsLake Environments	
В3	WATER QUALITY	5
B3.1	Creek/Tributary Environments	
	River Environments	
B3.3	Lake Environments (Reference Lake 3)	6
B4	SEDIMENT QUALITY	8
	Creek/Tributary Environments	
	River Environments	
B4.3	Lake Environments (Reference Lake 3)	8
B5	PHYTOPLANKTON (CHLOROPHYLL-A)	10
	Lotic Environments	
B5.2	Lentic Environments (Reference Lake 3)	10
B6	BENTHIC INVERTEBRATE COMMUNITY	12
B6.1	Creek/Tributary Environments	12
	River Environments	
B6.3	Lentic Environments (Reference Lake 3)	14
B7	FISH POPULATION	15
	Lotic Environments	
B7.2	Lentic Environments (Reference Lake 3)	15
B8	CREMP IMPLICATIONS	17
В9	REFERENCES	20

B1 INTRODUCTION

The initial review of background (reference) data collected from lotic (i.e., creeks and rivers) and lentic (i.e., lakes) study areas as part of the 2015 Mary River Project CREMP revealed naturally elevated metal concentrations above guidelines and significant differences in benthic community endpoints between reference lake littoral and profundal habitats (Minnow 2016a). Therefore, this overview of reference conditions is included to provide context and perspective regarding water quality, sediment quality, phytoplankton (chlorophyll-a), benthic invertebrate community, and fish population characteristics at the CREMP reference study areas. Key implications of reference area features towards the evaluation of potential mine-related effects at mine-exposed waterbodies were also identified as part of this reference area overview.

B2 HABITAT

B2.1 Creek/Tributary Environments

Four reference creek/tributary (reference creek) stations were established among two unnamed tributaries to Angajurjualuk Lake (Stations CLT-REF4, MRY-REF2, and MRY-REF3) and one unnamed tributary to Mary River (Station CLT-REF3) during the Mary River Project CREMP in 2014 (see Figure 2.2). These stations were intended to provide reference information for the creek water quality and phytoplankton monitoring components of the CREMP, and have been used as such in the six studies conducted since commercial mine operations commenced at the Mary River Project (i.e., 2015 to 2020; see Table 2.1). From 2016 to 2020, habitat conditions at the western tributary to Angajurjualuk Lake that is used for Baffinland CREMP water quality monitoring (Stations CLT-REF4 and MRY-REF) were deemed comparable to habitat conditions at the Camp Lake and Sheardown Lake tributaries. Therefore, this tributary served as a benthic reference creek (REF-CRK) for comparisons involving the various mine-exposed tributaries as part of the 2016 to 2020 annual CREMP studies (see Figure 2.4), and herein has been referred to as Unnamed Reference Creek.

The reference creeks/tributaries are moderate gradient lotic systems characterized predominantly by riffle-run and riffle-rapid stream morphology, with pools occurring rarely reflecting localized topography and associated gradient. The wetted width and depth of the benthic reference tributary averaged 11.1 m and 0.09 m, respectively, during sampling conducted in August 2017 (Minnow 2018a). The corresponding water velocities across a representative riffle area of the benthic reference tributary ranged from 0.02 to 0.52 m/s in August 2017 (average of 0.28 m/s; Minnow 2018a). As for most small lotic systems in the region, surface flow at all of the CREMP reference tributaries is limited to months in which average ambient air temperatures are near or above freezing (i.e., June to September). The substrate at the reference tributaries is composed mainly of cobble and large pebble (i.e., 50 to 256 mm diameter), with surficial areas of sand generally limited to less than 10% of stream area (Minnow 2018a). In-stream vegetation at the reference tributaries is sparse, and generally includes a relatively thin layer of surficial algae/periphyton attached to relatively stable substrate.

B2.2 River Environments

The area of Mary River located upstream of the mine lease property is only minimally influenced by Mary River Project mining activity (i.e., low amounts of dust deposition; see Baffinland 2015). Therefore, this area has been considered representative of background

(reference) conditions for the mine-exposed stations/study areas situated farther downstream on the Mary River under the CREMP (Baffinland 2015; KP 2014a,b, 2015; NSC 2014). Water quality, phytoplankton productivity, and benthic invertebrate community (benthic) data collected at the Mary River reference area, referred to as G0-09 (including water quality stations G0-09A, G0-09 and G0-09B), has been used in comparisons to areas of the Mary River that are potentially influenced by mine activity. Mary River study area G0-03 also currently serves as a reference area, but potential advancement of the Mary River Project to include the Deposit 2 ore body would result in this area becoming a near-field mine-exposed area in the future.

The Mary River reference area is a moderate gradient erosional environment characterized mainly by riffle and run stream morphology. Depending on flow conditions, average wetted width and average depth of the Mary River reference area has ranged from 30 to 55 m and 0.20 to 0.36 m, respectively, in studies conducted by Minnow (2017, 2018a) during the month of August. On average, the corresponding water velocities across representative riffle areas of the G0-09 benthic study area have ranged from 0.20 to 0.47 m/s during these studies. The substrate at the G0-09 reference area is composed mainly of boulder and cobble, with roughly equal proportion of pebble, gravel, and sand composing the surficial substrate at much of the remaining area (Minnow 2018a). In-stream vegetation at the Mary River G0-09 reference area is sparse, and generally includes a relatively thin layer of periphyton and/or scarce bryophytes (moss) growth on the upper surface of physically stable substrate.

B2.3 Lake Environments

A geographically expansive reconnaissance survey of local study area (LSA) lakes was conducted in 2014 to identify a waterbody that could potentially serve as a suitable reference area for the mine-exposed lakes (i.e., Camp, Sheardown NW, Sheardown SE, and Mary lakes; NSC 2015). The key criteria for the selection of the suitable reference lake included a waterbody with similar surface area, maximum water depth, substrate features, and fish species composition as the mine-exposed lakes, in addition to also being uninfluenced by current or past mining activity. Based on the results of this survey, Reference Lake 3 was selected to represent reference conditions for the mine-exposed lakes beginning in 2015 as part of the Mary River Project CREMP studies (Appendix Table B.1).

Reference Lake 3 is an unnamed lake located approximately 62 km south of the Mary River Project (see Figures 2.1 and 2.3), well outside the area of mine influence. Reference Lake 3 is a headwater lake that is characterized by a relatively complex morphology that includes three basins and connection to a separate lake by a short, shallow channel (see Figure 2.3). The three basins reach approximately 15 m, 30 m, and 36 m in depth with

progression from east to west, and the average depth of Reference Lake 3 is approximately 11.8 m (Appendix Table B.1). The outlet of Reference Lake 3, located off the south-central portion of the lake, drains into a large boulder field through which flow can occur largely as sub-surface drainage. Substrate along the shoreline and shallow littoral areas of Reference Lake 3 is composed mainly of large boulder and cobble that is commonly interrupted by areas of bedrock. Substrate of the deeper littoral and profundal areas of Reference Lake 3 is almost exclusively represented by silt loam containing approximately 15 to 35% fine sand (by dry weight) and a moderate organic carbon content of approximately 5%. No substantial aquatic plant beds have been observed at Reference Lake 3, with fish cover provided predominantly by the rocky substrates along the shoreline and shallow littoral zone of the lake.

Table B.1: Physical Characteristics for Mine-Exposed Lakes and Reference Lake 3

Laba Faatama		Mine-Expe	osed Lakes		Reference Lake
Lake Feature	Camp	Sheardown NW	Sheardown SE	Mary	Reference Lake 3
Drainage Basin Area (km²)	26.5	6.6	8.9	663.4	23.2
Lake Area (km²)	2.21	0.68	0.25	13.6	2.05
Drainage Basin: Lake Area Ratio	11.98	9.66	35.6	48.8	11.32
Mean Depth (m)	13.0	12.1	7.4	-	11.8
Maximum Depth (m)	35.1	30.1	14.8	40.0	38.3
Volume (1,000,000 m³)	27.5	8.18	1.8	156.4	22.6
Hydraulic Retention Time (days)	416 ± 184	511 ± 213	83 ± 35	75 ± 29	-

B3 WATER QUALITY

B3.1 Creek/Tributary Environments

Water chemistry at the reference creek stations met most applicable WQG and AEMP benchmarks for lotic environments in 2020, the exceptions to which included concentrations of total aluminum, total copper, and total iron (Appendix Table B.2). Concentrations of aluminum were elevated at reference creek station MRY-REF3 during spring, summer, and fall monitoring events in 2020 (Appendix Table B.2). Total copper and total iron concentrations were also elevated at station MRY-REF3 during the summer monitoring event. As reported in past studies, the occurrence of elevated concentrations of aluminum and iron at the reference creek stations appeared to be associated with naturally high turbidity at the time that samples were collected (Appendix Table B.2), which suggested that elevated turbidity and a corresponding elevation in aluminum and iron concentrations occur naturally in regional watercourses.

Water chemistry at the reference creek stations showed distinct seasonal changes for some parameters (Appendix Figure B.1; Appendix Table B.2). In general, conductivity and concentrations of conductivity, chloride, sulphate and metals were lowest in spring, intermediate in the summer, and highest during the fall in 2020 (Appendix Table B.2; Appendix Figure B.1). This pattern almost certainly reflected dilution from snow melt and precipitation-related sources, with the lowest parameter concentrations typically associated with the spring freshet conditions, and highest parameter concentrations generally associated with low precipitation/streamflow conditions later in the open water season. Previous baseline and 2015 to 2019 water quality monitoring conducted at reference creek stations showed similar seasonal patterns (KP 2014b; Minnow 2016a, 2017, 2018a, 2019, 2020). Temporal comparison of mean water chemistry for the reference creek stations indicated that water chemistry at the reference creek stations was relatively consistent year-to-year taking seasonal sampling timing into account for most parameters (Appendix Figure C.2), with higher parameter concentrations occurring during periods of low flow. Overall, the reference creek stations were deemed to provide a meaningful benchmark for the evaluation of potential minerelated influences on water chemistry at mine-exposed creek/tributary receiving environments taking seasonality into consideration.

B3.2 River Environments

Water chemistry at the Mary River reference stations (G0-09 series) showed elevated concentrations of total aluminum, copper, iron, lead, zinc, and phosphorus at one or more stations during at least one monitoring event in spring, summer, and fall 2020 compared to

Table B.2: Water Chemistry at Reference Creek Stations, Mary River Project CREMP, 2020

			Water Quality			Spring San	npling Event			Summer Sa	mpling Event		Fall Sampling Eve		ling Event	
Parar	neters	Units	Guideline (WQG) ^a	AEMP Benchmark	CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2	CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2	CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2
	Conductivity (lob)	umbo/om	-	-	4-Jul-2020 61.0	4-Jul-2020 59.5	4-Jul-2020	4-Jul-2020 62.2	3-Aug-2020 148	3-Aug-2020	3-Aug-2020	3-Aug-2020	29-Aug-2020	29-Aug-2020 164	29-Aug-2020	29-Aug-2020 178
٠,٠	Conductivity (lab)	umho/cm	6.5 - 9.0			7.79	35.6		8.12	126	121	141	186 8.17	8.02	173	
als	pH (lab)	pH	0.5 - 9.0	-	7.83		7.18	7.70		7.93	7.86	8.13			7.89	8.12
tior	Hardness (as CaCO ₃)	mg/L	-	-	27.8	27.4	12.4	26.8	66.3	57.8	44.3	59.8	93.7	83.8	67.4	85.5
/en	Total Suspended Solids (TSS)	mg/L	-	-	<2.0 96	<2.0	6.8	<2.0	<2.0	<2.0	4.8	<2.0	<2.0 105	<2.0	<2.0 108	<2.0
Conventionals ^b	Total Dissolved Solids (TDS)	mg/L NTU	-	-	1.06	88	69	87 0.77	89 0.29	79 0.74	88	82	0.37	88	7.82	95
ပ	Turbidity Alkalinity (as CaCO)		-	-	29	0.49 28	5.16 <10	29	73	67	24.3 39	1.15 65	88	0.40 74	39	1.36 74
	Alkalinity (as CaCO ₃) Total Ammonia	mg/L	_	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.019	<0.010	<0.010	<0.010	<0.010	<0.010
Organics	Nitrate	mg/L	3	0.855	<0.010	<0.010	<0.010	<0.010	0.045	0.046	0.126	0.029	0.038	0.109	0.128	0.028
ga	Nitrite	mg/L	0.06	0.06	<0.020	<0.020	<0.020	<0.020	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
ō		mg/L								<0.0050						
and	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.021 1.71	<0.021	<0.021	<0.021	<0.15	4.90	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
ts	Dissolved Organic Carbon	mg/L	-	-	1.71	2.13 2.34	1.80	2.06	1.81 2.26	3.54	4.27 3.06	2.79	1.83 1.95	2.66	2.12 1.86	2.62
Nutrients	Total Organic Carbon	mg/L		-	<0.0030		2.26 0.0091	2.33	<0.0030	<0.0030	0.0169	3.35 <0.0030	<0.0030	2.32 <0.0030	0.0066	2.42 <0.0030
ţ	Total Phosphorus	mg/L	0.020 ^α	-	<0.0030	<0.0030 <0.0010			<0.0030	<0.0030	<0.0169			<0.0030	0.0086	
	Phenols	mg/L	0.004 ^α	-			<0.0010	<0.0010				<0.0010	0.0031			<0.0010
ous	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10 1.51	<0.10 1.57	<0.10 1.37	<0.10	<0.10	<0.10	<0.10	<0.10 16.0	<0.10
Anions	Chloride (CI) Sulphate (SO ₄)	mg/L	120	120	0.51 0.68	0.53	2.32	0.90	2.87	3.78	8.69	4.64	2.27 4.93	2.33 7.62	19.0	7.76
_	1 (7/	mg/L	218 ^β	218 0.179	0.0508	0.89 0.0221	2.75	0.90	0.0096	0.0228	11.8	3.64			0.137	5.43 0.0666
	Aluminum (Al)	mg/L	0.100		<0.00010		0.202		<0.0096	<0.00210	1.16	0.0501	0.0170	0.0166 <0.00010		<0.0000
	Antimony (Sb)	mg/L	0.020 ^α 0.005	0.005		<0.00010	<0.00010	<0.00010			<0.00010	<0.00010	<0.00010		<0.00010	
	Arsenic (As)	mg/L			<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00021	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00289	0.00342	0.00491	0.00327	0.00595	0.00674	0.0169	0.00834	0.00719	0.00844	0.0153	0.0103
	Beryllium (Be)	mg/L	0.011 ^α	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	5.85	5.47	2.74	5.44	13.9	11.3	9.05	12.9	18.5	16.2	14.0	17.1
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00178	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009°	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00033	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0022	<0.00050	0.00089	0.00084	0.00062	0.00057	0.00114	0.0022	0.00068	0.00064	0.00130	0.00140	0.00075
	Iron (Fe)	mg/L	0.30	0.326	<0.030	<0.030	0.217	<0.030	<0.030	0.044	0.856	0.040	<0.030	0.031	0.160	0.044
s	Lead (Pb)	mg/L	0.001	0.001	<0.000050	0.000083	0.000245	<0.000050	<0.000050	0.000090	0.000714	<0.000050	<0.000050	<0.000050	0.000218	<0.000050
Metals	Lithium (Li)	mg/L	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Magnesium (Mg)	mg/L	- B	-	3.32	3.31	1.50	3.31	7.79	7.04	4.72	7.22	10.7	10.1	7.20	10.3
otal	Manganese (Mn)	mg/L	0.935 ^β	-	0.000397	0.000485	0.00377	0.000777	0.000099	0.00115	0.00991	0.000839	0.000106	0.00100	0.00200	0.000957
ř	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.073	- 0.005	0.000096	0.000303	0.000112	0.000082	0.000372	0.000708	0.000473	0.000264	0.000507	0.000895	0.000563	0.000332
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00067	0.00111	<0.00050	<0.00050	0.00076	<0.00050	<0.00050
	Potassium (K)	mg/L	-	-	0.40	0.44	0.52	0.45	0.69	0.74	1.39	0.89	0.82	0.96	1.33	1.06
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	- 0.0005	-	0.57	0.63	0.78	0.49	0.66	0.92	2.56	0.87	0.59	0.91	1.13	0.85
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	-	0.598	0.585	1.15	0.995	2.35	1.60	4.34	2.75	3.23	2.09	6.53	4.02
	Strontium (Sr)	mg/L	- 0.000	- 0.0009	0.00468	0.00384	0.00634	0.00467	0.0116	0.00824	0.0229	0.0129	0.0154	0.0114	0.0310	0.0162
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.000023	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	- 0.045	-	<0.010	<0.010	0.013	<0.010	<0.010	<0.010	0.0665	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.000509	0.000450	0.000491	0.000331	0.00802	0.00414	0.00180	0.00222	0.0138	0.00849	0.00337	0.00381
	Vanadium (V)	mg/L	0.006α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00161	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above AEMP benchmark applicable to the mine lotic receiving environments.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]) and β (British Columbia Water Quality Guideline [BCWQG]). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intinsik (2013) using background water quality data. The values are specific to the Camp Lake system.

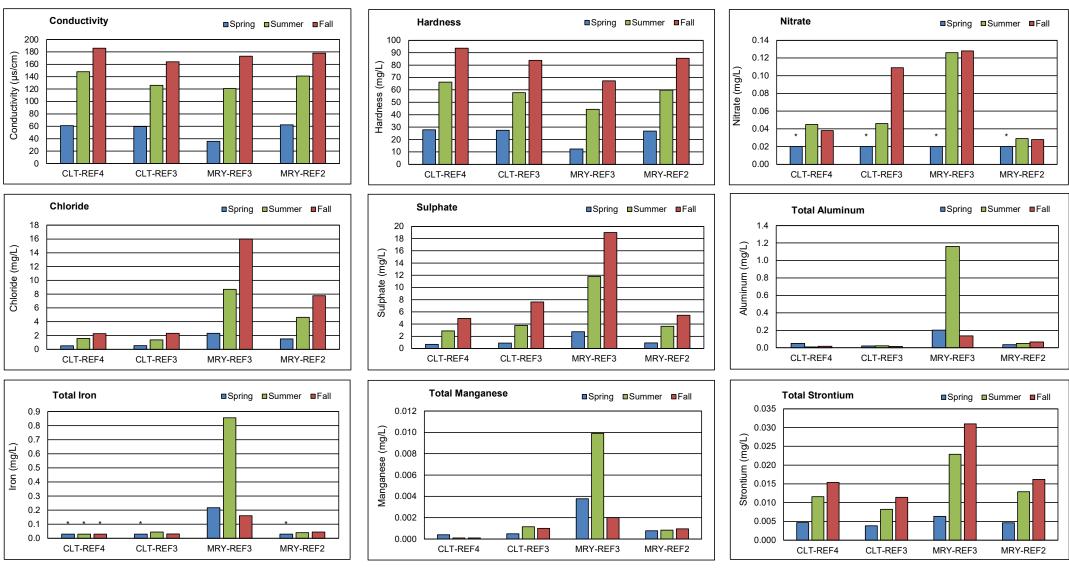


Figure B.1: Seasonal Variation in Water Chemistry at Stream/Tributary Reference Stations, Mary River Project CREMP, 2020

Note: Asterisk (*) indicates that the parameter concentration was below the laboratory reportable detection limit.

WQG and/or AEMP benchmarks (Appendix Table B.3). As in previous CREMP studies, the WQG and/or AEMP benchmarks for aluminum and iron were generally exceeded at the Mary River reference area under highly turbid conditions (i.e., ≥ 5 NTU), with the magnitude of elevation appearing to correlate closely with higher turbidity (Appendix Table B.3). Comparison of the ratio between dissolved and total concentrations of aluminum indicated that a high proportion of aluminum was in the total (particulate) fraction (compare Appendix Tables B.3 and C.60), which can be expected for metals associated with suspended particulate matter. Therefore, naturally high turbidity (and specifically, the chemical composition of suspended particulate matter) within the Mary River system can be expected to result in total concentrations of metals such as aluminum and iron being above WQG and/or AEMP benchmarks.

Water chemistry at the Mary River reference stations showed distinct seasonal changes for conservative parameters including conductivity, hardness, chloride, sodium, and sulphate (Appendix Figure B.2; Appendix Table B.3). These seasonal changes in parameter concentrations were consistent with those observed at the reference creek stations in 2020, and in previous baseline (2005 to 2013), and 2015 to 2019 water quality monitoring data collected at the Mary River G0-09 series reference stations (KP 2014b; Minnow 2016a, 2017, 2018a, 2019, 2020). The seasonal changes in the Mary River reference station parameter concentrations likely reflected greater dilution during the spring snowmelt period, and consecutively lower surface runoff inputs during the summer and fall periods. Temporal comparison of the Mary River G0-09 series reference station water chemistry indicated that concentrations of chloride, iron, molybdenum, nickel, and uranium were elevated at the G0-09 series stations in 2020 compared to baseline and most previous years of mine operation (Appendix Figure C.23). Higher concentrations of these parameters in fall 2020 potentially reflected a drier than normal fall season, and corroborated that higher parameter concentrations may occur naturally during periods of low flow. Overall, the Mary River reference stations were deemed to provide a meaningful benchmark for the evaluation of potential mine-related influences on water chemistry at the Mary River mine-exposed study areas taking seasonality into consideration.

B3.3 Lake Environments (Reference Lake 3)

In situ water temperature profiles conducted at Reference Lake 3 indicated thermally stratified conditions in the summer and fall of 2020 (Appendix Figure B.3). During the summer, the epilimnion extended to approximately 5 m below surface and the hypolimnion was established at depths greater than approximately 11 m, whereas in the fall, the corresponding depths for the epilimnion and hypolimnion were approximately the upper 21 m and depths below

Table B.3: Water Chemistry at Mary River GO-09 Series Reference Stations, Mary River Project CREMP, 2020

			Water Quality			Spring Sampling Event		;	Summer Sampling Ever	nt		Fall Sampling Event	
Parar	meters	Units	Guideline	AEMP Benchmark	G0-09-A	G0-09	G0-09-B	G0-09-A	G0-09	G0-09-B	G0-09-A	G0-09	G0-09-B
			(WQG) ^a		4-Jul-2020	4-Jul-2020	4-Jul-2020	3-Aug-2020	2-Aug-2020	2-Aug-2020	28-Aug-2020	28-Aug-2020	28-Aug-2020
	Conductivity (lab)	umho/cm	-	-	72.0	67.2	44.4	189	190	180	252	250	243
ionals ^b	pH (lab)	pН	6.5 - 9.0	-	7.83	7.83	7.55	8.22	8.23	8.22	8.34	8.37	8.29
ons	Hardness (as CaCO ₃)	mg/L	-	-	32.5	31.7	19	84.4	83.2	75.7	126	123	110
ä	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	6.8	21.2	9.8	<2.0	<2.0	2.4
Conve	Total Dissolved Solids (TDS)	mg/L	-	-	60	69	70	114	93	83	134	127	127
ပိ	Turbidity	NTU	-	-	1.17	2.60	9.05	16.3	37.2	25.5	0.36	3.06	4.96
	Alkalinity (as CaCO ₃)	mg/L	-	-	35	32	21	84	80	76	111	105	94
S	Total Ammonia	mg/L	-	0.855	<0.010	<0.010	0.011	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Organics	Nitrate	mg/L	3	3	<0.020	<0.020	0.022	0.139	0.156	0.145	0.026	0.103	0.180
Org	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
٦٩	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.021	<0.021	0.022	<0.15	0.16	<0.15	<0.15	<0.15	<0.15
a	Dissolved Organic Carbon	mg/L	-	-	1.84	1.56	1.50	3.68	4.53	3.81	2.55	2.62	2.59
Nutrients	Total Organic Carbon	mg/L	-	-	2.55	2.12	2.03	2.9	2.5	3.4	2.55	2.30	2.31
įį	Total Phosphorus	mg/L	0.020 ^a	-	0.0205	0.0036	0.0122	0.0220	0.0243	0.0182	<0.0030	0.0035	0.0036
ž	Phenols	mg/L	0.004 ^a	-	0.0025	<0.0010	<0.0010	<0.0010	0.0013	0.0012	<0.0010	<0.0010	<0.0010
SL	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
į	Chloride (CI)	mg/L	120	120	1.05	0.94	1.11	9.45	8.36	8.94	9.45	11.6	14.4
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	0.67	0.73	0.65	5.69	5.19	5.63	4.96	7.03	7.99
	Aluminum (AI)	mg/L	0.100	0.179	0.0551	0.112	0.197	0.868	1.27	1.00	0.0116	0.107	0.143
	Antimony (Sb)	mg/L	0.020 ^a	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	0.00012	<0.00010	0.00018	0.00025	0.00020	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00462	0.00530	0.00474	0.0155	0.0171	0.0152	0.0134	0.0140	0.0145
	Beryllium (Be)	mg/L	0.011 ^a	-	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00008	<0.000010	0.000064	<0.000010	0.0000063	<0.000050	<0.000050	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	6.95	7.30	4.21	16.4	16.7	15.0	24.8	24.7	22.2
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	0.00167	0.00256	0.00171	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^α	0.004	<0.00010	<0.00010	<0.00010	0.00034	0.00056	0.00036	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0022	0.00056	0.00670	0.00092	0.0019	0.0024	0.0019	0.00085	0.00102	0.00123
	Iron (Fe)	mg/L	0.30	0.326	<0.030	0.102	0.181	0.748	1.22	0.855	<0.030	0.084	0.127
	Lead (Pb)	mg/L	0.001	0.001	<0.00050	0.000387	0.000260	0.000587	0.000934	0.000661	<0.00050	0.000084	0.000130
<u>s</u>	Lithium (Li)	mg/L	_	-	<0.0010	<0.0010	<0.0010	0.0018	0.0023	0.0018	<0.0010	<0.0010	0.0010
Metals	Magnesium (Mg)	mg/L	_	-	4.06	3.66	2.43	9.03	9.37	8.63	13.9	13.4	12.5
<u>~</u>	Manganese (Mn)	mg/L	0.935 ^β	-	0.000824	0.00299	0.00376	0.00948	0.0160	0.0101	0.000498	0.00133	0.00202
Į,	Mercury (Hg)	mg/L	0.000026	-	<0.000050	<0.000050	<0.000050	<0.0000050	0.000051	<0.0000050	<0.000050	<0.000050	<0.000050
_	Molybdenum (Mo)	mg/L	0.073	-	0.000068	0.000087	0.000060	0.000458	0.000399	0.000434	0.000313	0.000447	0.000544
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	0.00338	<0.00050	0.00121	0.00180	0.00130	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	_	-	0.53	0.76	0.53	1.62	1.69	1.63	1.30	1.44	1.61
	Selenium (Se)	mg/L	0.001	_	<0.0010	<0.0010	<0.0010	<0.000050	<0.00050	<0.000050	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	_	0.67	0.66	0.73	1.93	2.72	2.11	0.88	0.94	1.03
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000050	<0.000050	<0.000050	<0.000010	<0.00010	<0.000010
	Sodium (Na)	mg/L	-	-	0.783	1.02	0.818	4.94	4.29	4.58	4.77	5.77	6.95
	Strontium (Sr)	mg/L	_	_	0.00571	0.00584	0.00465	0.0225	0.0211	0.0207	0.0228	0.0259	0.0270
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.0010	0.000021	0.000030	0.000021	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	0.00101	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	_	-	<0.010	<0.010	0.010	0.0518	0.0837	0.0593	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.000441	0.000389	0.000304	0.00584	0.00522	0.00509	0.00673	0.00720	0.00776
	Vanadium (V)	mg/L	0.006 ^α	0.006	<0.0010	<0.0010	<0.0010	0.00161	0.00322	0.00176	<0.0010	<0.0012	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	<0.0010	0.0320	0.0033	0.0197	0.00240	<0.0030	<0.0010	<0.0030	<0.0030

Indicates parameter concentration above the applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]) and β (British Columbia Water Quality Guideline [BCWQG]). See Table 2.2 for information regard

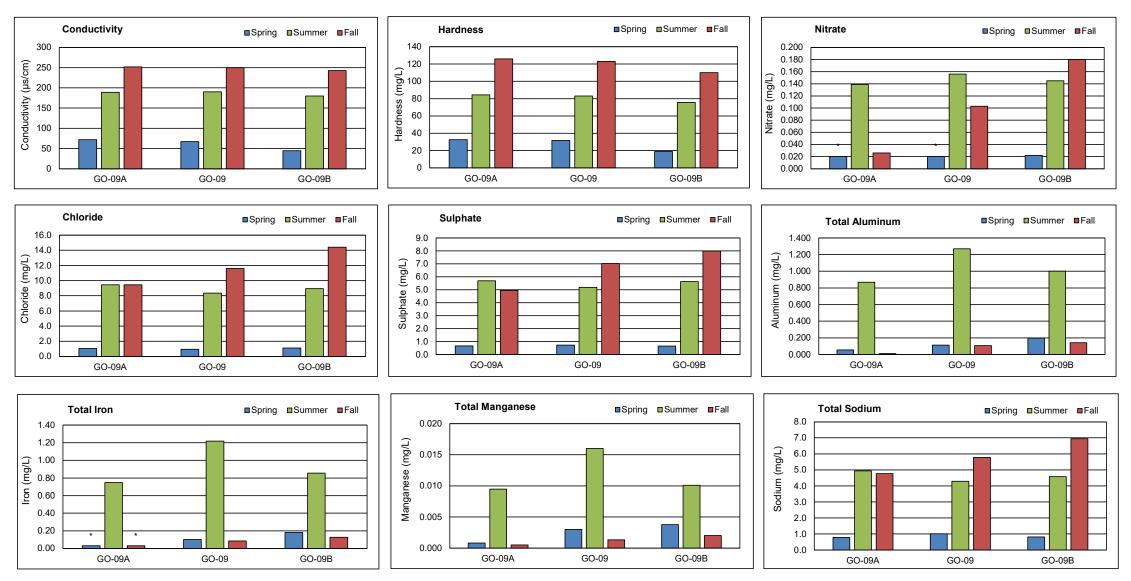


Figure B.2: Seasonal Variation in Water Chemistry at Mary River GO-09 Reference Stations, Mary River Project CREMP, 2020

Note: Asterisk (*) indicates that the parameter concentration was below the laboratory reportable detection limit.

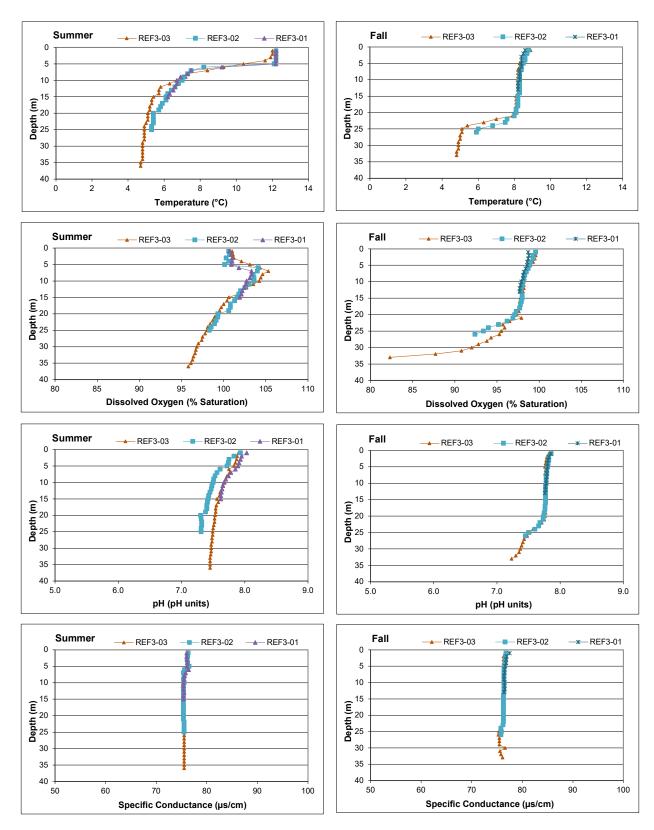


Figure B.3: In Situ Water Quality with Depth from Surface at Reference Lake 3 during Summer and Fall Sampling Events, Mary River Project CREMP, 2020

25 m, respectively (Appendix Figure B.3). No marked changes in dissolved oxygen concentrations occurred with increased depth at any of the Reference Lake 3 basins, and dissolved oxygen saturation remained high (i.e., ≥ 80%) throughout the entire water column in both the summer and fall profiles (Appendix Figure B.3). The 2020 water quality profiles also showed only minor changes in pH and specific conductance among stations and with depth during each of the summer and fall sampling events (Appendix Figure B.3). Overall, the in situ water quality profiles suggested relatively thorough lateral mixing within Reference Lake 3 and despite the development of thermally stratification, no substantial changes in dissolved oxygen, pH, or conductivity occurred with depth through the water column.

The evaluation of water chemistry at Reference Lake 3 indicated that all monitored parameters were below WQG in summer and fall 2020 (Appendix Table B.4). No parameters were observed at concentrations above lentic AEMP benchmarks at Reference Lake 3 (Appendix Table B.4), suggesting that these water quality benchmarks were relevant for comparisons of water quality for the mine-exposed lakes. No substantial differences in water chemistry were observed between the summer and fall at Reference Lake 3 in 2020, which was similar to observations among winter, summer, and fall at local study area lakes during the mine baseline period and in summer and fall at Reference Lake 3 from 2015 to 2019 (KP 2014a; Minnow 2016a, 2017, 2018a, 2019, 20). Temporal comparisons also showed no substantial changes in water quality from 2015 to 2020 at Reference Lake 3 (Appendix Figure C.29).

Water chemistry data collected at Reference Lake 3 showed no consistent differences in parameter concentrations between the surface and the bottom of the water column at each individual station in 2020 (Appendix Figure B.4; Appendix Table B.4). The absence of any appreciable depth-related differences in parameter concentrations at each station was consistent with only minor differences in dissolved oxygen saturation, pH, and/or specific conductance with increased depth from the surface. Because anoxic conditions do not appear to develop in the summer or fall at Reference Lake 3, reducing conditions conducive to metal mobilization from sediment to the overlying water are less likely to occur near the lake bottom, resulting in relatively uniform water chemistry between surface and bottom waters of Reference Lake 3. Accordingly, metal concentrations can naturally be expected to be similar between surface and bottom of local study area lakes provided no substantial gradients in dissolved oxygen saturation, pH, and/or specific conductance occur within the water column.

Table B.4: Water Chemistry at Reference Lake 3, Mary River Project CREMP, 2020

		Water Quality				Summer Sa	mpling Event					Fall Samp	oling Event		
Parameters	Units	Guideline	AEMP	REF3-01	REF3-01	REF3-02	REF3-02	REF3-03	REF3-03	REF3-01	REF3-01	REF3-02	REF3-02	REF3-03	REF3-03
raiailleteis	Units	(WQG) ^a	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
		(1145)		2-Aug-2020	2-Aug-2020	2-Aug-2020	2-Aug-2020	2-Aug-2020	2-Aug-2020	29-Aug-2020	29-Aug-2020	29-Aug-2020	29-Aug-2020	29-Aug-2020	29-Aug-2020
Conductivity (lab)	umho/cm	-	-	78.8	78.8	78.5	79.0	78.4	78.9	79.0	79.6	78.4	79.2	77.7	79.3
pH (lab)	pН	6.5 - 9.0	-	7.67	7.73	7.52	7.79	7.46	7.78	7.83	7.86	7.73	7.83	7.47	7.80
Hardness (as CaCO ₃)	mg/L	-	-	34.8	34.2	35.7	35.4	34.2	35	38.1	38.4	38.1	38.1	37.3	37.8
Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Total Dissolved Solids (TDS)	mg/L	-	-	37	37	36	55	39	40	50	56	44	50	54	50
S Turbidity	NTU	-	-	0.15	0.14	0.18	0.14	0.13	0.15	0.12	0.14	0.20	0.16	0.12	0.13
Alkalinity (as CaCO ₃)	mg/L	-	-	43	45	52	45	43	47	34	35	34	35	33	35
g Total Ammonia	mg/L	-	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.031	0.014
Total Ammonia Nitrate	mg/L	3	3	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.16	0.16	0.17	<0.15	0.15	0.15
Dissolved Organic Carbon	mg/L	-	-	3.44	3.40	3.18	3.27	3.32	3.38	3.39	3.42	3.52	3.62	3.25	3.50
Total Organic Carbon	mg/L	-	-	4.72	4.68	4.42	4.29	4.70	4.92	3.76	3.96	3.72	3.71	3.63	3.75
Total Phosphorus	mg/L	0.030^{α}	-	<0.0030	<0.0030	0.0092	<0.0030	<0.0030	0.0035	<0.0030	<0.0030	<0.0030	0.0034	<0.0030	<0.0030
Total Phosphorus Phenols	mg/L	0.004 ^a	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	0.0011	<0.0010
	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Bromide (Br) Chloride (Cl) V Sulphate (SQ ₄)	mg/L	120	120	1.48	1.35	1.34	1.36	1.34	1.34	1.36	1.38	1.37	1.37	1.38	1.37
Sulphate (SO ₄)	mg/L	218 ^β	218	3.62	3.64	3.59	3.67	3.55	3.59	3.65	3.67	3.62	3.65	3.62	3.62
Aluminum (AI)	mg/L	0.100	0.179	<0.0030	0.0034	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0033	<0.0030	<0.0030	<0.0030	0.0037
Antimony (Sb)	mg/L	0.020°	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Barium (Ba)	mg/L	-	-	0.00640	0.00653	0.00631	0.00657	0.00600	0.00633	0.00649	0.00941	0.00665	0.00650	0.00630	0.00639
Beryllium (Be)	mg/L	0.011 ^a	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	mg/L	-	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Boron (B)	mg/L	1.5	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Cadmium (Cd)	mg/L	0.00012	0.00008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Calcium (Ca)	mg/L	0.00012	-	7.18	7.31	6.98	7.23	7.09	7.23	7.23	7.35	7.37	7.15	7.07	7.25
Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00030	<0.00030	<0.00030	<0.00010	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Copper (Cu)	mg/L	0.0009	0.0022	0.00071	0.00073	0.00076	0.00075	0.00070	0.00072	0.00073	0.00079	0.00079	0.00073	0.00074	0.00074
Iron (Fe)	mg/L	0.30	0.326	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Lead (Pb)	mg/L	0.001	0.001	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
		0.001													
Lithium (Li) Magnesium (Mg)	mg/L	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	mg/L	- 2.2258	-	4.23 0.000850	4.30	4.28 0.000852	4.40 0.000764	4.03	4.17 0.000740	4.71	4.77 0.000730	4.67	4.75 0.000639	4.51	4.59
Manganese (Mn)	mg/L	0.935β	-		0.000789			0.000805		0.000647		0.000731		0.000691	0.000650
Mercury (Hg)	mg/L	0.000026	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Molybdenum (Mo)	mg/L	0.073	- 0.005	0.000137	0.000139	0.000130	0.000127	0.000123	0.000130	0.000151	0.000176	0.000152	0.000155	0.000137	0.000150
Nickel (Ni)	mg/L	0.025	0.025	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Potassium (K)	mg/L	-	-	0.86	0.87	0.87	0.89	0.83	0.86	0.92	0.91	0.91	0.91	0.88	0.89
Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Silicon (Si)	mg/L	- 0.0005	- 0.0004	0.49	0.48	0.50	0.48	0.53	0.49	0.48	0.48	0.51	0.47	0.55	0.49
Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)	mg/L	-	-	0.889	0.902	0.886	0.917	0.862	0.885	0.968	1.00	0.963	0.972	0.939	0.942
Strontium (Sr)	mg/L	-	-	0.00882	0.00843	0.00811	0.00840	0.00796	0.00859	0.00830	0.00837	0.00826	0.00821	0.00804	0.00820
Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (U)	mg/L	0.015	-	0.000315	0.000328	0.000299	0.000335	0.000293	0.000328	0.000340	0.000363	0.000319	0.000344	0.000294	0.000327
Vanadium (V)	mg/L	0.006 ^α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Zinc (Zn)	mg/L	0.030	0.030	<0.0030	< 0.0030	<0.0030	< 0.0030	<0.0030	< 0.0030	<0.0030	<0.0030	< 0.0030	< 0.0030	< 0.0030	<0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]) and β (British Columbia Water Quality Guideline [BCWQG]). See Table 2.2 for information regarding WQG.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using background water quality data. The values presented are specific to the Camp Lake system.

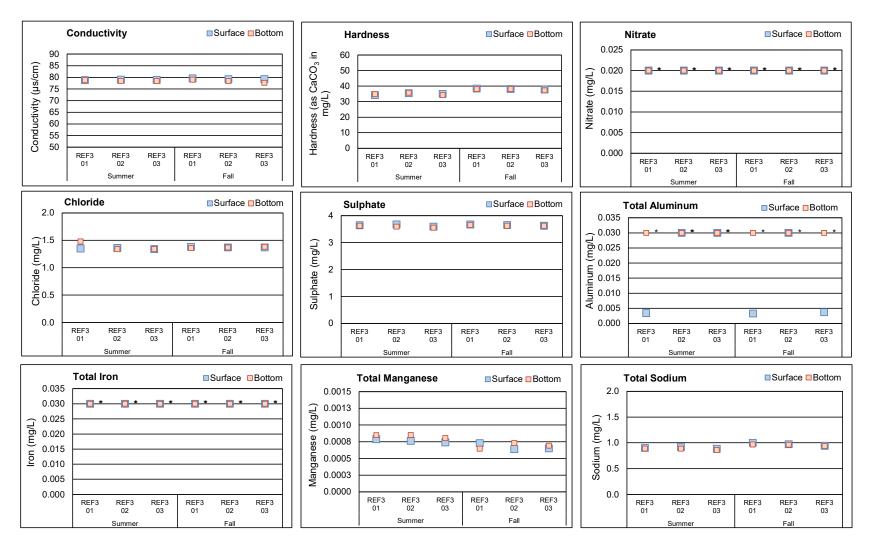


Figure B.4: Water Chemistry Comparison Between the Surface and the Bottom of the Water Column at Reference Lake 3 Routine Monitoring Stations during Summer and Fall, Mary River Project CREMP, 2020

Note: An asterisk (*) indicates that the parameter concentration was below the laboratory reportable detection limit.

B4 SEDIMENT QUALITY

B4.1 Creek/Tributary Environments

Deposited sediment at Unnamed Reference Creek (CLT-REF) was visually characterized as predominantly medium-sized sand by Minnow (2018a). In-stream substrate of the reference creek was described as mainly cobble and pebble material (i.e., substrate diameter 6 to 25 cm, and 2 to 6 cm, respectively), with sand constituting only a small amount (i.e., ~7%) of the material observed at the sediment surface (Minnow 2018a). Deposited sediment suitable for chemical characterization (i.e., sand and finer substrate sizes) was present primarily at shoreline/streambank areas, and not in the main channel. Sediment total organic carbon (TOC) content was very low (i.e., <0.1%) at the reference creek suggesting very limited deposition of fine organic materials (Minnow 2018a). Metal concentrations in deposited sediment at the reference creek were well below SQG during sampling conducted in 2017 (Minnow 2018a) and 2020 (Appendix Table D.2), and therefore the Unnamed Reference Creek data were deemed to provide a meaningful benchmark for the evaluation of potential mine-related influences on chemistry of deposited sediment at the mine-exposed creeks.

B4.2 River Environments

Deposited sediment at the Mary River (G0-09) upstream reference area was visually characterized as predominantly coarse sand in 2017 (Minnow 2018a). In-stream substrate of the reference creek was composed mainly of boulder and cobble material (i.e., substrate diameter >25 cm, and 6 to 25 cm, respectively), with sand constituting only a minor amount (i.e., ~10%) of the material observed at the sediment surface. Deposited sediment suitable for chemical characterization (i.e., sand and finer substrate sizes) was collected in-stream from quiescent zones immediately downstream of large boulders in 2017 (Minnow 2018a) and 2020. Sediment total organic carbon (TOC) content was very low (i.e., <0.1%) at the G0-09 reference area, suggesting very limited deposition of fine organic materials. Metal concentrations in deposited sediment at the reference creek were shown to be well below SQG in 2017 (Minnow 2018a) and 2020 (Appendix Table D.34), and therefore the G0-09 data were deemed to provide a meaningful benchmark for the evaluation of potential mine-related influences on chemistry of deposited sediment at the Mary River mine-exposed study areas.

B4.3 Lake Environments (Reference Lake 3)

Sediment sampling was conducted at littoral and profundal (i.e., <12 m and >12 m depths, respectively) areas of Reference Lake 3 from 2015 to 2020 for the analysis of particle

size, total organic carbon (TOC) content, and total metal concentrations (see Figure 2.3). Surficial sediment at Reference Lake 3 littoral and profundal areas was composed of silty to sandy loam material with moderate TOC content. Sediment moisture differed significantly between the Reference Lake 3 littoral and profundal habitats in 2020, with higher moisture content present at littoral stations compared to the profundal stations (Appendix Table F.17). No significant differences in substrate particle size or TOC content occurred between the littoral and profundal stations sampled at the reference lake in 2020 (Appendix Table F.17). A surficial and/or sub-surface layer of oxidized material (likely iron hydroxide or oxy-hydroxides), visible as an orange-brown floc or distinct layer, was occasionally observed in the surficial sediment of Reference Lake 3 (Appendix Tables D.3 and D.4). In addition, sub-surface sediment of Reference Lake 3 occasionally contained blackened/dark colouration, which suggested the occurrence of reducing (i.e., anoxic) sediment conditions (Appendix Tables D.3 and D.4). The physical properties of sediment observed at Reference Lake 3 in 2020 were consistent with those of the 2015 to 2019 studies (see Minnow 2016a, 2017, 2018a, 2019, 2020).

Metal concentrations in sediment at Reference Lake 3 were generally lower at the littoral stations than at the profundal stations, although less than a two-fold difference in concentrations was typically shown for most parameters between the littoral and profundal station depths (Appendix Table B.5; Appendix Figure B.5). The differences in sediment metal concentrations between the littoral and profundal station depths likely reflected a naturally (but not significantly) higher proportion of clay-sized particles at the latter, which is consistent with expected depositional patterns in lakes. Among metals with established SQG, mean concentrations of iron were elevated above SQG at littoral and profundal stations, and mean concentrations of manganese were elevated above SQG at profundal stations of Reference Lake 3 in 2020 (Appendix Table B.5). Therefore, compared to SQG, high concentrations of iron and manganese appear to occur naturally in sediments of Mary River Project local study area lakes. Mean copper and iron concentrations at littoral stations, and mean copper, iron, and manganese concentrations at profundal stations, were above the most stringent (i.e., lowest) AEMP sediment quality benchmarks at Reference Lake 3 (Appendix Table B.5). This suggested that the AEMP sediment benchmarks for these metals were conservative. No substantial changes in concentrations of metals were indicated from 2015 to 2020 at littoral or profundal stations of Reference Lake 3 (Appendix Figure B.5; Figure 3.7).

Table B.5: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Reference Lake 3 (REF-03) Sediment Stations, Mary River Project CREMP, August 2020

			Sediment	Most					Reference L	ake 3 Station					Study Ar	ea Summary	Statistics
Parar	meter	Units	Quality Guideline (SQG) ^a	Stringent AEMP Benchmark	REF-03-1 (littoral)	REF-03-6 (profundal)	REF-03-2 (littoral)	REF-03-7 (profundal)	REF-03-3 (littoral)	REF-03-8 (profundal)	REF-03-4 (littoral)	REF-03-9 (profundal)	REF-03-5 (littoral)	REF-03-10 (profundal)	Mean	Standard Deviation	Standard Error
	Cand	0/				,		, ,	, ,	,		,		`` ,	20.0	45.7	4.07
<u>8</u>	Sand	%	-	-	40.4	56.6	23.4	13.9	24.7	55.3	34.5	15.2	24.8	16.8	30.6	15.7	4.97
Non-metals	Silt	%	-	-	53.4	36.9	68.4	71.9	61.9	38.4	59.3	71.8	68.2	68.1	59.8	13.05	4.13
Ļ	Clay	%	-	-	6.3	6.5	8.2	14.2	13.4	6.3	6.2	13.0	7.0	15.1	9.6	3.79	1.198
8	Moisture	%	-	-	90.0	78.3	92.3	86.6	87.9	79.4	80.2	84.9	89.2	84.0	85.3	4.79	1.51
	Total Organic Carbon	%	10 ^α	-	6.95	2.20	6.54	4.30	3.71	2.36	2.26	4.52	4.54	3.71	4.11	1.66	0.525
	Aluminum (AI)	mg/kg	-	-	15,400	19,000	18,200	24,700	19,300	20,400	16,200	22,300	15,300	22,600	19,340	3,204	1,013
	Antimony (Sb)	mg/kg	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0	0
	Arsenic (As)	mg/kg	17	5.9	4.73	3.66	4.36	4.65	3.67	3.76	2.78	4.03	2.10	4.24	3.80	0.82	0.261
	Barium (Ba)	mg/kg	-	-	139	98.4	134	143	99.7	108	88.4	129	124	132	120	19.3	6.10
	Beryllium (Be)	mg/kg	-	-	0.59	0.68	0.74	0.93	0.69	0.77	0.65	0.80	0.56	0.84	0.73	0.11	0.036
	Bismuth (Bi)	mg/kg	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0	0
	Boron (B)	mg/kg	-	-	11.6	11.9	13.1	16.8	13.2	14.5	11.7	15.1	11.5	15.0	13.4	1.84	0.580
	Cadmium (Cd)	mg/kg	3.5	1.5	0.246	0.128	0.184	0.175	0.120	0.144	0.163	0.142	0.150	0.150	0.160	0.0359	0.0114
	Calcium (Ca)	mg/kg	-	-	6,080	4,410	7,440	5,480	4,820	4,830	4,190	5,180	5,510	5,150	5,309	930	294
	Chromium (Cr)	mg/kg	90	79	54.9	57.1	57.4	73.0	59.4	59.3	48.6	68.5	51.3	67.3	59.7	7.75	2.45
	Cobalt (Co)	mg/kg	-	-	10.8	13.2	9.86	17.2	12.8	14.1	11.8	15.6	8.59	15.8	13.0	2.77	0.88
	Copper (Cu)	mg/kg	197	50	80.0	68.8	89.7	97.6	72.2	77.5	59.8	86.1	55.3	89.2	77.6	13.7	4.32
	Iron (Fe)	mg/kg	40,000 ^α	34,400	83,200	39,600	68,900	51,100	41,400	42,100	38,000	45,700	21,500	46,900	47,840	17,136	5,419
	Lead (Pb)	mg/kg	91.3	35	13.7	14.2	14.3	19.1	14.8	15.8	12.9	17.2	13.1	17.1	15.2	2.03	0.64
	Lithium (Li)	mg/kg	-	-	23.2	29.3	26.3	38.8	29.6	30.6	26.8	34.4	24.1	35.5	29.9	5.09	1.61
	Magnesium (Mg)	mg/kg	_	-	11,600	12,500	11,800	16,000	12,500	13,000	10,400	14,800	10,900	14,600	12,810	1,811	573
<u>8</u>	Manganese (Mn)	mg/kg	1,100 ^{α,β}	657	578	909	413	1,250	790	1,010	866	1,820	246	1,160	904	451	143
Metals	Mercury (Hg)	mg/kg	0.486	0.17	0.0730	0.0391	0.0594	0.0689	0.0396	0.0497	0.0269	0.0806	0.0511	0.0530	0.0541	0.0167	0.0053
2	Molybdenum (Mo)	mg/kg	-	_	6.77	2.74	8.95	2.86	2.87	2.40	2.74	2.19	0.87	2.42	3.48	2.43	0.770
	Nickel (Ni)	mg/kg	75 ^{α,β}	66	44.5	39.5	41.7	50.9	40.4	41.6	38.5	47.3	35.1	45.7	42.5	4.64	1.47
	Phosphorus (P)	mg/kg	2,000 ^α	1,278	1,700	888	1,470	1,000	963	959	810	933	892	999	1,061	287	91
	Potassium (K)	mg/kg	-	-	3,560	4,660	4,280	6,030	4,760	4,940	4,040	5,590	3,860	5,470	4,719	805	255
	Selenium (Se)	mg/kg		_	1.02	0.40	1.09	0.68	0.58	0.55	0.42	0.89	0.53	0.55	0.67	0.24	0.077
	Silver (Ag)	mg/kg	_	_	0.17	0.12	0.21	0.26	0.12	0.18	<0.10	0.25	0.11	0.20	0.17	0.058	0.018
	Sodium (Na)	mg/kg		_	283	299	315	413	332	347	259	421	332	366	337	52	17
	Strontium (Sr)	mg/kg		_	11.7	10.5	14.3	13.8	11.3	11.8	9.64	12.9	11.0	12.6	12.0	1.46	0.461
	Sulphur (S)		-	-	1,700	<1,000	1,900	1,300	1,300	<1,000	<1,000	1,400	1,100	<1,000	1,270	320	101
	Thallium (TI)	mg/kg		_	0.373	0.470	0.402	0.714	0.437	0.535	0.355	0.637	0.330	0.614	0.487	0.132	0.0418
	` '	mg/kg	-		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0.132	0.0418
	Tin (Sn)	mg/kg	-	-	936											105	
	Titanium (Ti)	mg/kg	-	-		1,070	866	1,190	1,030	1,100	1,050	1,170	1,150	1,150	1,071		33
	Uranium (U)	mg/kg	-	-	14.3	15.5	12.5	24.2	10.3	19.5	9.85	16.7	8.13	22.8	15.4	5.48	1.73
	Vanadium (V)	mg/kg	- 245	- 400	52.4	57.7	61.7	70.2	57.2	60.0	51.3	63.4	47.9	65.7	58.8	6.90	2.18
	Zinc (Zn)	mg/kg	315	123	71.3	73.7	85.7	96.4	74.8	79.3	67.9	82.9	65.8	86.7	78.5	9.56	3.02
	Zirconium (Zr)	mg/kg	-	-	4.4	3.9	4.9	4.2	3.3	3.5	3.9	3.8	6.0	4.3	4.2	0.78	0.25

Indicates parameter concentration above Sediment Quality Guideline (SQG). Note: "-" indicates no SQG applicable.

^a Canadian Sediment Quality Guideline for the protection of aquatic life, probable effects level (PEL; CCME 2015) except those indicated by α (Ontario Provincial Sediment Quality Objective [PSQO], severe effect level (SEL); OMOE 1993) and β (British Columbia Working Sediment Quality Guideline [BCSQG], probable effects level (PEL; BCMOE 2015)).

Figure B.5: Sediment Metal Concentrations (mean ± SE) at Littoral (<12m depth) and Profundal (>12m depth) Monitoring Stations of Reference Lake 3 (REF03), Mary River Project CREMP, 2015 to 2020

B5 PHYTOPLANKTON (CHLOROPHYLL-A)

B5.1 Lotic Environments

Chlorophyll-a concentrations, which were used as a surrogate for phytoplankton abundance, ranged from 0.24 to 0.93 $\,\mu$ g/L at the reference creek and river stations among spring, summer, and fall sampling events in 2020 (Appendix Table B.6). Therefore, lotic reference station chlorophyll-a concentrations were consistently well below the AEMP benchmark of 3.7 $\,\mu$ g/L, and reflected low (i.e., oligotrophic) phytoplankton productivity according to Dodds et al (1998) trophic status classification for stream environments. This trophic status classification was generally consistent with an ultra-oligotrophic to meso-eutrophic CWQG (CCME 2020) categorization for the stream and river reference stations based on mean aqueous total phosphorus concentrations generally ranging between 3 and 24 $\,\mu$ g/L during each respective spring, summer, and fall sampling event in 2020 (Appendix Tables B.2 and B.3). Chlorophyll-a concentrations were significantly lower in the spring but highest in the summer at the reference creeks and at the at the Mary River G0-09 series reference stations, in 2020 (Appendix Tables B.6 and B.7).

Like-season chlorophyll-a concentrations from 2015 to 2020 showed no consistent significant differences among years over the spring, summer, and fall sampling events at either the reference creek or the Mary River reference area stations (Appendix Figure B.6). The variability in response shown among seasons and years at the lotic reference areas indicated that significant differences in chlorophyll-a concentrations occur naturally among years and seasons in watercourses within the Mary River Project mine local study area.

B5.2 Lentic Environments (Reference Lake 3)

Chlorophyll-a concentrations at Reference Lake 3 showed no consistent differences between the surface and the bottom of the water column at each individual station during both the summer and fall sampling events in 2020 (Appendix Figure B.7). Reference Lake 3 chlorophyll-a concentrations averaged 0.69 µg/L in summer and fall 2020, and were consistently well below the AEMP benchmark of 3.7 µg/L (Appendix Table E.3; Appendix Figure B.7). Similar to the lotic reference stations, mean chlorophyll-a concentrations observed at Reference Lake 3 in 2020 indicated low (i.e., oligotrophic) phytoplankton productivity based on the lake trophic status classification presented in Wetzel (2001). This trophic status classification was generally consistent with an ultra-oligotrophic CWQG (CCME 2020) categorization for Reference Lake 3 based on mean aqueous total phosphorus concentrations below 4 µg/L during the summer and fall sampling events in 2020 (Appendix Table B.4). Chlorophyll-a concentrations did not differ significantly

Table B.6: Phytoplankton Monitoring Data Collected at Lotic Reference Stations, Mary River Project CREMP, 2020

	Station		Reference C	reek Stations		Mary Riv	er Reference	Stations
	Fall Spring Summer Fall	CLT-REF3	CLT-REF4	MRY-REF2	MRY-REF3	G0-09-A	G0-09	G0-09-B
	Spring	4-Jul-20	4-Jul-20	4-Jul-20	4-Jul-20	4-Jul-20	4-Jul-20	4-Jul-20
Sample Collection Date	Summer	3-Aug-20	3-Aug-20	3-Aug-20	3-Aug-20	3-Aug-20	2-Aug-20	2-Aug-20
Date	Fall	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20
	Spring	0.35	0.31	0.24	0.34	0.24	0.25	0.27
	Summer	0.62	0.90	0.92	0.52	0.66	0.71	0.93
Chlorophyll-a	Fall	0.74	0.31	0.34	0.45	0.33	0.43	0.34
(µg/L)	Average	0.57	0.51	0.50	0.44	0.41	0.46	0.51
	Standard Deviation	0.20	0.34	0.37	0.09	0.22	0.23	0.36
	Standard Error	0.12	0.20	0.21	0.05	0.13	0.13	0.21
	Spring	0.40	<0.10	0.37	0.45	0.35	0.66	0.43
	Summer	1.17	1.50	1.60	1.36	1.34	1.45	1.70
Phaeophytin-a	Fall	0.78	0.46	0.57	0.58	0.85	0.84	0.99
(µg/L)	Average	0.78	0.69	0.85	0.80	0.85	0.98	1.04
	Standard Deviation	0.39	0.73	0.66	0.49	0.50	0.41	0.64
	Standard Error	0.22	0.42	0.38	0.28	0.29	0.24	0.37

Table B.7: Statistical Comparisons of Chlorophyll-a Concentrations among Winter, Spring, Summer, and/or Fall Sampling Events at Reference Lotic and Lentic Study Areas, Mary River Project CREMP, 2020

	Overall	3-group Compa	arison		Pair-wise, post hoc	comparisons ^a	
Study Lake	Significant Difference Among Areas?	p-value	Statistical Test ^b	(I) Area	(J) Area	Significant Difference Between 2 Areas?	p-value
				Spring	Summer	YES	0.011
Stream Reference Stations	YES	0.036	K-W	Spring	Fall	NO	0.325
				Summer	Fall	NO	0.115
				Spring	Summer	YES	0.007
Mary River GO-09 Reference Stations	YES	0.027	K-W	Spring	Fall	NO	0.180
				Summer	Fall	NO	0.180
				Winter	Summer	not applicable	-
Reference Lake 3	-	-	-	Winter	Fall	not applicable	-
	YES	0.022	t-equal	Summer	Fall	YES	0.022

^a Post hoc analysis of 1-way ANOVA among all areas protected for multiple comparisons.

^b Statistical tests include Kruskal Wallis H-test (K-W) and t-test with equal variances.

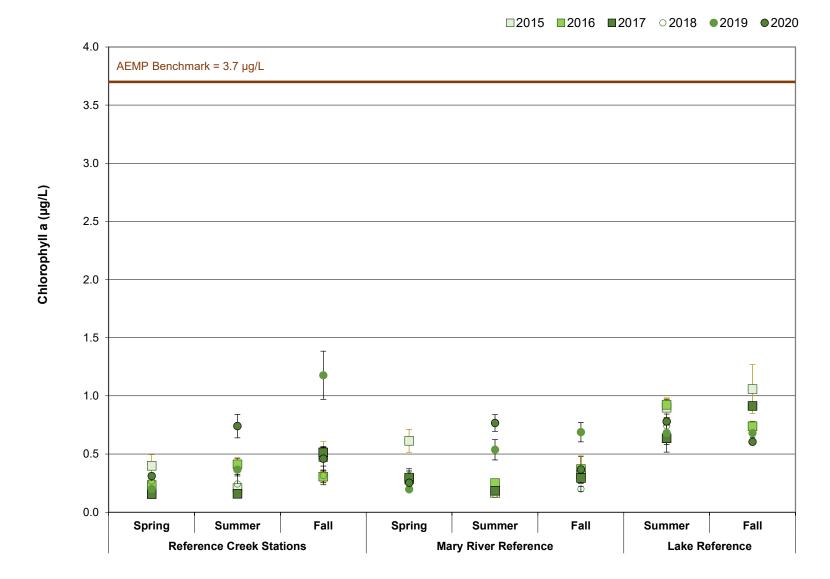


Figure B.6: Chlorophyll-a Concentration Seasonal Comparison from 2015 to 2020 at Creek, River, and Lake Reference Phytoplankton Monitoring Stations, Mary River Project CREMP

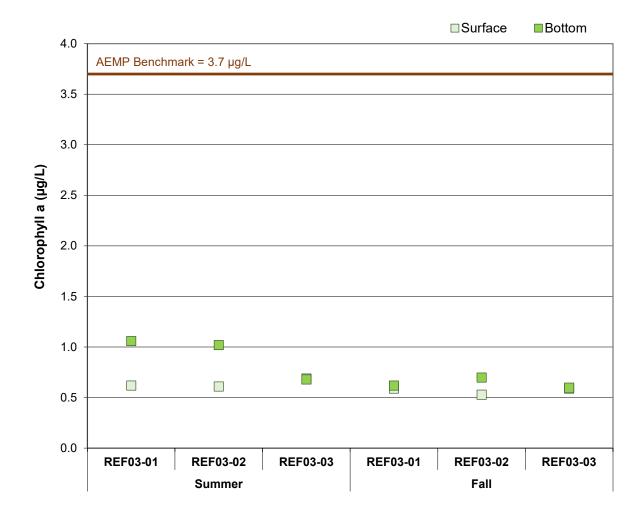


Figure B.7: Chlorophyll-a Concentrations at the Surface and Bottom of the Water Column at Reference Lake 3 Phytoplankton Monitoring Stations during Summer and Fall Sampling Events, Mary River Project CREMP, 2020

between the summer and fall at Reference Lake 3 in 2020 (Appendix Table B.7), which was similar to the 2015, but differed from the 2016 (significantly higher chlorophyll-a concentrations in summer compared to fall) and the 2017 and 2018 studies (significantly lower chlorophyll-a concentrations in summer compared to fall). Therefore, although chlorophyll-a concentrations were generally comparable from 2015 to 2020 for like-seasons at Reference Lake 3, the relative seasonal changes in chlorophyll-a concentrations among years suggested naturally variable temporal patterns in phytoplankton abundance can be expected at Mary River Project mine local study area lakes.

B6 BENTHIC INVERTEBRATE COMMUNITY

B6.1 Creek/Tributary Environments

The original Mary River Project CREMP design had not included/identified a reference creek from which to evaluate potential mine-related effects on benthic invertebrate communities of creek/tributary environments, instead relying solely on a before-after approach to identify potential mine influences on benthic invertebrates over time (see NSC 2014). Stemming from recommendations from the 2015 CREMP (Minnow 2016b), a reference creek was incorporated into the 2016 to 2020 CREMP benthic invertebrate community studies to provide a stronger basis for evaluating potential within-year mine-related effects to biota residing in mine-exposed tributaries of Camp and Sheardown lakes. The benthic invertebrate community (benthic) study area selected for the CREMP was located within at the same unnamed tributary to Angajurjualuk Lake that is used for reference water quality sampling (Stations CLT-REF4 and MRY-REF2; Table 2.5; Figure 2.4). Criteria used for the selection of this creek as a reference area for the CREMP, which is herein referred to as Unnamed Reference Creek, included a watercourse exhibiting similar habitat characteristics (e.g., width, water velocity, substrate size) as the mine-exposed tributaries that is not/has not been influenced by mining or adverse anthropogenic disturbances. The acceptance of Unnamed Reference Creek as a reference area for the evaluation of mine-related influences on tributary water chemistry under the original CREMP (KP 2014a) was also considered an important criterion in the selection of this watercourse as a suitable reference area for the benthic invertebrate community survey.

Benthic invertebrate density at Unnamed Reference Creek ranged from 258 to 1,032 individuals/m² in the 2020 study (mean of 713 individuals/m²), which is considered moderate for Arctic streams (Craig and McCart 1975). Unnamed Reference Creek showed relatively high richness and Simpson's Evenness in 2020, which was unlike the low production that can naturally be expected in Arctic streams as the result of constraints associated with low nutrients and seasonal temperatures, as well as food limitation (Huryn and Wallace 2000). The dominant taxonomic group observed at Unnamed Reference Creek benthic stations in 2020 was Chironomidae (non-biting midges), collectively accounting for approximately 86% of the community (Appendix Table B.8). Collector-gatherers were the dominant benthic invertebrate functional feeding group (FFG) present at Unnamed Reference Creek (Appendix Table B.8), suggesting greatest reliance upon deposited fine particulate organic matter as a food source for benthic invertebrates. Shredders constituted a low proportion of the Unnamed Reference Creek benthic invertebrate community (Appendix Table B.8), suggesting that live and/or decomposing leaf material was a less important food source. In terms of benthic invertebrate habit preference group (HPG), sprawlers were the dominant

Table B.8: Benthic Invertebrate Community Summary Statistics for Unnamed Reference Creek and Mary River (GO-09) Reference Areas, Mary River Project CREMP, August 2020

Metric	Area	Sample Size	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Density	Unnamed Reference Creek	5	713	296	133	258	1,032
(no. organisms / m²)	Mary River GO-09 Reference	5	886	831	372	315	2,208
Richness	Unnamed Reference Creek	5	16	4.4	2.0	9.0	20.0
(Number of Taxa)	Mary River GO-09 Reference	5	15	2.0	0.9	12.0	17.0
Simpon's Evenness	Unnamed Reference Creek	5	0.84	0.04	0.02	0.77	0.88
Simpson's Evenness	Mary River GO-09 Reference	5	0.83	0.15	0.07	0.56	0.92
Nemata	Unnamed Reference Creek	5	0.7	1.3	0.6	0.0	3.0
(% of community)	Mary River GO-09 Reference	5	0.5	0.6	0.3	0.0	1.2
Hydracarina	Unnamed Reference Creek	5	4.5	3.7	1.7	2.1	11.1
(% of community)	Mary River GO-09 Reference	5	1.1	1.3	0.6	0.0	3.2
Chironomidae	Unnamed Reference Creek	5	48.3	12.9	5.8	36.7	67.3
(% of community)	Mary River GO-09 Reference	5	89.6	5.1	2.3	83.2	96.2
Metal Sensitive Chironomidae	Unnamed Reference Creek	5	0.8	1.2	0.6	0.0	3.0
	Mary River GO-09 Reference	5	32.0	23.7	10.6	10.8	68.7
Tipulidae	Unnamed Reference Creek	5	1.5	2.3	1.0	0.0	5.6
(% of community)	Mary River GO-09 Reference	5	1.2	0.5	0.2	0.9	2.0
Collector-Gatherer FFG	Unnamed Reference Creek	5	80.7	8.8	3.9	70.0	91.1
(% of community)	Mary River GO-09 Reference	5	80.2	4.1	1.8	74.9	85.5
Filterer FFG	Unnamed Reference Creek	5	9.9	8.9	4.0	0.0	21.5
(% of community)	Mary River GO-09 Reference	5	2.0	1.8	0.8	0.0	4.9
Shredder FFG	Unnamed Reference Creek	5	2.8	2.7	1.2	0.0	7.0
(% of community)	Mary River GO-09 Reference	5	11.3	7.1	3.2	4.7	20.1
Clinger HPG	Unnamed Reference Creek	5	15.8	7.7	3.5	7.8	27.0
(% of community)	Mary River GO-09 Reference	5	15.0	5.8	2.6	5.9	21.3
Sprawler HPG	Unnamed Reference Creek	5	79.4	6.6	3.0	70.0	87.2
(% of community)	Mary River GO-09 Reference	5	79.0	5.9	2.6	69.8	85.2
Burrower HPG	Unnamed Reference Creek	5	4.8	3.3	1.5	1.4	8.3
(% of community)	Mary River GO-09 Reference	5	6.0	10.2	4.6	1.1	24.3

group at Unnamed Reference Creek (Appendix Table B.8) suggesting that most invertebrates were associated with substrate surfaces and were not deeply embedded in the substrate (i.e., non-burrowers).

B6.2 River Environments

The area of Mary River located upstream of the mine lease property has been considered representative of reference conditions for the mine-exposed stations/study areas situated farther downstream on the Mary River under the CREMP (Baffinland 2015; KP 2014a,b, 2015; NSC 2014). As in previous CREMP studies, the G0-09 area of Mary River (including water quality stations G0-09A, G0-09, and G0-09B) was used as the benthic reference area for mine-exposed areas of Mary River as part of the 2020 CREMP (see Table 2.5; Figure 2.4).

Benthic invertebrate density at the Mary River reference area in the 2020 study ranged from 315 to 2,208 individuals/m², which is considered moderate for Arctic lotic systems (Craig and McCart 1975). Moderate richness and Simpson's Evenness also characterized the benthic invertebrate community of the Mary River reference area, and reflected naturally low Arctic stream environment productivity as a result of low ambient temperatures and nutrient levels (Huryn and Wallace 2000). Midges of the family Chironomidae were the dominant taxonomic group observed at the Mary River reference area, with the relative abundance of this group ranging from 83% to nearly 96% of individuals (mean of 97.2%) and chironomid taxa considered metal-sensitive constituting 11% to 69% of the community (Appendix Table B.8). Similar to the reference creek, collector-gatherers were the dominant FFG present at the Mary River reference area (Appendix Table B.8), suggesting that fine particulate organic matter was the predominant food source for benthic invertebrates at this area. Sprawlers composed the dominant HPG at the Mary River reference area (Appendix Table B.8), which suggested that most benthic invertebrates were associated with the surface of rocky substrates.

Comparison of the Mary River reference area benthic invertebrate communities among baseline (2006, 2007) and mine-operational (2015 to 2020) studies for key metrics indicated no consistent significant differences in density, richness, and relative abundance of metal-sensitive chironomids or the collector-gatherer FFG between the baseline and mine-operational periods (Appendix Figure F.14; Appendix Table F.47). Simpson's Evenness and collector-gatherer FFG relative abundance has routinely been significantly higher and lower, respectively during years of mine operation (2015 to 2018, 2020) compared to baseline (Appendix Figure F.14; Appendix Table F.47). However, the direction of these differences was not consistent with an adverse change but rather suggested more even distribution of invertebrate groups and FFG for the mine-operational period (Appendix Figure F.14).

The changes in benthic invertebrate community metrics between the mine operational and baseline studies at the Mary River reference area were thus attributable to natural variability in community traits among years and/or to artifacts associated with CREMP sampling among studies.

B6.3 Lentic Environments (Reference Lake 3)

The benthic invertebrate community of Reference Lake 3 differed dramatically between littoral (<12 m depth) and profundal (>12 m depth) stations in 2020. As in previous monitoring conducted from 2015 to 2019, significantly higher benthic invertebrate density and richness was observed at littoral stations compared to profundal stations in 2020, both at Critical Effect Sizes outside of ± 2 SD (Appendix Table B.9). In addition, differences in benthic invertebrate community structure occurred between sampling depths as indicated by significantly higher lower relative abundance of Ostracoda (seed shrimp) and Chironomidae (non-biting midges), respectively, at littoral stations compared to profundal stations (Appendix Table B.9). No significant differences in the relative abundance of FFG or HPG were indicated between littoral and profundal habitats of Reference Lake 3 in 2020 with the exception of a higher relative abundance of the burrower HPG at littoral stations (Appendix Table B.9). The difference in benthic invertebrate community metrics and assemblage features between the littoral and profundal stations observed at Reference Lake 3 from 2015 to 2020 validated proposed changes to the CREMP benthic invertebrate community survey by Minnow (2016b). Specifically, benthic invertebrate community surveys can focus only on littoral habitat to reflect the fact that natural habitat factors that affect community assemblage at profundal areas limit the ability to interpret potential mine-related biological effects at profundal depths of the local study area lakes.

Littoral and profundal habitat benthic invertebrate communities at Reference Lake 3 in 2020 showed density, richness, Simpson's Evenness, and relative abundance of dominant taxonomic groups and FFGs al within the range of those observed from 2015 to 2019 (Appendix Figures F.5 and F.6). This suggested that the benthic invertebrate community at littoral and profundal habitat of Reference Lake 3 showed relatively minor changes from 2015 to 2020.

Table B.9: Benthic Invertebrate Community Statistical Comparison Results between Littoral and Profundal Stations at Reference Lake 3, Mary River Project CREMP, August 2020

		Statis	tical Test Re	sults		Summary Statistics									
Metric	Statistical Test	Data Transform- ation	Significant Difference Between Areas?	p-value	Magnitude of Difference ^a (No. of SD)	Habitat	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Median	Maximum			
Density (Individuals/m²)	t-equal	log10	YES	< 0.001	-2.5	Lake Littoral Lake Profundal	1,571 479	430 142	193 63	1,190 336	1,474 491	2,310 681			
Richness (Number of Taxa)	t-equal	log10	YES	< 0.001	-3.0	Lake Littoral Lake Profundal	14.6 7.0	2.5 1.9	1.1 0.8	13.0 5.0	14.0 8.0	19.0 9.0			
Simpson's Evenness (E)	t-equal	none	NO	0.177	-0.7	Lake Littoral Lake Profundal	0.810 0.731	0.110 0.045	0.049 0.020	0.630 0.689	0.847 0.721	0.923 0.795			
Shannon Diversity	t-equal	log10	YES	0.004	-1.7	Lake Littoral Lake Profundal	2.710	0.526 0.196	0.235 0.088	2.080 1.580	2.730 1.720	3.510 2.030			
Hydracarina (%)	t-equal	log10(x+1)	NO	0.134	-0.9	Lake Littoral Lake Profundal	5.3	2.6	1.2	3.5	4.4	9.9 5.1			
Ostracoda (%)	t-equal	log10	YES	< 0.001	-2.0	Lake Littoral Lake Profundal	37.9 8.6	14.5	6.5 1.8	26.7 3.5	36.2 7.7	62.6 14.5			
Chironomidae (%)	t-equal	none	YES	0.001	2.3	Lake Littoral Lake Profundal	52.6 87.9	15.6 4.2	7.0	26.9 82.3	59.0 87.2	66.4 92.7			
Metal-Sensitive	t-equal	none	NO	0.773	0.3	Lake Littoral	28.8	9.5	4.3	15.6	32.5	38.7			
Chironomidae (%)						Lake Profundal	31.5	17.6	7.9	7.9	38.0	49.3			
Collector- Gatherers (%)	t-equal	log10	NO	0.917	0.0	Lake Littoral Lake Profundal	63.1 62.9	11.4 15.0	5.1 6.7	53.6 45.4	60.3 56.1	81.5 79.0			
Filterers (%)	t-equal	none	NO	0.701	0.4	Lake Littoral Lake Profundal	27.1 30.7	9.8 17.5	4.4 7.8	14.4 7.9	29.2 38.0	38.0 49.3			
Shredders (%)	t-equal	none	NO	0.396	-0.5	Lake Littoral Lake Profundal	3.9 2.2	3.3 2.3	1.5 1.0	0.6 0.0	3.2 2.5	7.4 5.3			
Clingers (%)	t-equal	none	NO	0.863	0.2	Lake Littoral Lake Profundal	31.9 33.5	9.3 16.9	4.2 7.6	17.9 13.1	33.5 41.5	41.6 52.8			
Sprawlers (%)	t-equal	none	NO	0.466	0.6	Lake Littoral Lake Profundal	57.9 64.8	12.1 16.2	5.4 7.2	41.0 45.5	57.2 58.5	73.8 87.0			
Burrowers (%)	t-equal	none	YES	0.011	-1.7	Lake Littoral Lake Profundal	10.2	4.9	2.2	4.6	8.3 0.0	17.3 6.7			

Grey shading indicates statistically significant difference between habitat types based on p-value ≤ 0.10.

Blue shaded values indicate significant difference (p-value ≤ 0.10) that was also outside of a CES of ±2 SD, indicating that the difference was ecologically meaningful.

^a Magnitude calculated by comparing the difference between the lake littoral and profundal area means divided by the littoral area standard deviation.

B7 FISH POPULATION

B7.1 Lotic Environments

Fish population sampling of lotic habitats is not required as part of the Mary River Project CREMP (see NSC 2014). In part, this reflects the fact that fish can only inhabit local study area creeks/rivers for a short period each year (i.e., July to September) as a result of complete freezing/desiccation of these lotic habitats over much of the year. In addition, sampling of juvenile arctic charr within a representative lotic habitat is conducted for the federal Environmental Effects Monitoring (EEM) program to meet Metal and Diamond Mining Effluent Regulation requirements (Baffinland 2015; Minnow 2018b, 2021).

B7.2 Lentic Environments (Reference Lake 3)

The Reference Lake 3 fish community has historically been composed of arctic charr and ninespine stickleback. The relative abundance of both species has been low at Reference Lake 3 based on low electrofishing and gill netting catches and catch-per-unit-effort (CPUE) for each species in all previous studies (Minnow 2018a, 2019, 2020), and predominantly arctic charr were captured at the reference lake in 2020 (Appendix Tables G.1 and G.2). Suitable numbers of arctic charr were captured at nearshore habitat of Reference Lake 3 (i.e., 100 individuals) to allow evaluation of mine-related effects on survival, growth, and condition of fish collected at the mine-exposed lake shorelines. For these fish, young-of-the-year (YOY) individuals were generally distinguishable from the 1+ to 5+ age classes at a fork length of 4.5 cm based on the evaluation of length-frequency distributions coupled with supporting age determinations (Appendix Figure B.8). In 2015 and 2019, YOY arctic charr captured at nearshore habitat were not able to be distinguished from older age classes at Reference Lake 3 (Appendix Figure B.8). However, population comparisons of nearshore arctic charr captured between the mine-exposed and reference lakes from 2016 to 2018 and 2020 were completed separately for YOY and non-YOY data sets. Temporal comparisons of the 2015 to 2020 nearshore arctic charr data indicated that fish sizes in 2020 were within range of those captured in previous years, with condition of fish within the critical effect size for growth endpoints of ±25% for 2020 compared to all years except 2018 for non-YOY (Appendix Table B.10). The data show that larger fish are likely to naturally exhibit lower condition than smaller sized fish (Appendix Table B.10; Appendix Figure B.9). Overall, the Reference Lake fish population data indicated that some year-to-year differences in fish population endpoints can be expected naturally at local study area lakes.

Low numbers of arctic charr were captured at littoral/profundal areas of Reference Lake 3 in 2020 (i.e., 69 individuals) despite application of similar fishing effort to that used at the

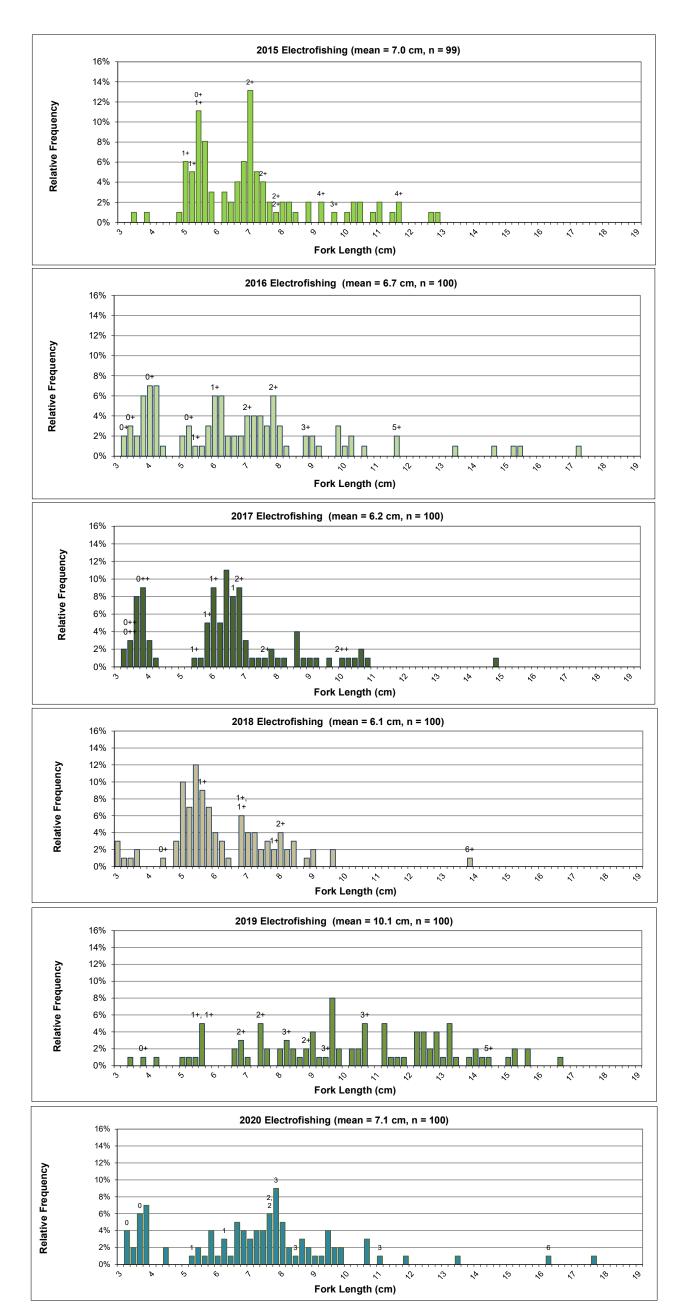


Figure B.8: Length-frequency Distributions for Arctic Charr Captured by Backpack Electrofishing and Gill Netting at Reference Lake 3 (REF3) in August 2015 to 2020, Mary River Project CREMP

Note: Fish ages are shown above the bars, where available.

Table B.10: Statistical Comparisons For Length, Weight, and Condition Endpoints For non-Young-of-the-Year Arctic Charr from Reference Lake 3, 2015 to 2020

			Varia	ables		s	Sample	Size (r	1)			_			Pairwise	Comparisons ^b		
Group	Indicator	Endpoint	Response	Covariate	2015	2016	2017	2018	2019	2020	Test ^a	Area P-Value	Year 1	Year 2	P-value	Magnitude of Difference (%) ^c		
													2015	2016 2017 2018	0.023 0.781 0.005	5.8 -4.3 -16		
														2019 2020 2017	<0.001 0.001 0.058	45 12 -9.6		
	Body Size	Fork Length	Fork Length (cm)	-	-	68	74	92	97	79	K-W	<0.001	2016	2018 2019 2020	<0.001 <0.001 0.416	-20 37 5.5		
													2017	2018 2019 2020	0.004 <0.001 0.005	-12 52 17		
													2018	2019 2020 2020	<0.001 <0.001 <0.001	72 72 -23		
													2019	2016 2017	0.022 0.768	-23 23 -8.4		
													2015	2018 2019 2020	0.069 <0.001 0.004	-32 211 31		
Non-YOY	Body Size	Body Weight	Body Weight	_	_	68	74	92	97	79	K-W	<0.001	2016	2017 2018 2019	0.058 <0.001 <0.001	-26 -45 153		
	,	, ,	(g)										2017	2020 2018 2019	0.64 0.045 <0.001	6.1 -26 240		
													2018	2020 2019 2020	0.014 <0.001 <0.001	43 362 362		
															2019	2020 2016 2017	<0.001 0.827 1	-58 1.7 0.046
							74	92	97	79	ANCOVA		2015	2018 2019 2020	<0.001 0.082 0.067	-3.7 -3.7		
	Energy Storage	Condition	log10[Body Weight (g)]	log10[Fork Length (cm)]	-	68						<0.001	2016	2017 2018 2019	0.87 <0.001 0.003	-1.7 9.9 -5.3		
													2017	2020 2018 2019	0.003 <0.001 0.105	-5.3 12 -3.7		
													2018	2020 2019 2020	0.091 <0.001 <0.001	-3.7 -14 -14		
			Fork Length					_					2016	2020 2017 2018 2020	0.006 <0.001 0.004	0.0091 -6.4 -18 -7.7		
	Body Size	Fork Length	(cm)	-	-	31	26	8	-	21	K-W	<0.001	2017	2018 2020 2020	0.106 0.768 0.173	-12 -1.4 12		
	D. J. C.	Dad William	log10[Body			0.1	00			0.1	ANIO	0.00	2016	2017 2018 2020	0.716 0.004 0.018	-8.8 -37 -24		
YOY°	Body Size	Body Weight	Weight (g)]	-	-	31	26	8	-	21	ANOVA	0.001	2017 2018	2018 2020 2020	0.033 0.217 0.542	-31 -17 20		
	Energy		loa101Body	loa101Fork			_	-					2016	2017 2018 2020	0.023 0.998 0.923	12 1.1 -2.6		
	Storage	Condition	log10[Body I Weight (g)] Li	log10[Fork Length (cm)]	-	31	25 ^e	8	-	21	ANCOVA	0.005	2017	2018 2020	0.293 0.006	-9.9 -13		
													2018	2020	0.924	-3.7		

Area P-value < 0.1 or Interaction P-value < 0.05.

Magnitude of Difference greater than absolute Effect Size of 25% for length and weight endpoints, or 10% for condition endpoint.

^a Statistical tests included the Kruskal Wallis H-test (K-W), ANOVA, and ANCOVA.

^b Calculated as the difference in measure of central tendency (MCT) between areas (mine-exposed minus reference), expressed as a percentage of the reference area MCT (except for the K-W test; see footnote b).

^c Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has a greater number of fish with length measures that are less than where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish with length measures that are less than where the maximum difference in CRFDs was

observed. $^{\rm d}$ Could not be calculated for 2015, 2018, or 2019 data sets.

 $^{^{\}rm e}$ One outlier (REF317-ACJ-25, Stdnt resid: 4.226) removed from analysis.

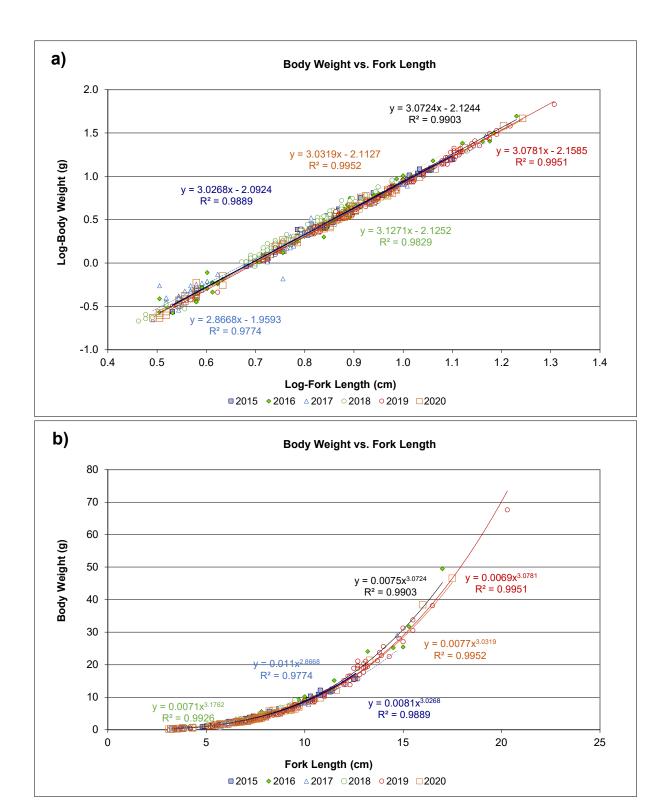


Figure B.9: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at the Nearshore Area of Reference Lake 3 in August from 2015 to 2020 using Log-transformed (a) and Untransformed (b) Data, Mary River Project CREMP

mine-exposed study lakes (Appendix Table G.2). However, unlike previous studies conducted from 2015 to 2018 that resulted in catches ranging from 1 to 27, the sample size in 2020 was sufficient as a basis for conducting meaningful statistical comparison with the mine-exposed lakes to evaluate mine-related effects on the population of reproductive-aged arctic charr. Notably, because arctic charr can show differential growth rates between the sexes (females grow faster; Jonsson et al. 1988; Skulason et al. 1996; Gulseth and Nilssen 2001), natural differences in sex ratios between study areas could potentially result in falsely attributing differences in growth and/or condition between mine-exposed and reference areas to mine-related influences. Thus, the inability to definitively determine arctic charr sex using external characteristics when applying a non-lethal sampling approach could confound data interpretation. To determine whether differences in sex ratios could potentially confound the interpretation of the CREMP arctic charr health assessment, growth and condition were compared between male and female Arctic charr collected at Camp, Sheardown and Mary lakes during the baseline period as part of the 2015 CREMP (Minnow 2016a). No significant differences in growth and condition were indicated between males and females based on this analysis, suggesting that a non-lethal study approach is unlikely to bias the evaluation of mine-related effects on fish health as part of the CREMP. Contrary to the published literature, the absence of differences in arctic charr growth and condition between males and females at Mary River Project local study area lakes may be explained by naturally slow growth rates and low spawning frequency (i.e., once every 2 to 4 years) at high Arctic areas, and also by low gonadosomatic index (GSI) at the time that sampling is normally conducted for the Mary River Project CREMP (i.e., August).

B8 CREMP IMPLICATIONS

This overview of reference conditions was included in the CREMP to provide context and perspective regarding key chemical, physical, and biological features of the CREMP reference study areas. Key implications of reference area features that could affect the ability of the CREMP to evaluate mine-related effects at mine-exposed waterbodies that were identified through the 2016 to 2020 reference area overviews include the following:

- Federal Water Quality Guidelines (WQG) are not applicable for aqueous phenol concentrations. Aqueous concentrations of phenols were routinely elevated above WQG at the CREMP creek, river and lake reference stations in 2015 and 2016. Correlation analysis indicated a significant, positive relationship between phenol and both nitrate and DOC concentrations in the 2015 and 2016 CREMP, suggesting that high phenol concentrations in waterbodies near the Mary River Project mine were associated with influences from natural organic composition. Therefore, phenol concentration comparisons against applicable WQG did not serve as a focus for discussion as part of the 2016 to 2020 CREMP.
- Greater reliance on the use of dissolved metals concentrations for assessing mine-related influences on aqueous metal concentrations at waterbodies used for the CREMP. Total aluminum concentrations were routinely elevated, and other metals including (total) iron periodically elevated, above WQG at creek, river, and/or lake reference areas used for the CREMP from 2015 to 2020, and historically in baseline studies. Significant positive correlations between total concentrations of these metals and turbidity were identified using the 2015 to 2020 data sets which suggested that these metals were likely bound to and/or composed the physical make-up of suspended particulate materials in water samples. This was supported by a low ratio of dissolved to total concentrations of metals such as aluminum, iron, and manganese in reference water samples from 2015 to 2020. Accordingly, greater emphasis should be placed on comparison of dissolved metal concentrations for assessing potential mine-related influences on water quality as part of the CREMP studies.
- Use of fall sampling event water quality data to allow the most conservative evaluation of potential mine-related influences on water chemistry. Water chemistry at lotic reference stations showed distinct seasonal changes in parameter concentrations during the baseline, and 2015 to 2020 studies. In general, conventional parameters, anions, and total metals were observed at lowest concentrations in spring, with intermediate concentrations in the summer, and highest

concentrations observed during the fall in each year. Therefore, although water chemistry data from winter, spring, and summer sampling events were examined, the fall water chemistry data generally served as the focus for the evaluation of potential mine-related influences on water quality at the mine-exposed lakes in CREMP studies conducted from 2016 to 2020.

- Use of average water chemistry and chlorophyll-a data for lake water quality/phytoplankton monitoring stations. No consistent differences in water chemistry or chlorophyll-a concentrations were observed between the surface and bottom of the water column at Reference Lake 3 stations from 2015 to 2020. Therefore, the evaluation of water chemistry and phytoplankton productivity among stations and study areas for the 2016 to 2020 Mary River Project CREMP studies was based on average water chemistry and chlorophyll-a values from the water column surface and bottom for each lake station.
- Consider updating of the AEMP sediment quality benchmarks. Arsenic, chromium, copper, iron, manganese, and phosphorus have been observed at concentrations above the AEMP sediment quality benchmarks in sediment at Reference Lake 3 in CREMP studies conducted from 2015 to 2020. This suggested that the AEMP benchmarks for these metals may be overly conservative and therefore, to improve the applicability of the AEMP benchmarks for these metals, consideration should be given to incorporating reference lake data into derivation of updated sediment quality AEMP benchmarks.
- Focus lake benthic invertebrate community survey on littoral zone. Benthic invertebrate community data collected at Reference Lake 3 from 2015 to 2020 consistently indicated that, similar to most lakes, benthic invertebrate community features can be expected to naturally change with depth. In general, as depth increases, lower benthic invertebrate density and richness typically occurs. The occurrence of naturally low density and/or richness can, in turn, limit the ability to distinguish adverse effects associated with a project. Therefore, in order to maximize the confidence in the benthic invertebrate community analysis results, the littoral zone should serve as the focus for the lake benthic invertebrate community survey analysis for the CREMP.
- Adopting of standard CES for benthic invertebrate community and fish
 population endpoints into the CREMP. Year-to-year evaluation of reference creek
 and lake habitat used for the CREMP has indicated that benthic invertebrate and fish

populations differences between years can be expected to vary within the CES set out for use under the federal EEM program (Munkittrick et al. 2009). Therefore, the use of established CES for defining effects appears to be applicable to the Mary River Project CREMP.

B9 REFERENCES

- Baffinland (Baffinland Iron Mines Corporation). 2015. Mary River Project Aquatic Effects Monitoring Plan. Document No. BAF-PH1-830-P16-0039. Rev 1. June 27, 2014.
- CCME. 2020. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/resources/water-quality#. Accessed December 2020.
- Craig, P.C. and P.J. McCart. 1975. Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska, and the McKenzie Delta, N.W.T., Canada. Arctic and Alpine Research. 7: 183 198.
- Dodds, W.K., J.R. Jones and E.B. Welch. 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Resources 12: 1455 1462.
- Gulseth, O.A. and K.J. Nilssen. 2001. Life-History Traits of Charr, *Salvelinus alpines*, from a High Arctic Watercourse on Svalbard. Arctic 54:1-11.
- Huryn, A.D. and J.B. Wallace. 2000. Life history and production of stream insects. Annual Review of Entomology 45: 83 110.
- Jonsson, B., S. Skulason, S.S. Snorrason, O.T. Sandlund, H.J. Malmquist, P.M. Jonasson, R. Gydemo and T. Lindem. 1988. Life History Variation of Polymorphic Arctic Charr (*Salvelinus alpinus*) in Thingvallavatn, Iceland. Can. J. Fish Aquat. Sci. 45:1537-1547.
- KP (Knight Piesold Ltd.) 2014a. Baffinland Iron Mines Corporation Mary River Project Water and Sediment Quality Review and CREMP Monitoring Report. KP Ref. No. NB102-181/33-1. June 25, 2014.
- KP 2014b. Baffinland Iron Mines Corporation Mary River Project Detailed Review of Baseline Stream Water Quality. KP Ref. No. NB102-181/33-1C. May 30, 2014.
- KP 2015. Baffinland Iron Mines Corporation Mary River Project 2014 Water and Sediment CREMP Monitoring Report. KP Ref. No. NB102-181/34-6. March 19, 2015.
- Minnow (Minnow Environmental Inc.). 2016a. Mary River Project 2015 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2016.
- Minnow. 2016b. Mary River Project CREMP Recommendations for Future Monitoring. Letter report to Jim Millard, Baffinland Iron Mines Corp. March 17, 2016.
- Minnow. 2017. Mary River Project 2016 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2017.
- Minnow. 2018a. Mary River Project 2017 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2018.
- Minnow. 2018b. Mary River Project Phase 1 Environmental Effects Monitoring (2017) Interpretive Report. Prepared for Baffinland Iron Mines Corp. January 2018.
- Minnow. 2019. Mary River Project 2018 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2019.
- Minnow. 2020. Mary River Project 2019 Core Receiving Environment Monitoring Program Report. Prepared for Baffinland Iron Mines Corp. March 2020.

- Minnow. 2021. Mary River Project Second Environmental Effects Monitoring (2020) Interpretive Report. Prepared for Baffinland Iron Mines Corp. January 2021.
- Munkittrick, K.R., C.J. Arens, R.B. Lowell and G.P. Kaminski. 2009. A review of potential methods of determining critical effect size for designing environmental monitoring programs. Environmental Toxicology and Chemistry 8: 1361 1371.
- NSC (North/South Consultants Inc.). 2014. Mary River Project Core Receiving Environment Monitoring Program: Freshwater Biota. Report prepared for Baffinland Iron Mines Corporation. June 2014.
- NSC. 2015. Mary River Project Description of Biological Sampling Completed in the Mine Area: 2014. Report prepared for Baffinland Iron Mines Corporation. March 2015.
- OMOE (Ontario Ministry of Environment). 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. August 1993, Reprinted October, 1996.
- OMOEE (Ontario Ministry of Environment and Energy). 1994. Water Management: Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy. July, 1994. Reprinted February 1999.
- Skulason, S., S.S. Snorrason, D.L.G. Noakes and M.M. Ferguson. 1996. Genetic Basis of Life History Variations Among Sympatric Morphs of Arctic Char, *Salvelinus alpines*. Can. J. Fish Aquat. Sci. 53:1807-1813
- Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. Third Edition. Academic Press. San Diego, CA, USA. 1006 pp.

APPENDIX C WATER QUALITY DATA

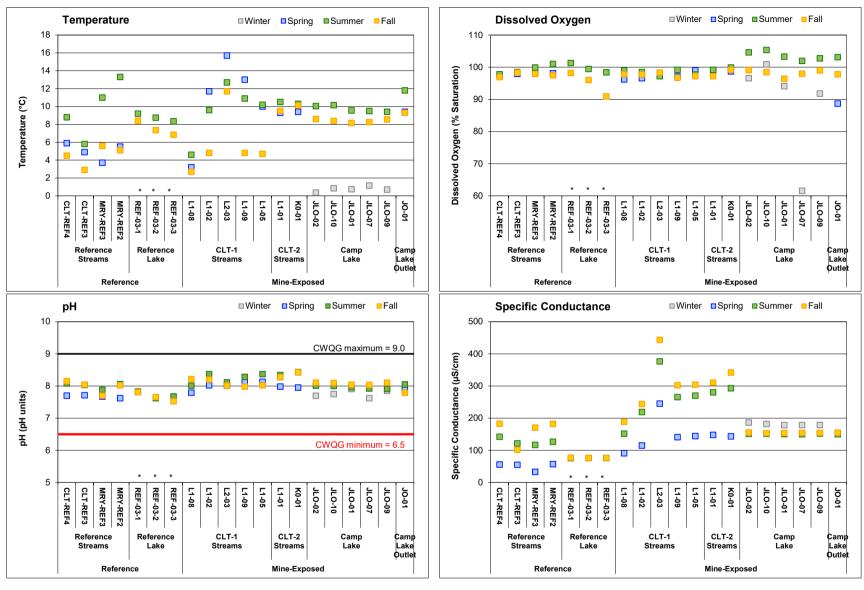


Figure C.1: Comparison of *In Situ* Water Quality Measured at Camp Lake System Water Quality Monitoring Stations in Winter, Spring, Summer, and Fall 2020, Mary River Project CREMP

Notes: Lake values represent mean of surface and bottom *in situ* water quality measurements. Streams were not sampled in winter. Lakes were not sampled in spring. * Reference Lake 3 (REF-03) was not sampled in winter.

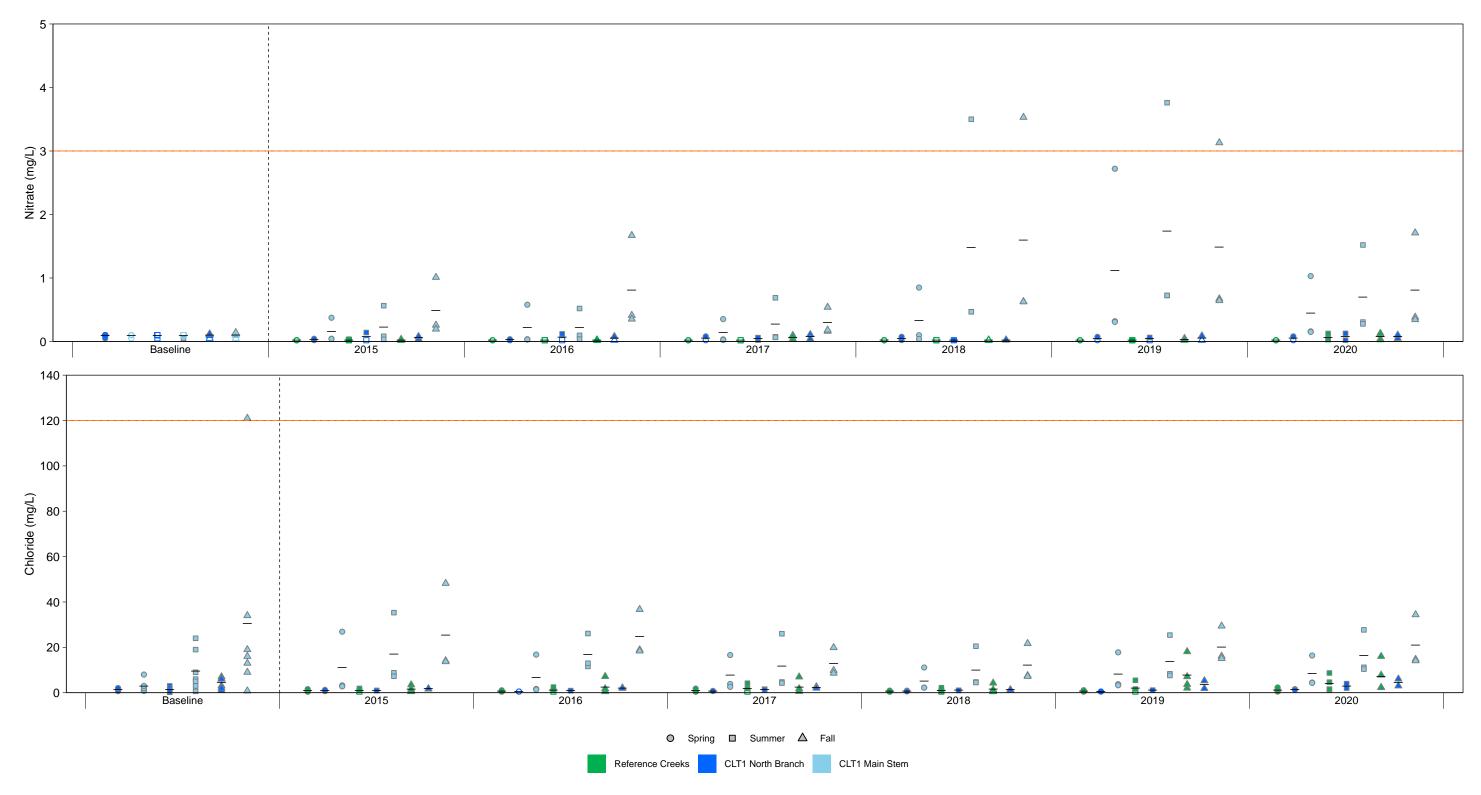


Figure C.2: Temporal Comparison of Water Chemistry at Camp Lake Tributary 1 (CLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

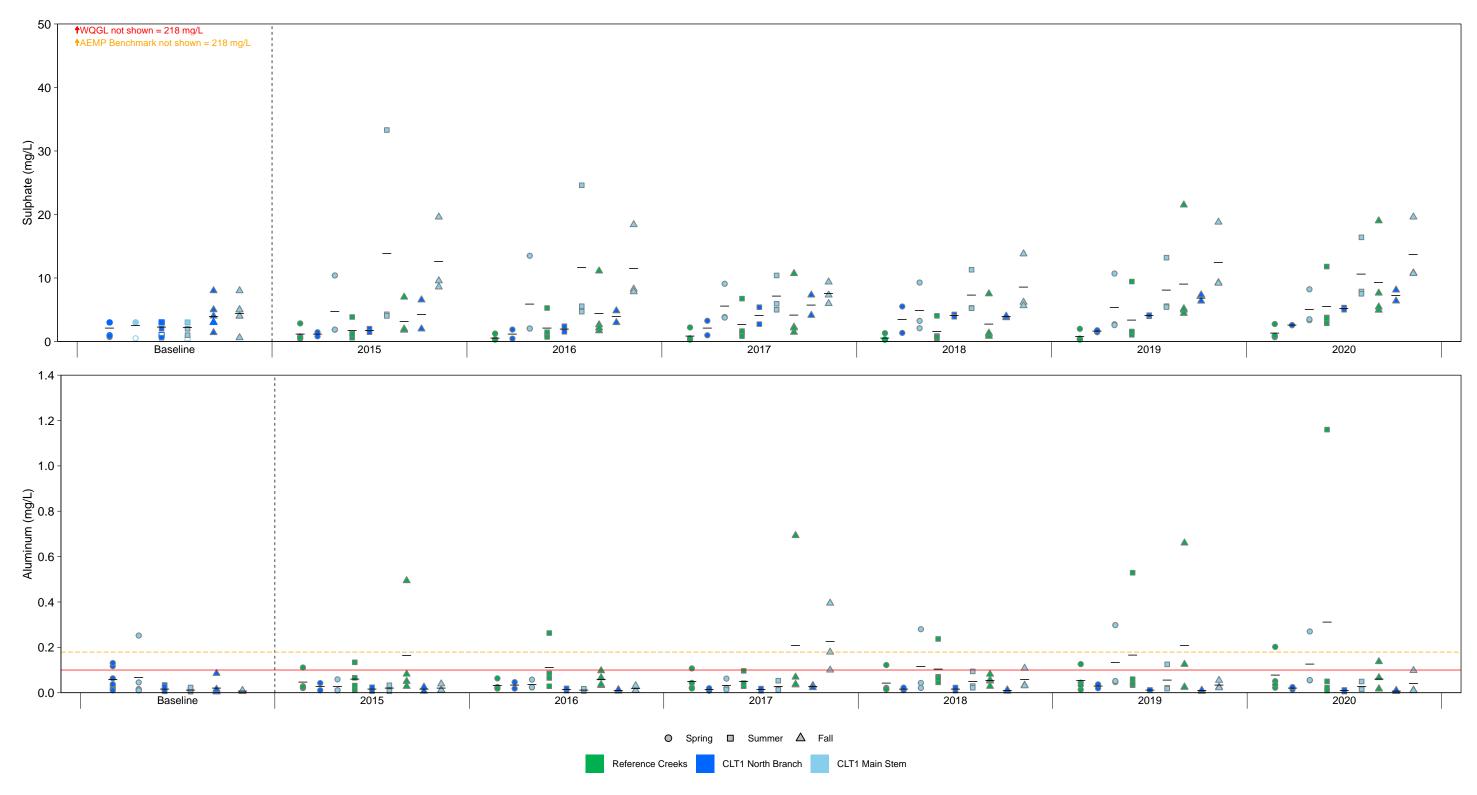


Figure C.2: Temporal Comparison of Water Chemistry at Camp Lake Tributary 1 (CLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

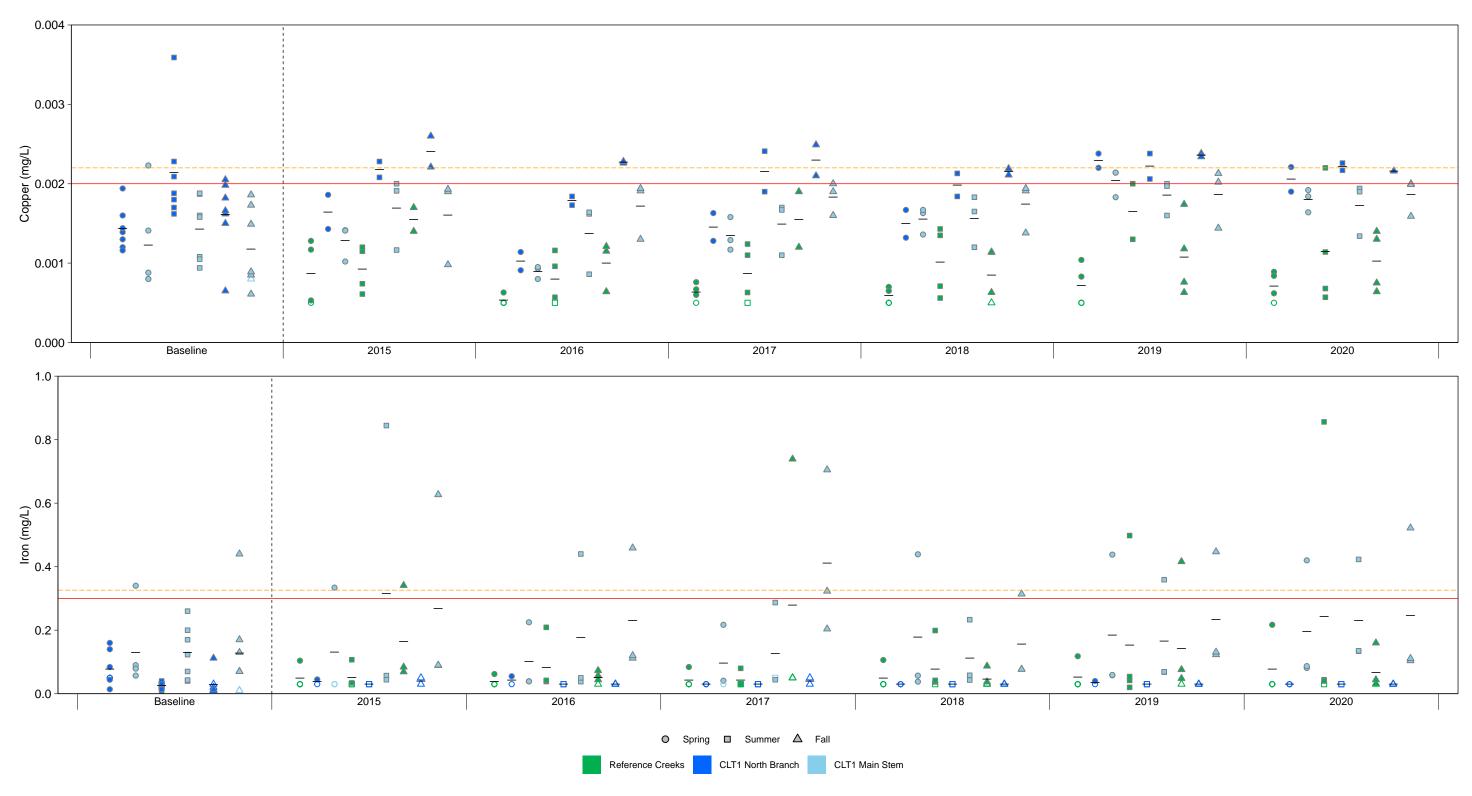


Figure C.2: Temporal Comparison of Water Chemistry at Camp Lake Tributary 1 (CLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

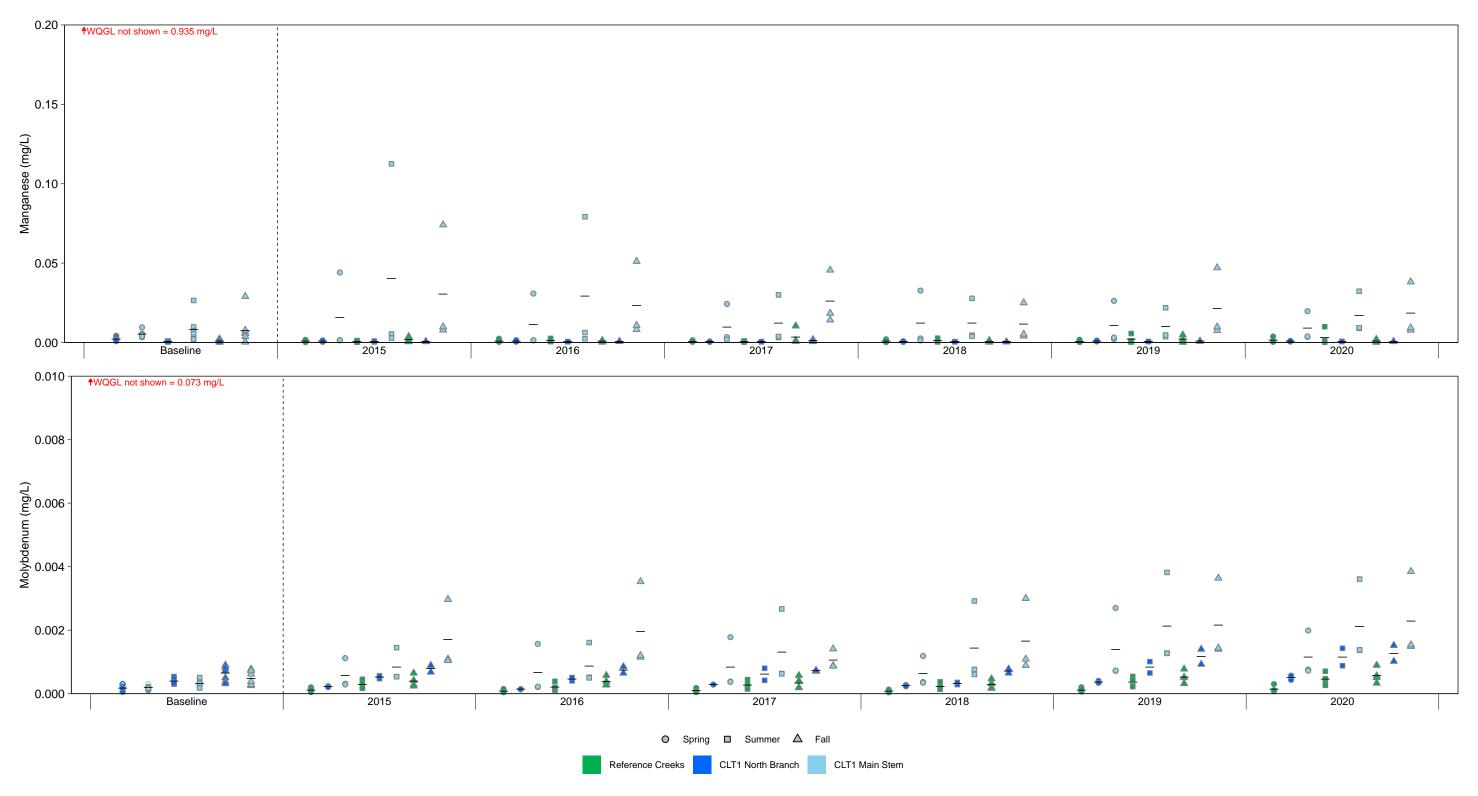


Figure C.2: Temporal Comparison of Water Chemistry at Camp Lake Tributary 1 (CLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

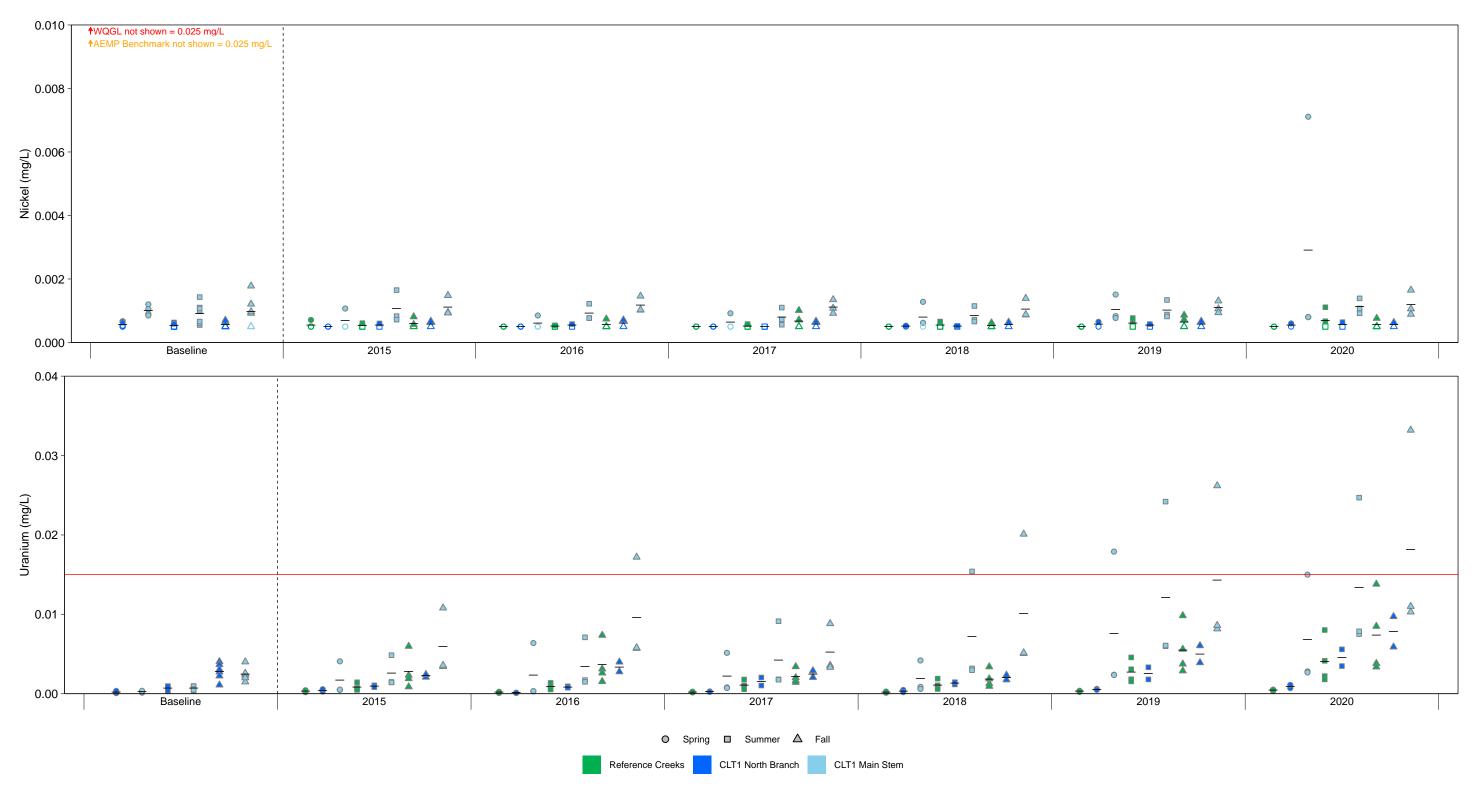


Figure C.2: Temporal Comparison of Water Chemistry at Camp Lake Tributary 1 (CLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

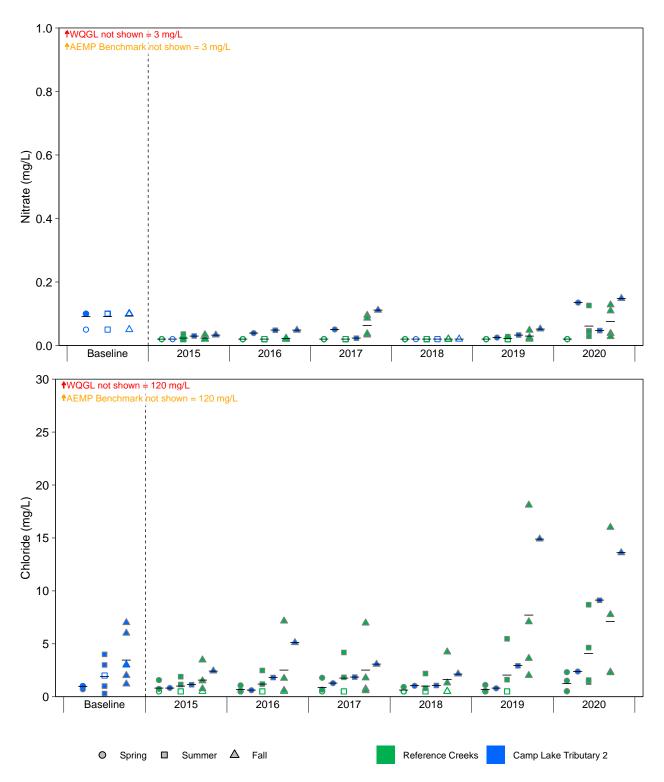


Figure C.3: Temporal Comparison of Water Chemistry at Camp Lake Tributary 2 (CLT2) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

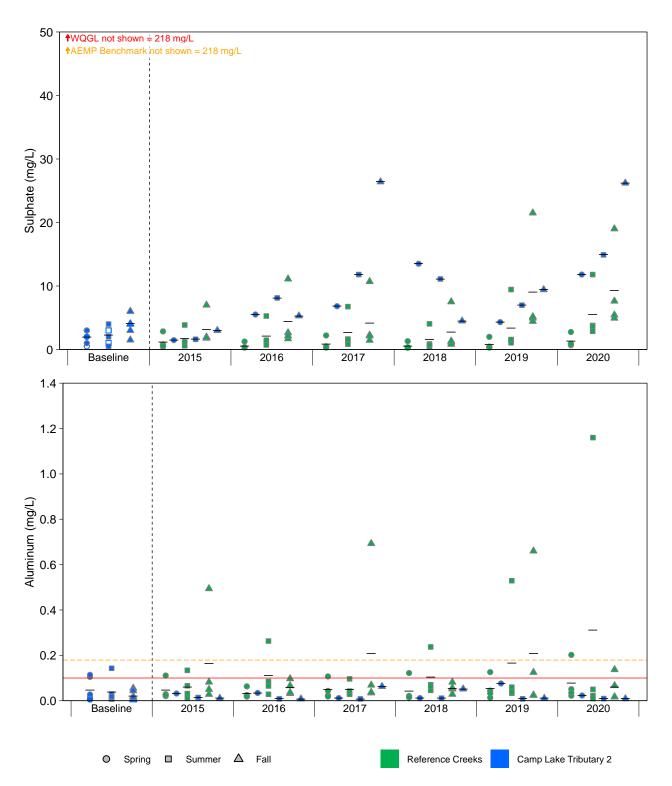


Figure C.3: Temporal Comparison of Water Chemistry at Camp Lake Tributary 2 (CLT2) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

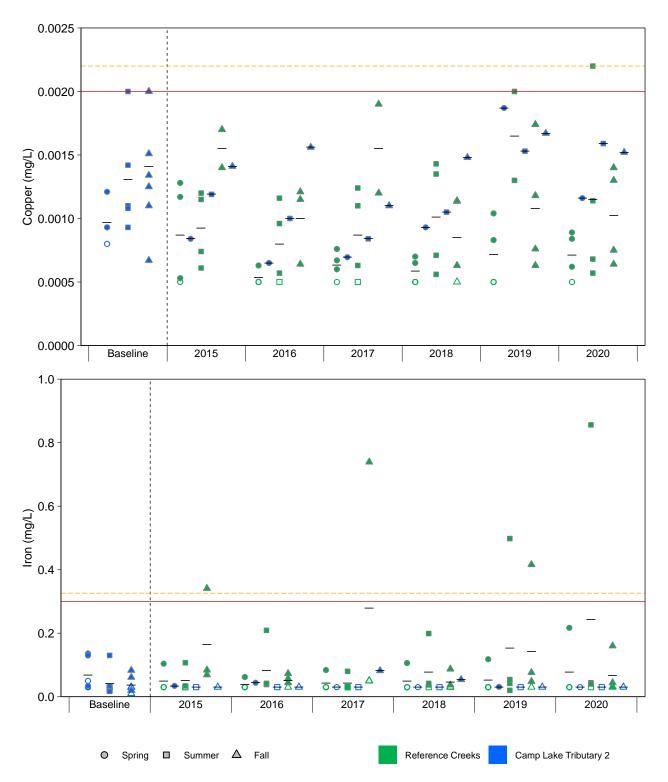


Figure C.3: Temporal Comparison of Water Chemistry at Camp Lake Tributary 2 (CLT2) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

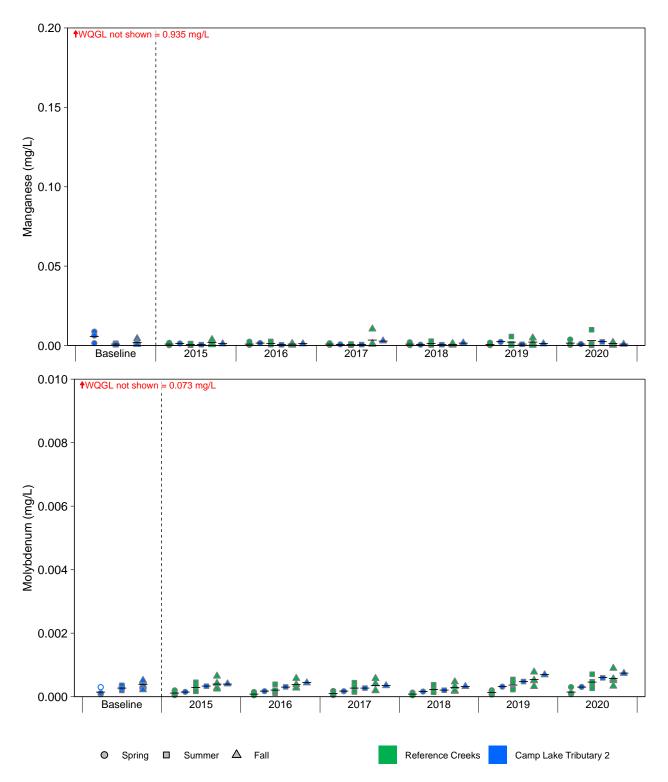


Figure C.3: Temporal Comparison of Water Chemistry at Camp Lake Tributary 2 (CLT2) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

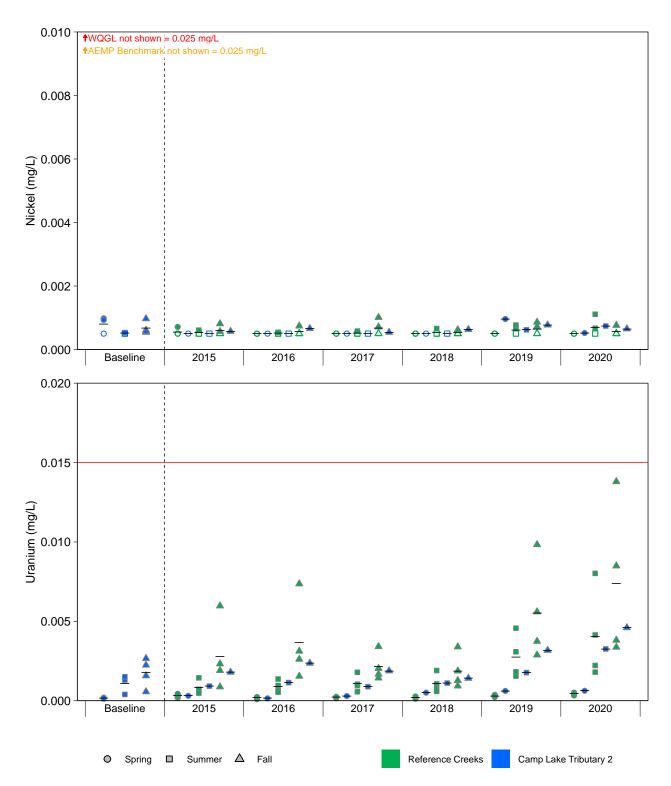


Figure C.3: Temporal Comparison of Water Chemistry at Camp Lake Tributary 2 (CLT2) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

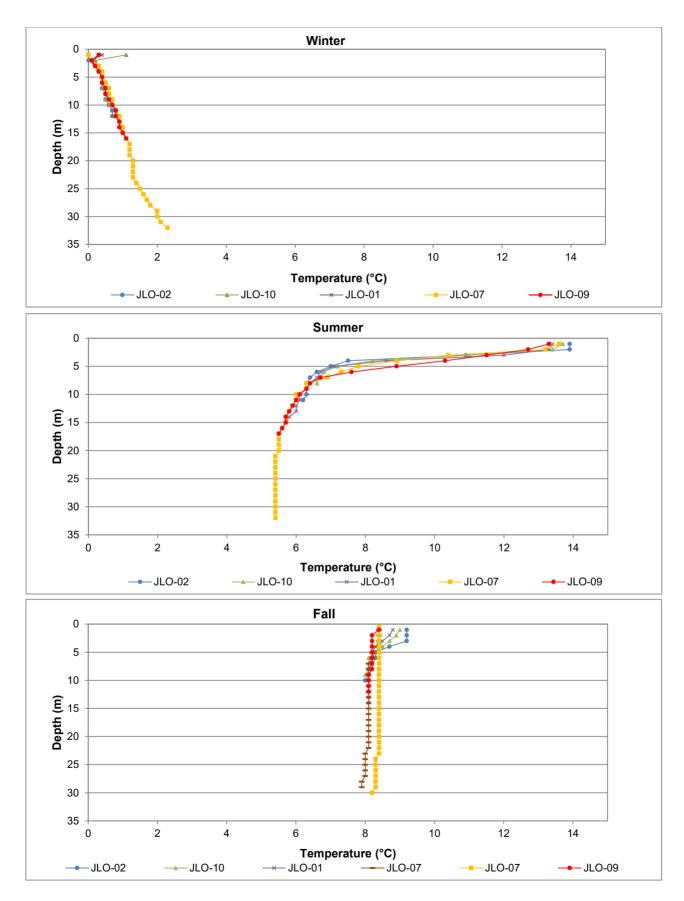


Figure C.4: Vertical Profiles of Temperature Measured at Camp Lake in Winter, Summer, and Fall, 2020

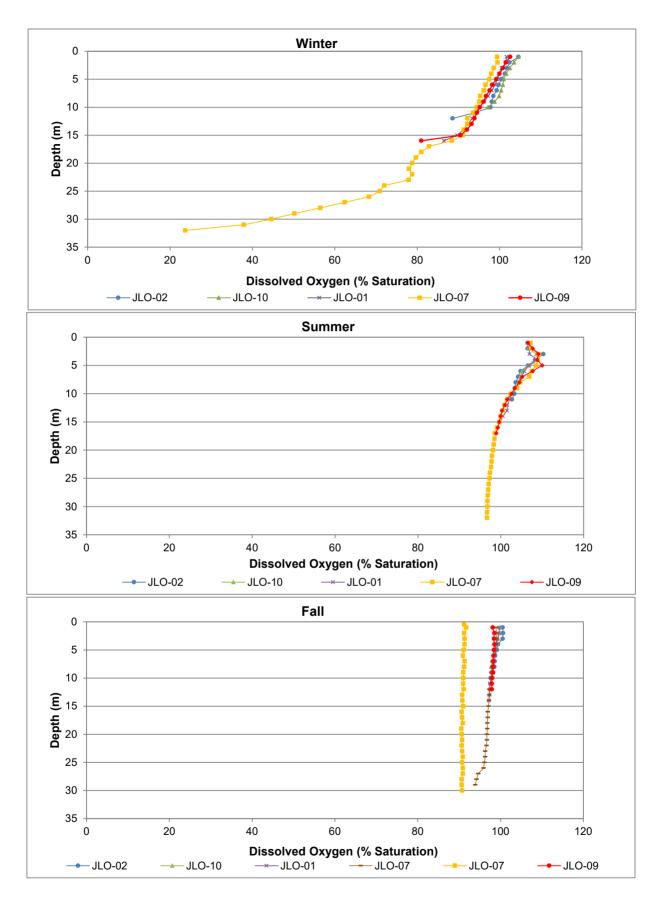


Figure C.5: Vertical Profiles of Dissolved Oxygen Measured at Camp Lake in Winter, Summer, and Fall, 2020

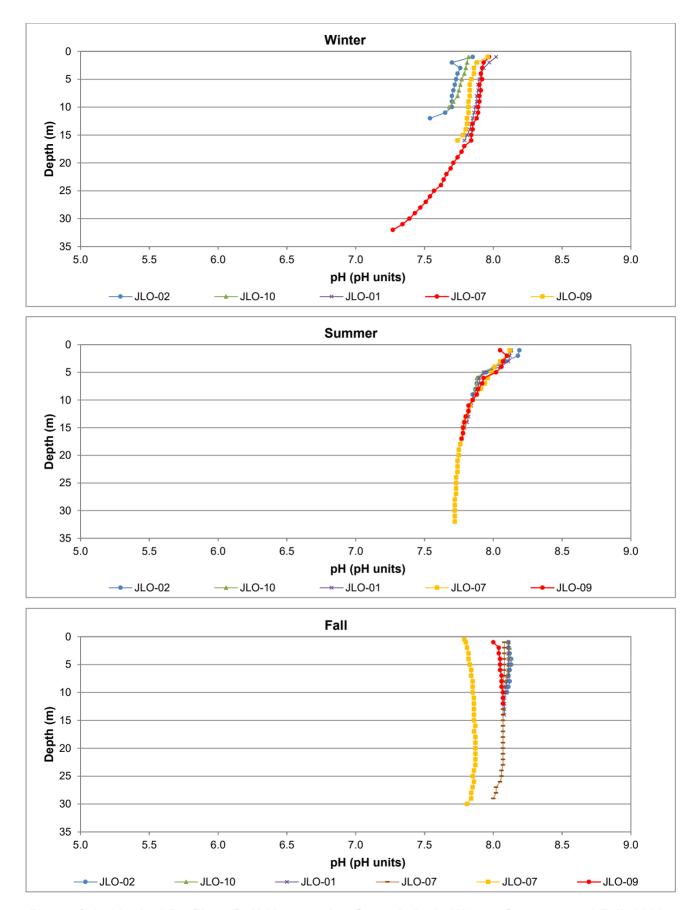


Figure C.6: Vertical Profiles of pH Measured at Camp Lake in Winter, Summer, and Fall, 2020

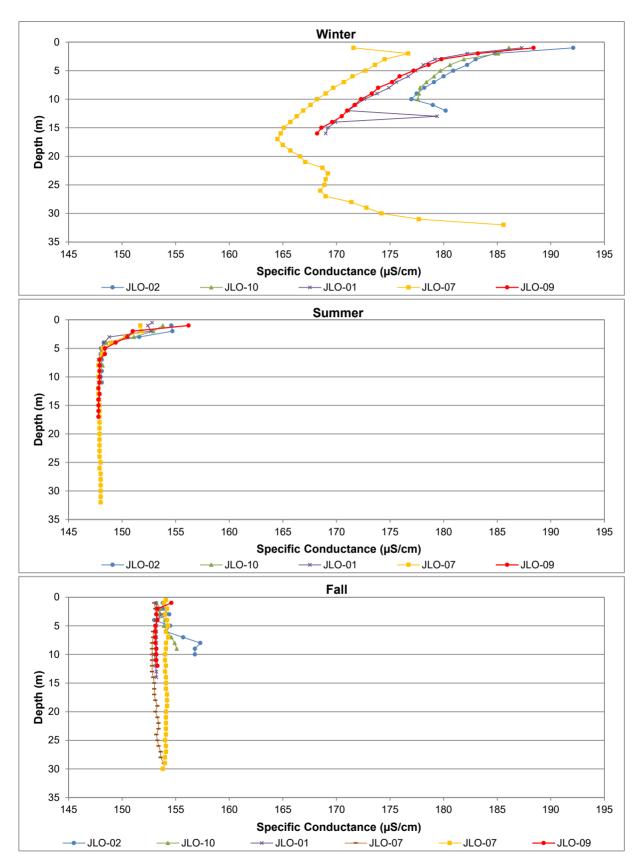


Figure C.7: Vertical Profiles of Specific Conductance Measured at Camp Lake in Winter, Summer, and Fall, 2020

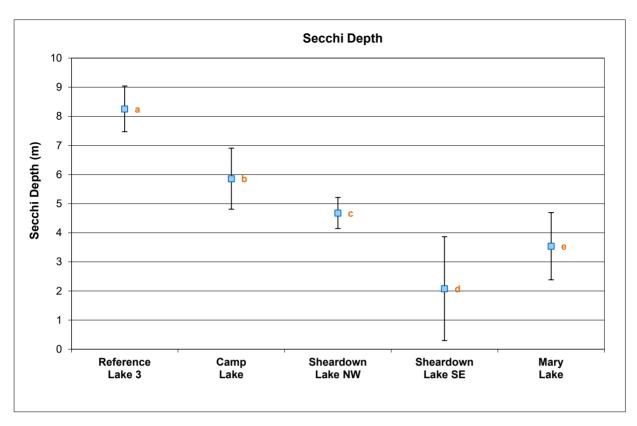


Figure C.8: Comparison of Secchi Depth (mean ± SD) Measured at the Mary River Project Lake Benthic Invertebrate Community Stations, August 2020

Notes: The same letter(s) next to study area data points indicate no significant difference between study areas. Sample size (n) was 10 for all lakes except Sheardown Lake NW, where n was 9.

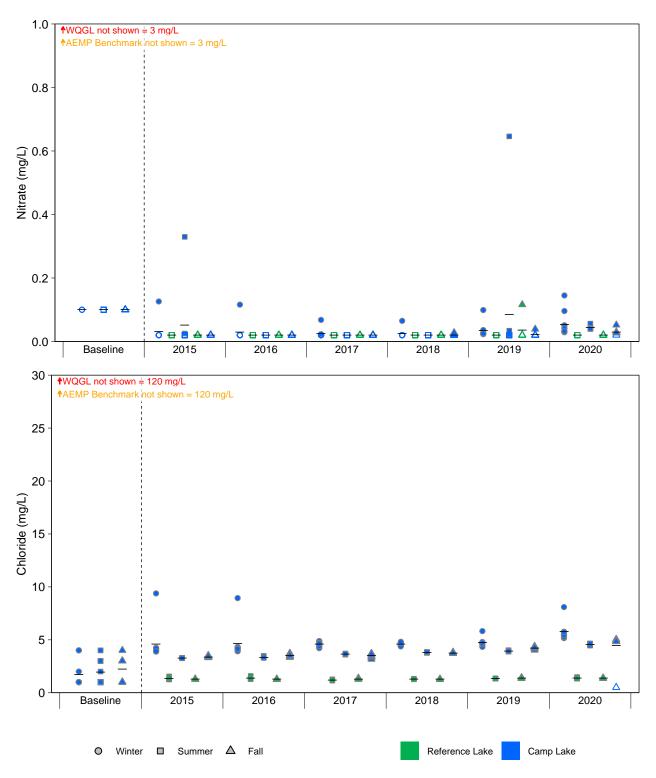


Figure C.9: Temporal Comparison of Water Chemistry at Camp Lake (JLO) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

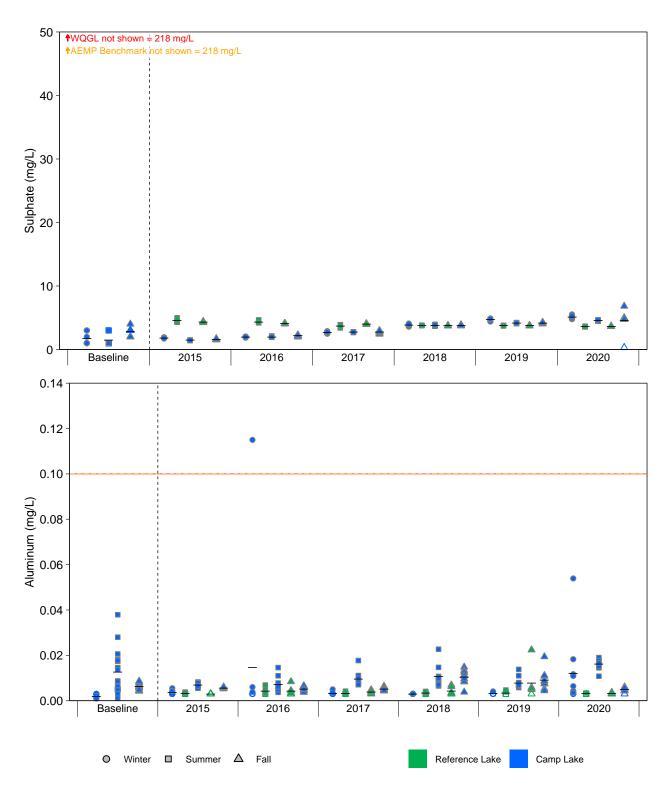


Figure C.9: Temporal Comparison of Water Chemistry at Camp Lake (JLO) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

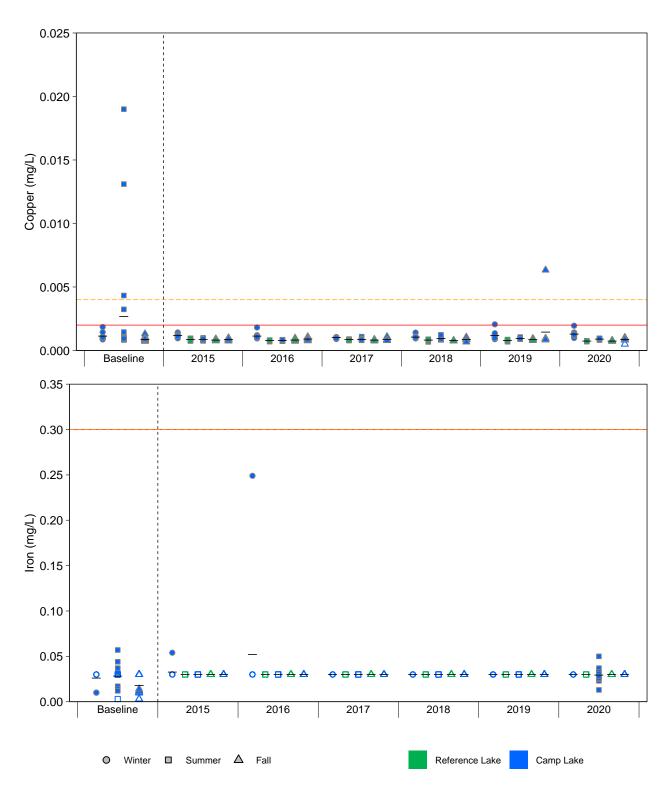


Figure C.9: Temporal Comparison of Water Chemistry at Camp Lake (JLO) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

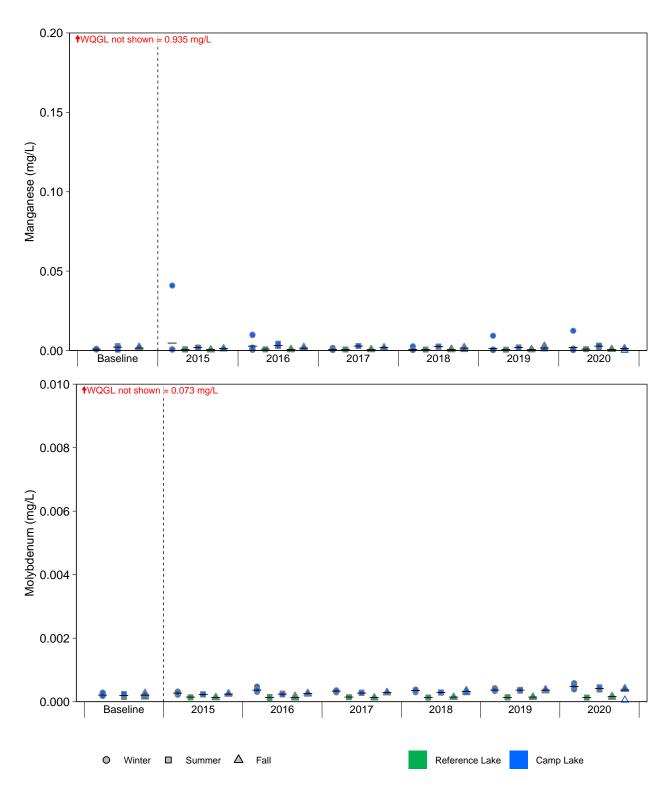


Figure C.9: Temporal Comparison of Water Chemistry at Camp Lake (JLO) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

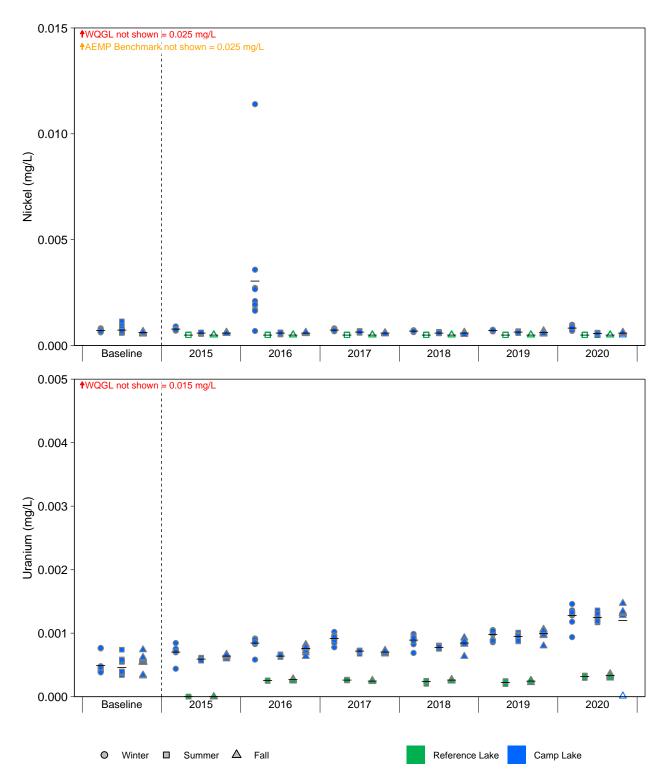


Figure C.9: Temporal Comparison of Water Chemistry at Camp Lake (JLO) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

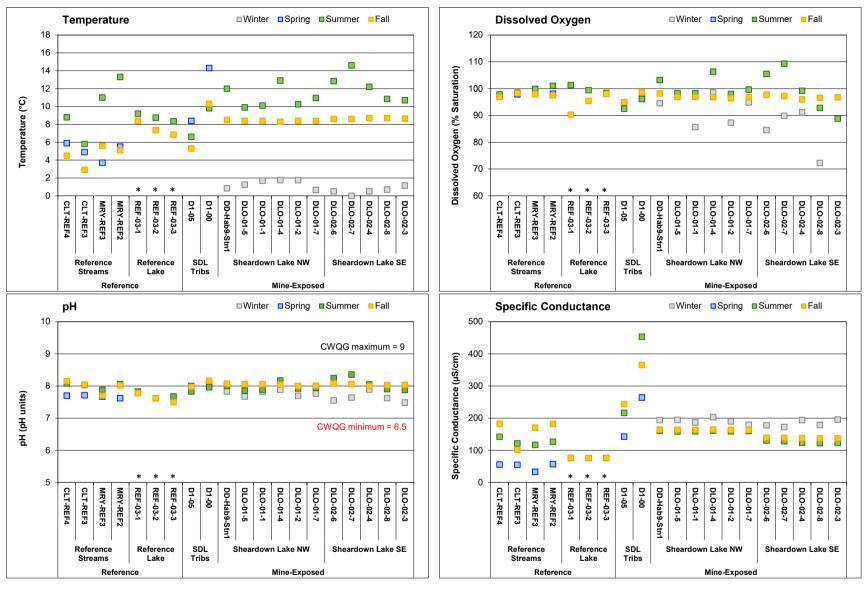


Figure C.10: Comparison of *In Situ* Water Quality Variables Measured at Sheardown Lake System Water Quality Monitoring Stations in Winter, Spring, Summer, and Fall 2020, Mary River Project CREMP

Notes: Lake values represent mean of surface and bottom in situ water quality measurements. Streams were not sampled in winter. Lakes were not sampled in spring.

^{*} Reference Lake 3 (REF-03) was not sampled in winter.

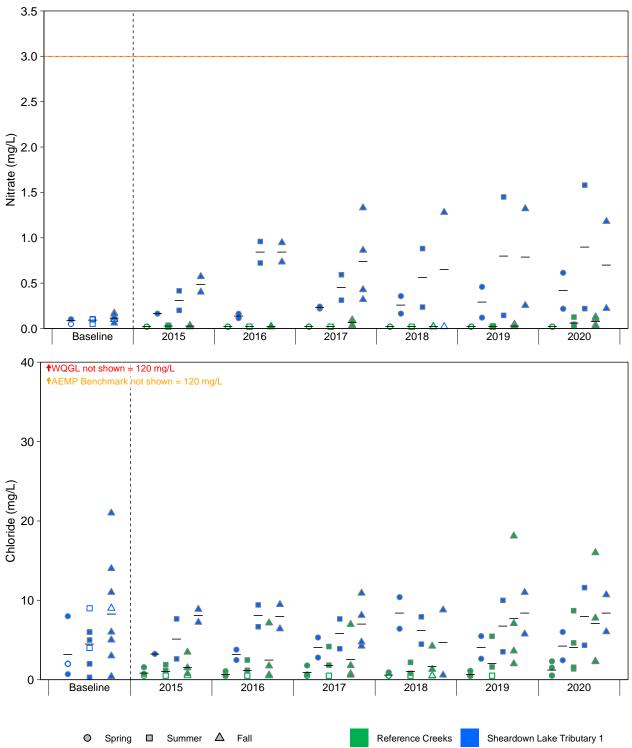


Figure C.11: Temporal Comparison of Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

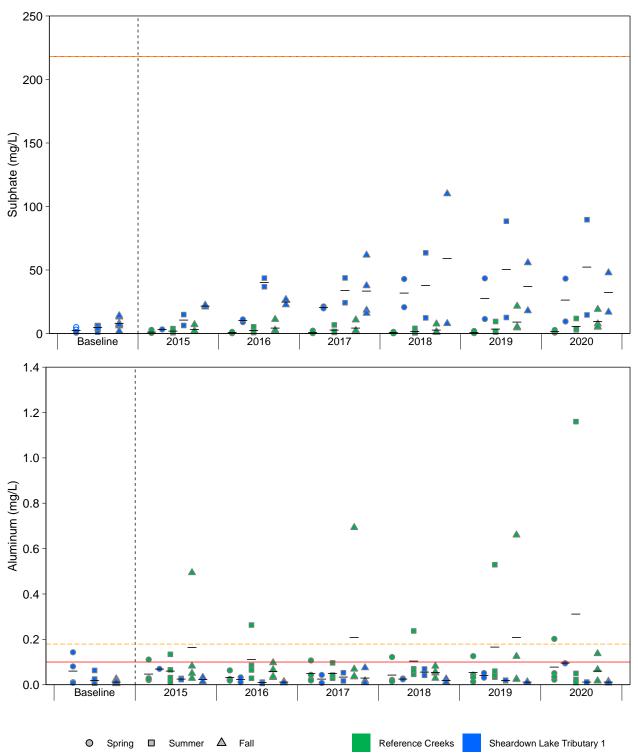


Figure C.11: Temporal Comparison of Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

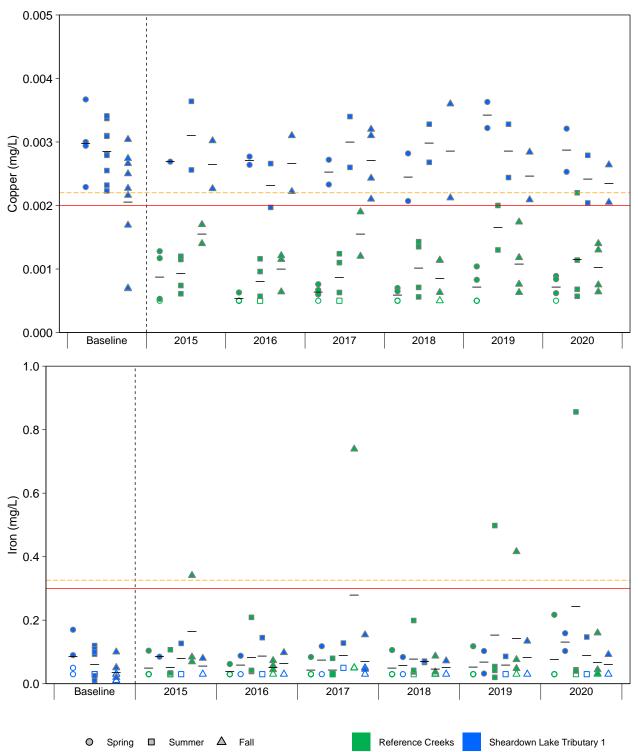


Figure C.11: Temporal Comparison of Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

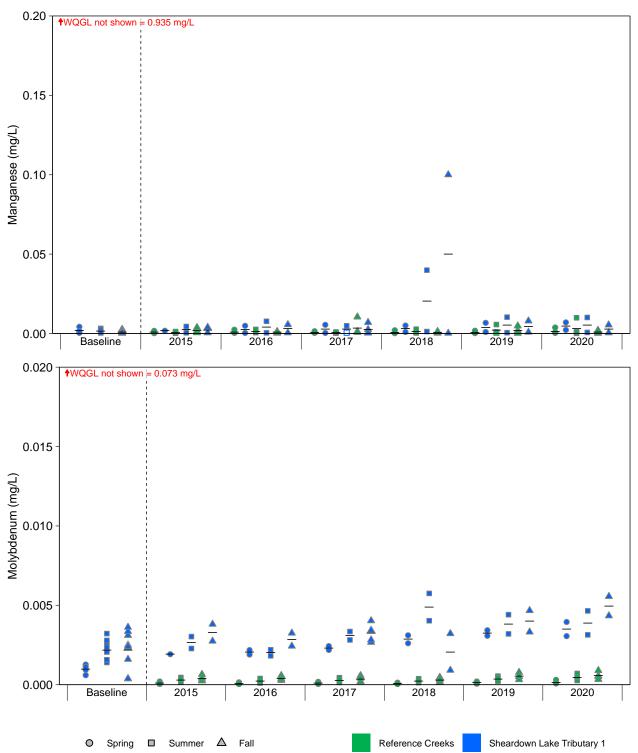


Figure C.11: Temporal Comparison of Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

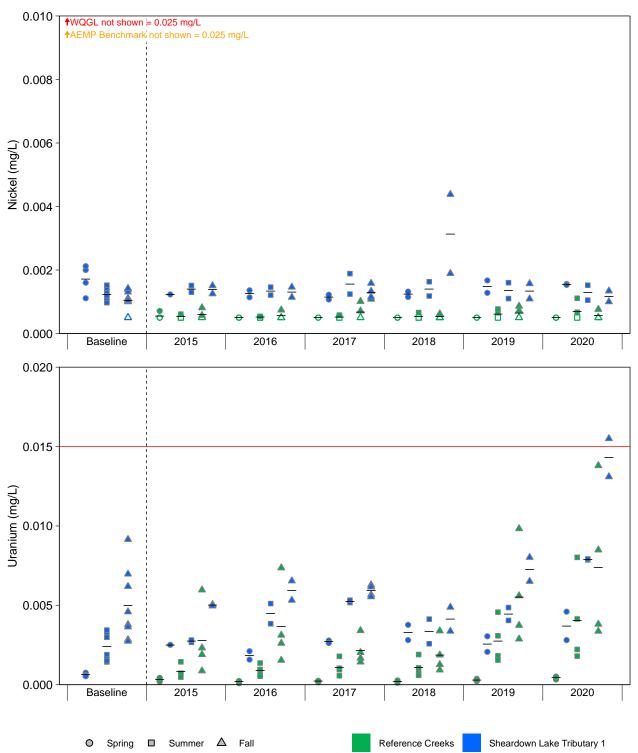


Figure C.11: Temporal Comparison of Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

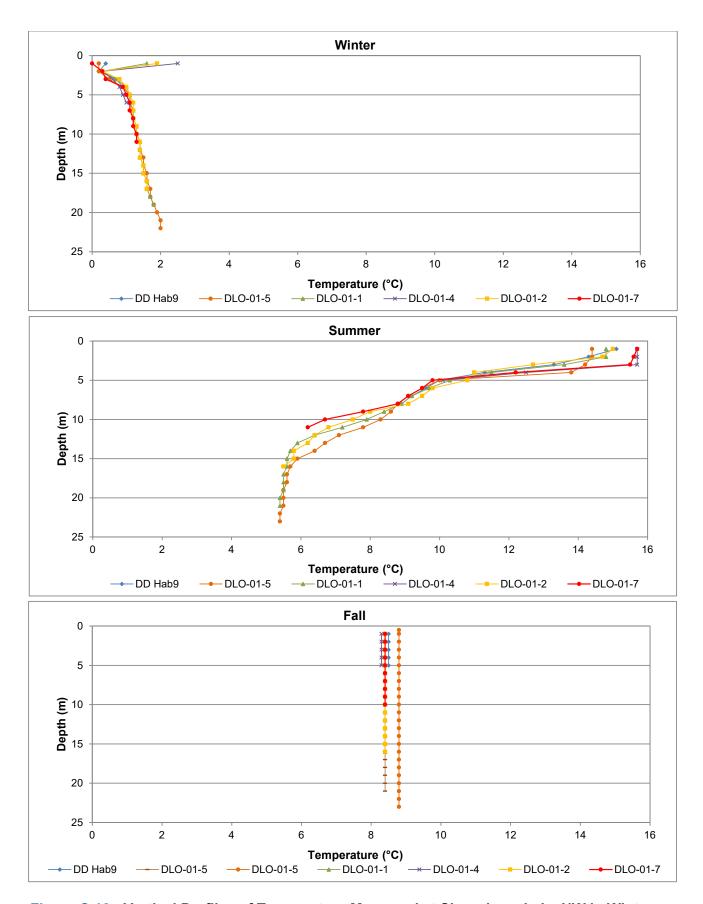


Figure C.12: Vertical Profiles of Temperature Measured at Sheardown Lake NW in Winter, Summer, and Fall, 2020

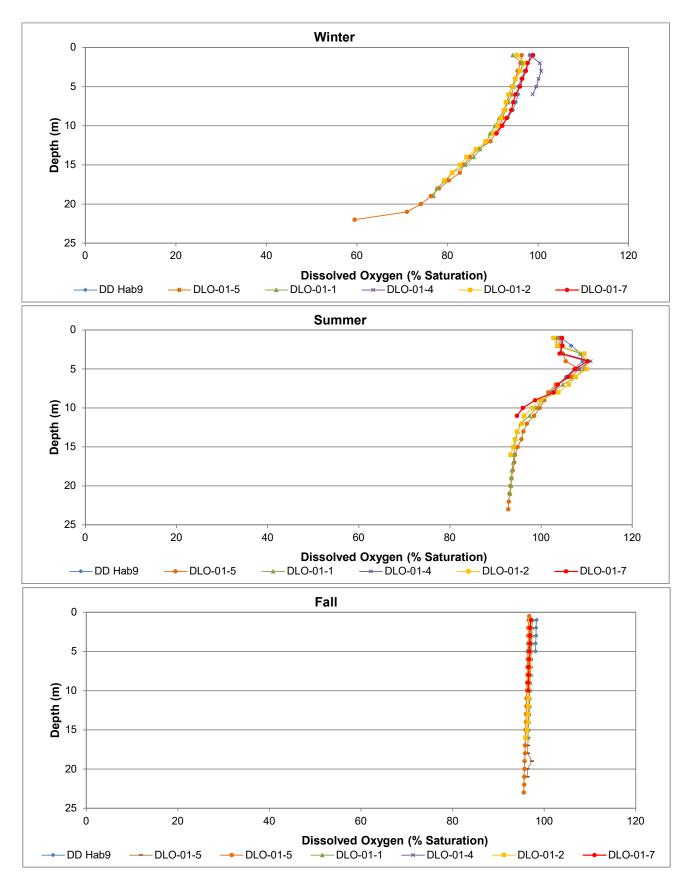


Figure C.13: Vertical Profiles of Dissolved Oxygen Measured at Sheardown Lake NW in Winter, Summer, and Fall, 2020

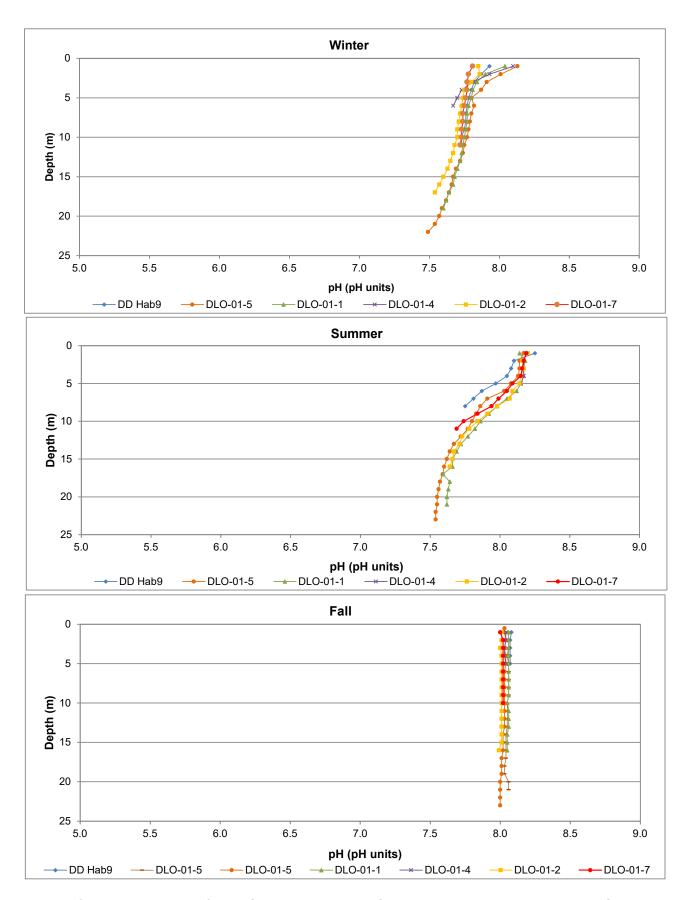


Figure C.14: Vertical Profiles of pH Measured at Sheardown Lake NW in Winter, Summer, and Fall, 2020

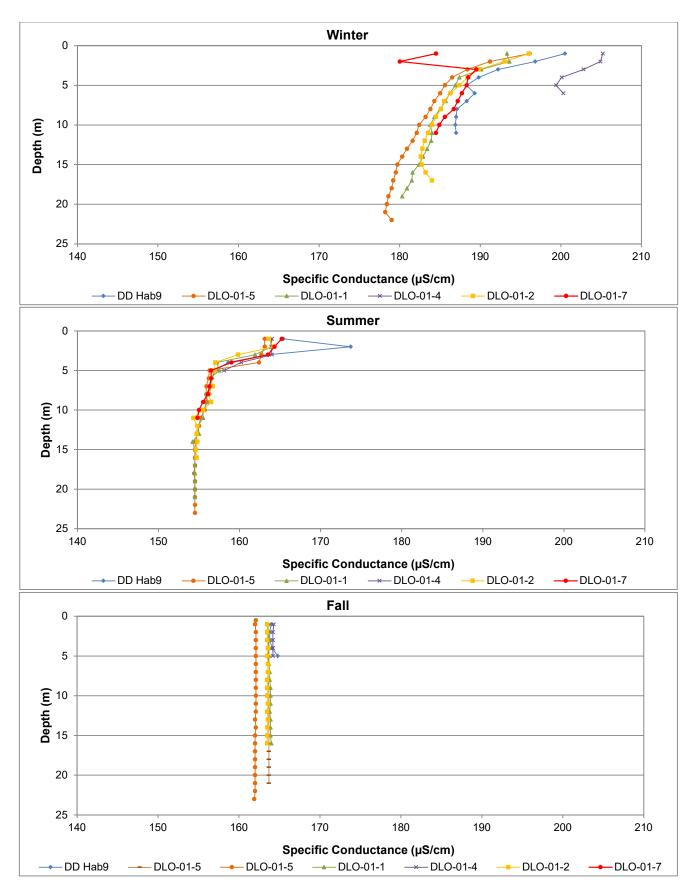


Figure C.15: Vertical Profiles of Specific Conductance Measured at Sheardown Lake NW in Winter, Summer, and Fall, 2020

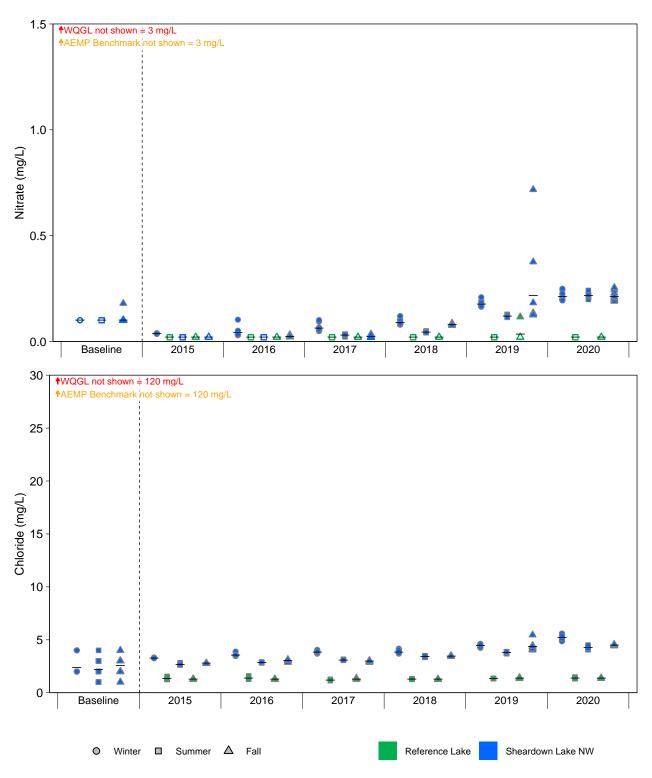


Figure C.16: Temporal Comparison of Water Chemistry at Sheardown Lake Northwest (DL0-01) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

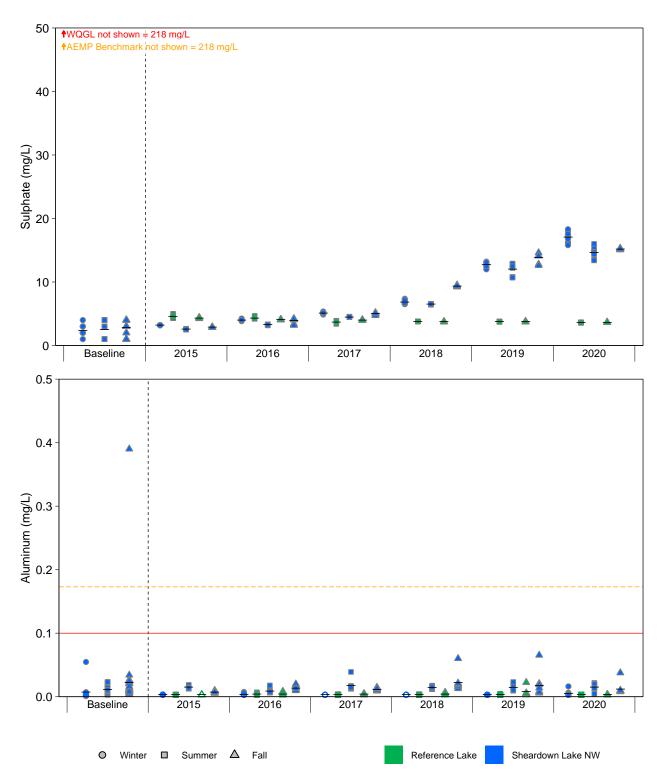


Figure C.16: Temporal Comparison of Water Chemistry at Sheardown Lake Northwest (DL0-01) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

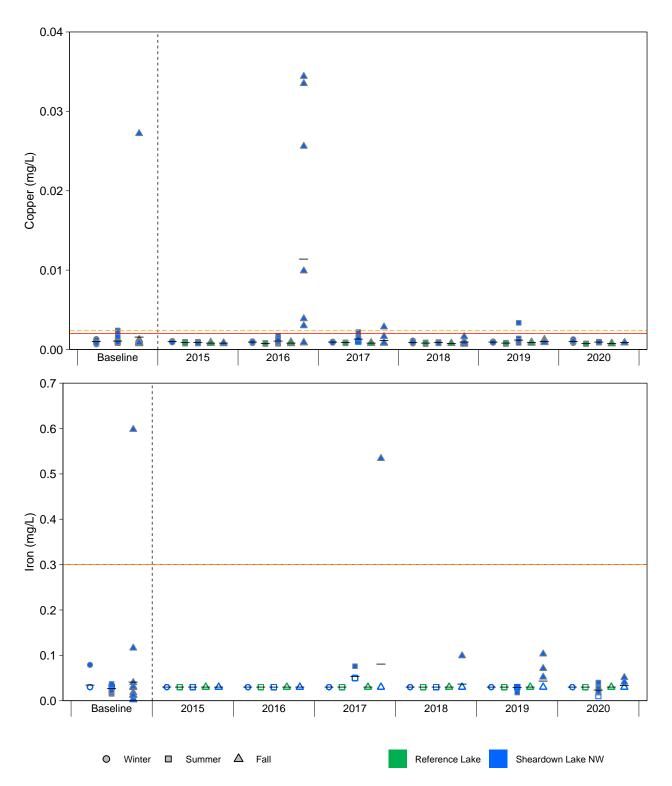


Figure C.16: Temporal Comparison of Water Chemistry at Sheardown Lake Northwest (DL0-01) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

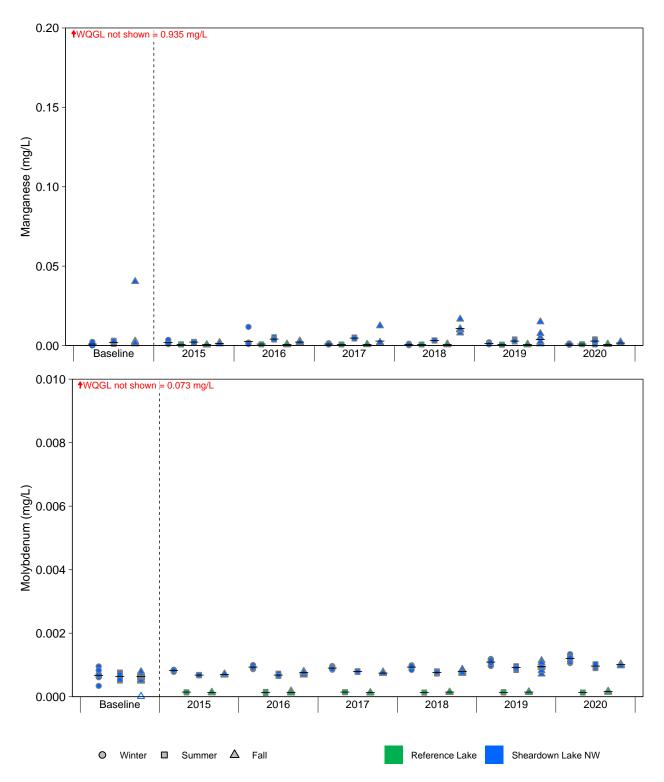


Figure C.16: Temporal Comparison of Water Chemistry at Sheardown Lake Northwest (DL0-01) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

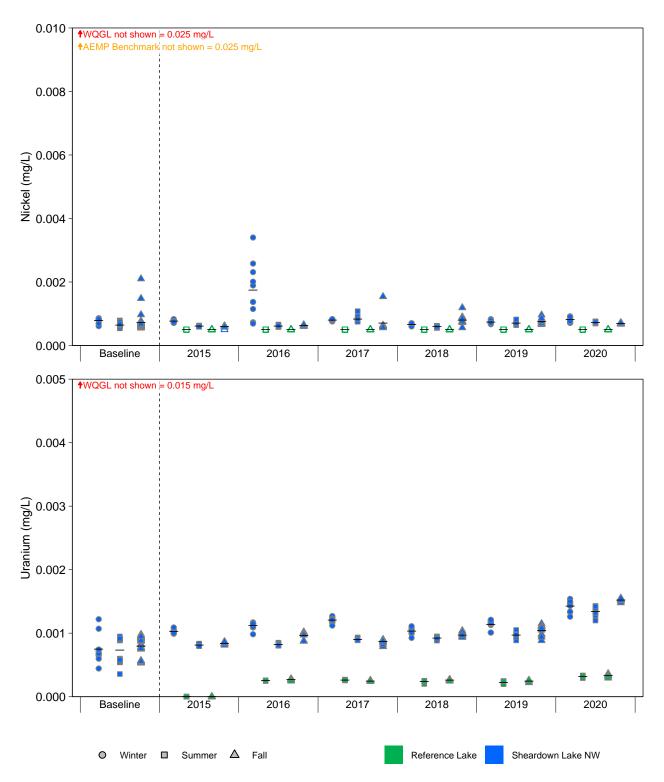


Figure C.16: Temporal Comparison of Water Chemistry at Sheardown Lake Northwest (DL0-01) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

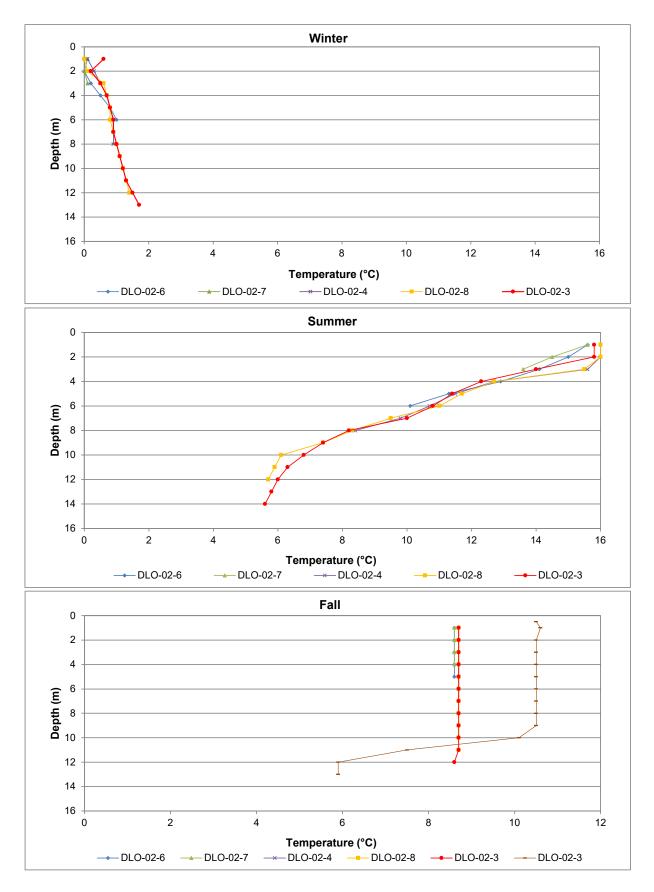


Figure C.17: Vertical Profiles of Temperature Measured at Sheardown Lake SE in Winter, Summer, and Fall, 2020

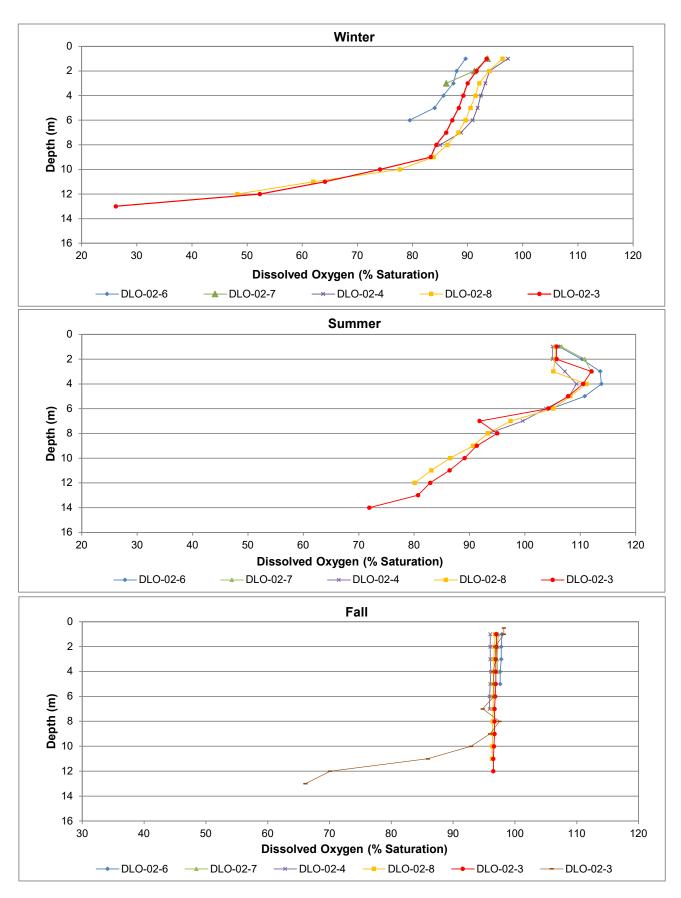


Figure C.18: Vertical Profiles of Dissolved Oxygen Measured at Sheardown Lake SE in Winter, Summer, and Fall, 2020

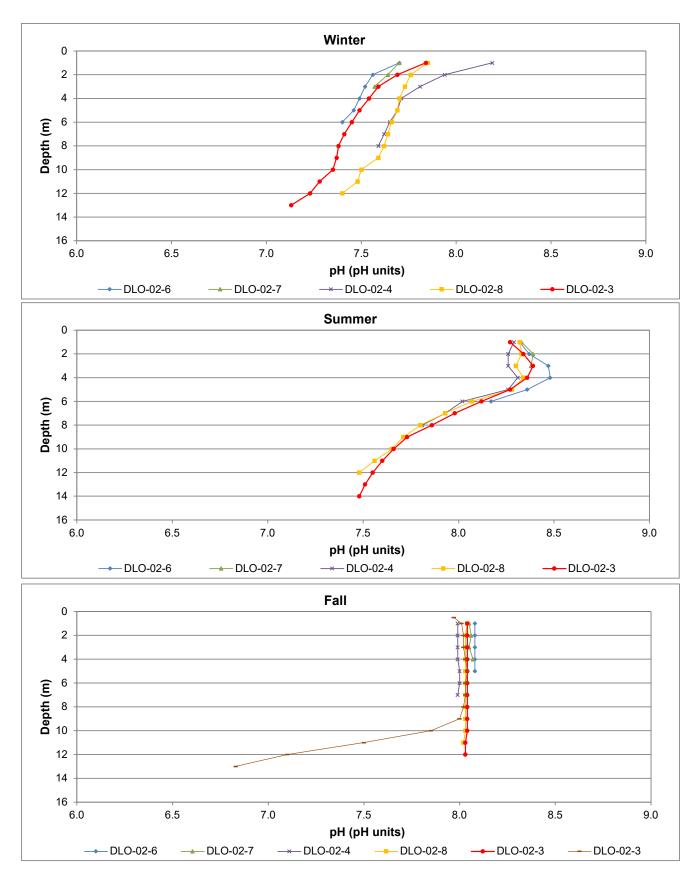


Figure C.19: Vertical Profiles of pH Measured at Sheardown Lake SE in Winter, Summer, and Fall, 2020

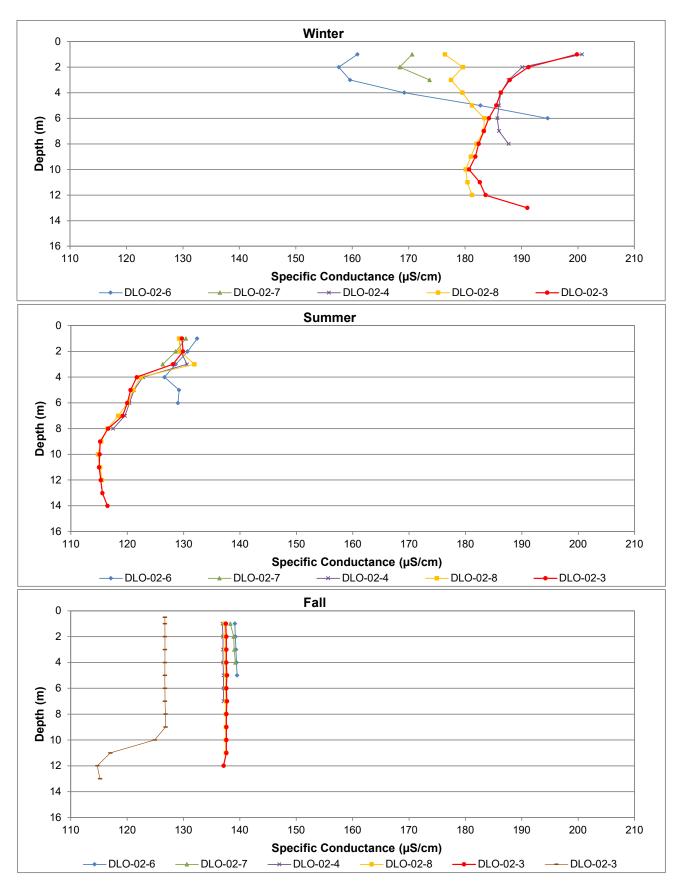


Figure C.20: Vertical Profiles of Conductivity Measured at Sheardown Lake SE in Winter, Summer, and Fall 2020

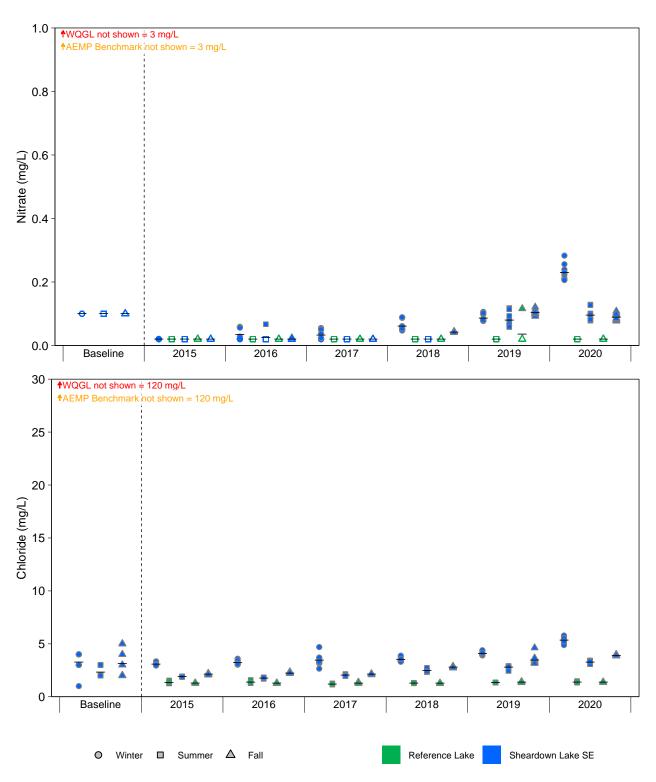


Figure C.21: Temporal Comparison of Water Chemistry at Sheardown Lake Southeast (DL0-02) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

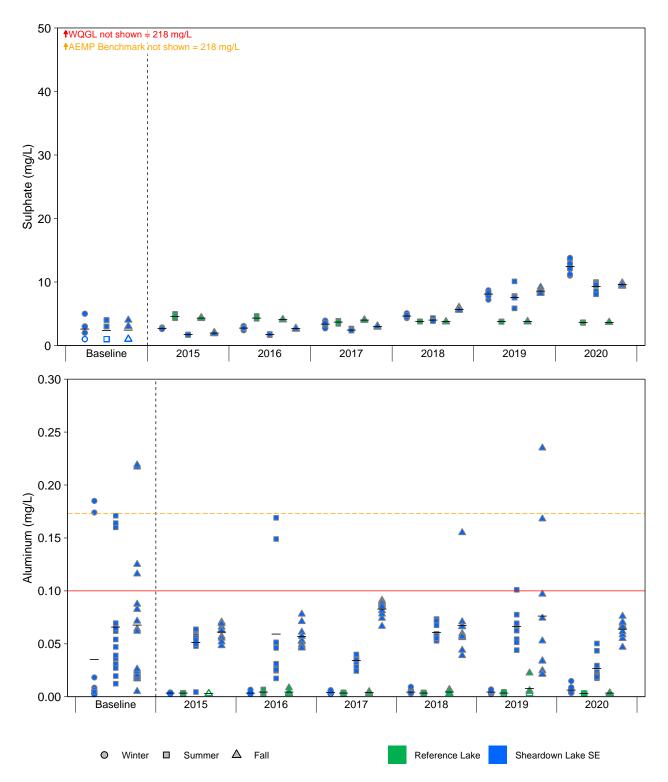


Figure C.21: Temporal Comparison of Water Chemistry at Sheardown Lake Southeast (DL0-02) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

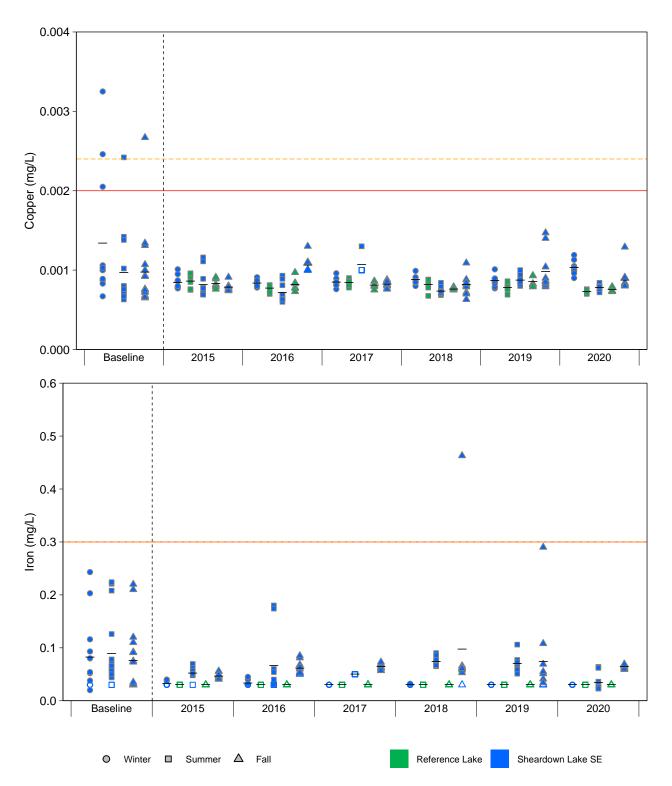


Figure C.21: Temporal Comparison of Water Chemistry at Sheardown Lake Southeast (DL0-02) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

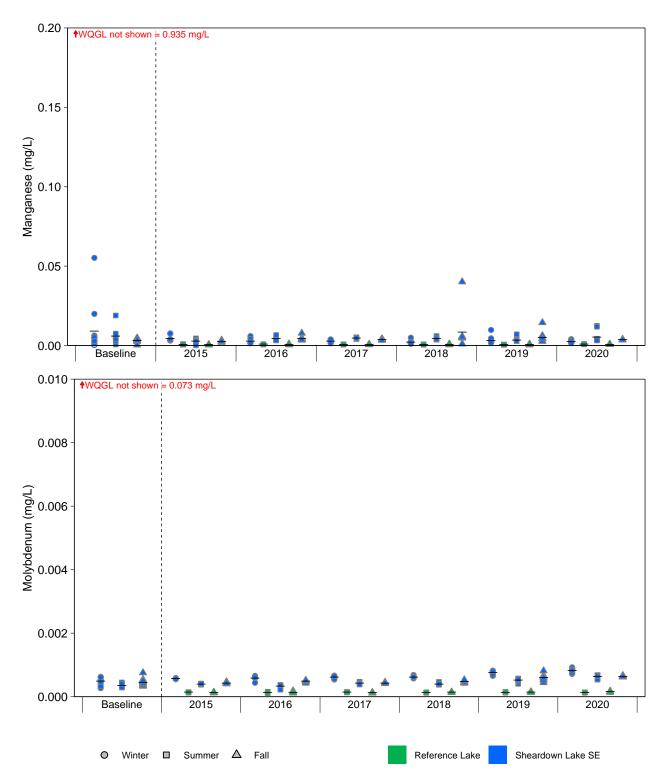


Figure C.21: Temporal Comparison of Water Chemistry at Sheardown Lake Southeast (DL0-02) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

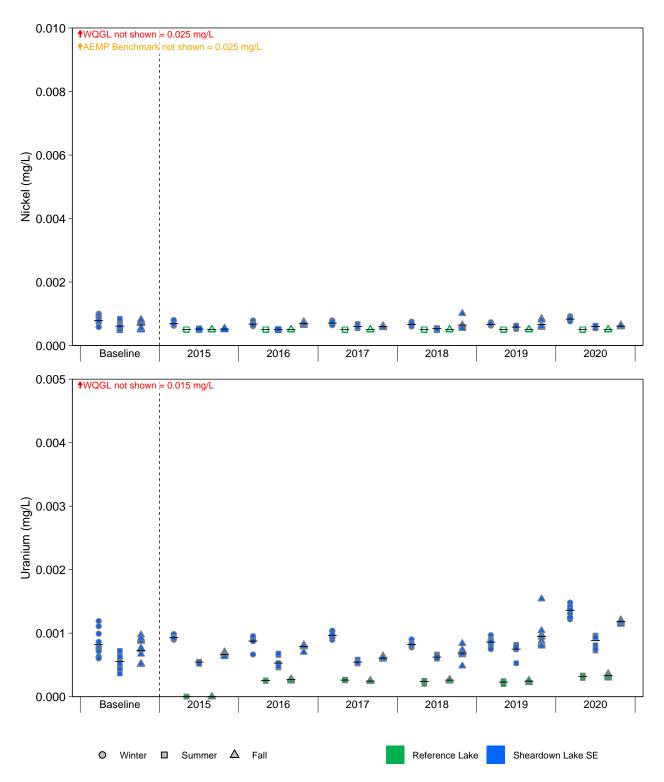


Figure C.21: Temporal Comparison of Water Chemistry at Sheardown Lake Southeast (DL0-02) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

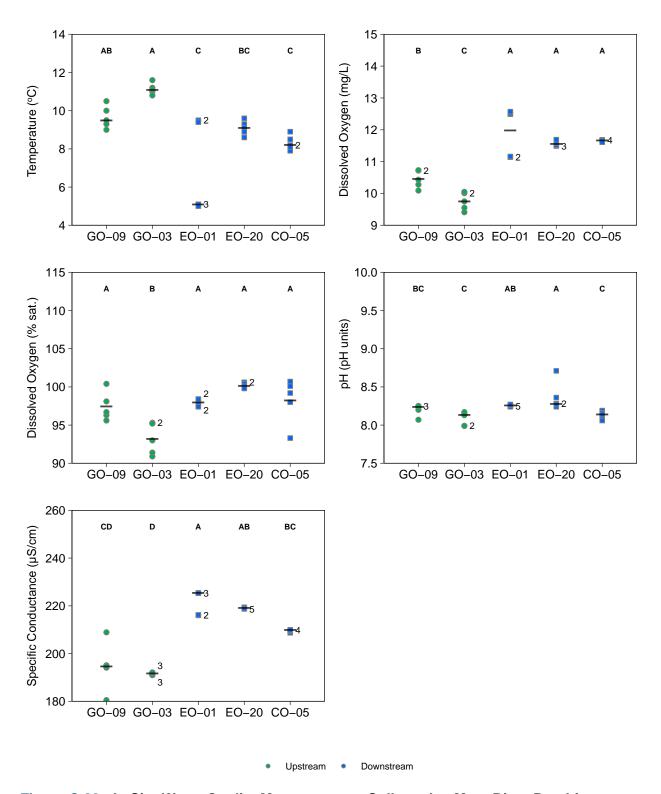


Figure C.22: In Situ Water Quality Measurements Collected at Mary River Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Notes: Study areas with the same letters do not differ significantly (alpha = 0.1).

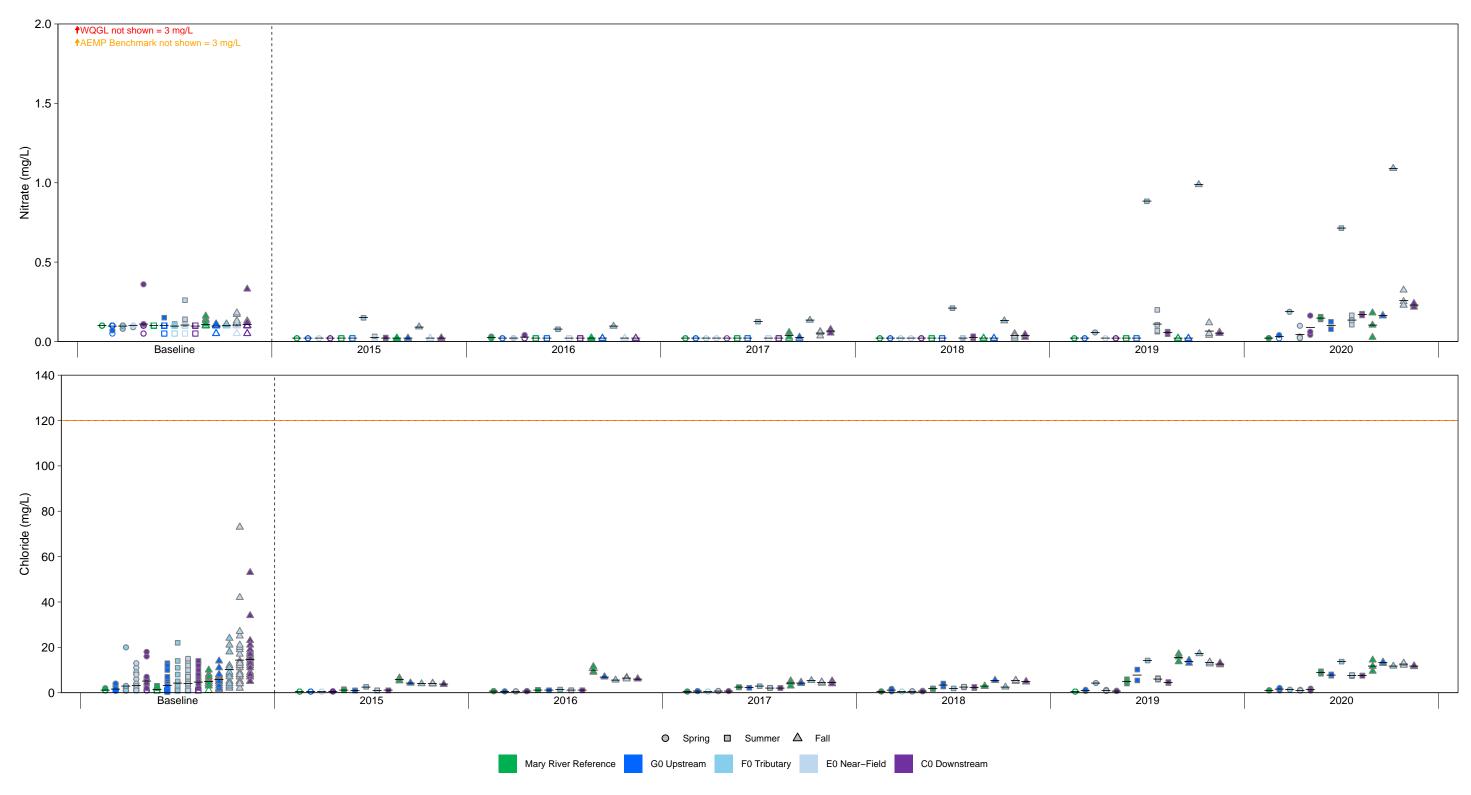


Figure C.23: Temporal Comparison of Water Chemistry at Mary River Stations Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

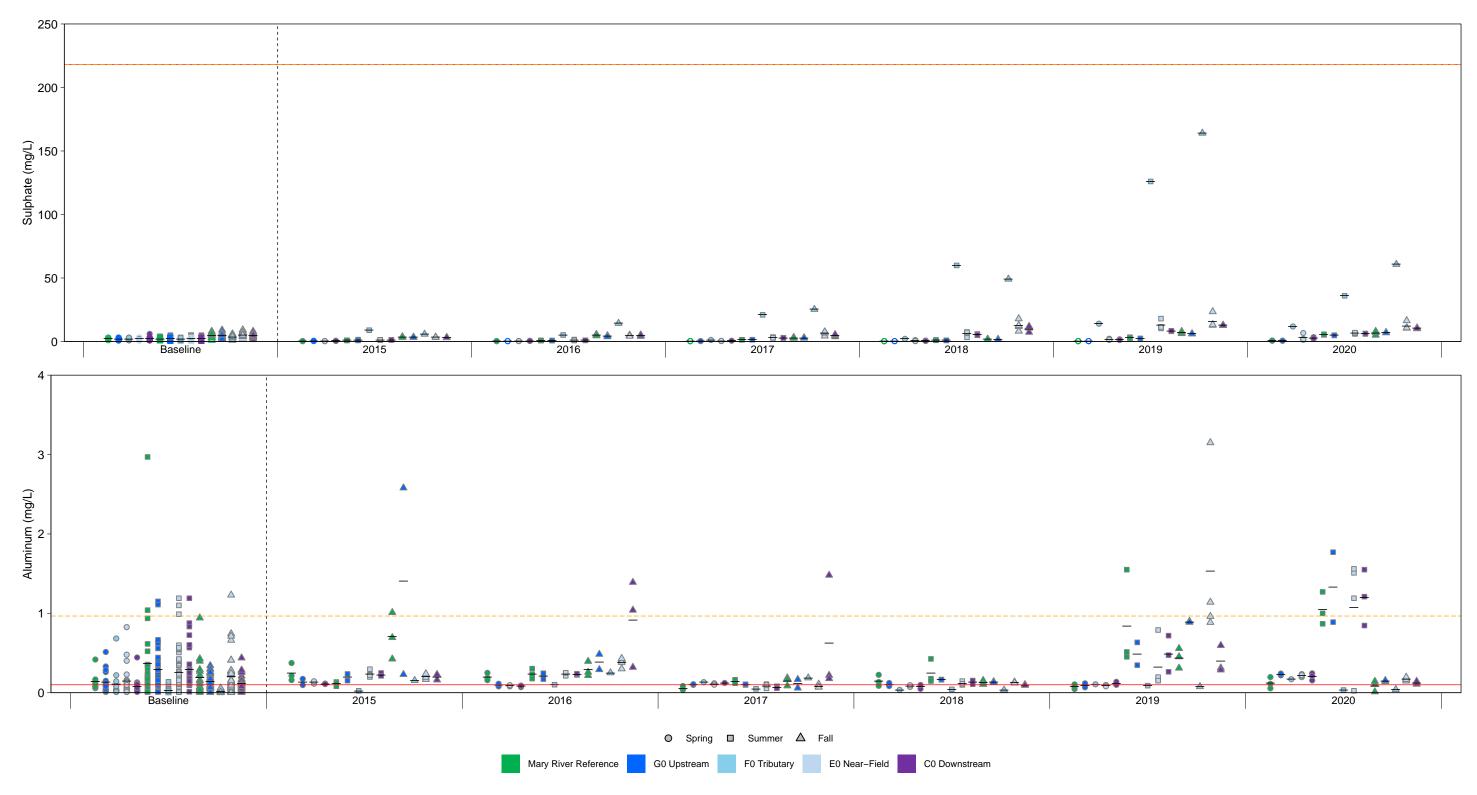


Figure C.23: Temporal Comparison of Water Chemistry at Mary River Stations Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

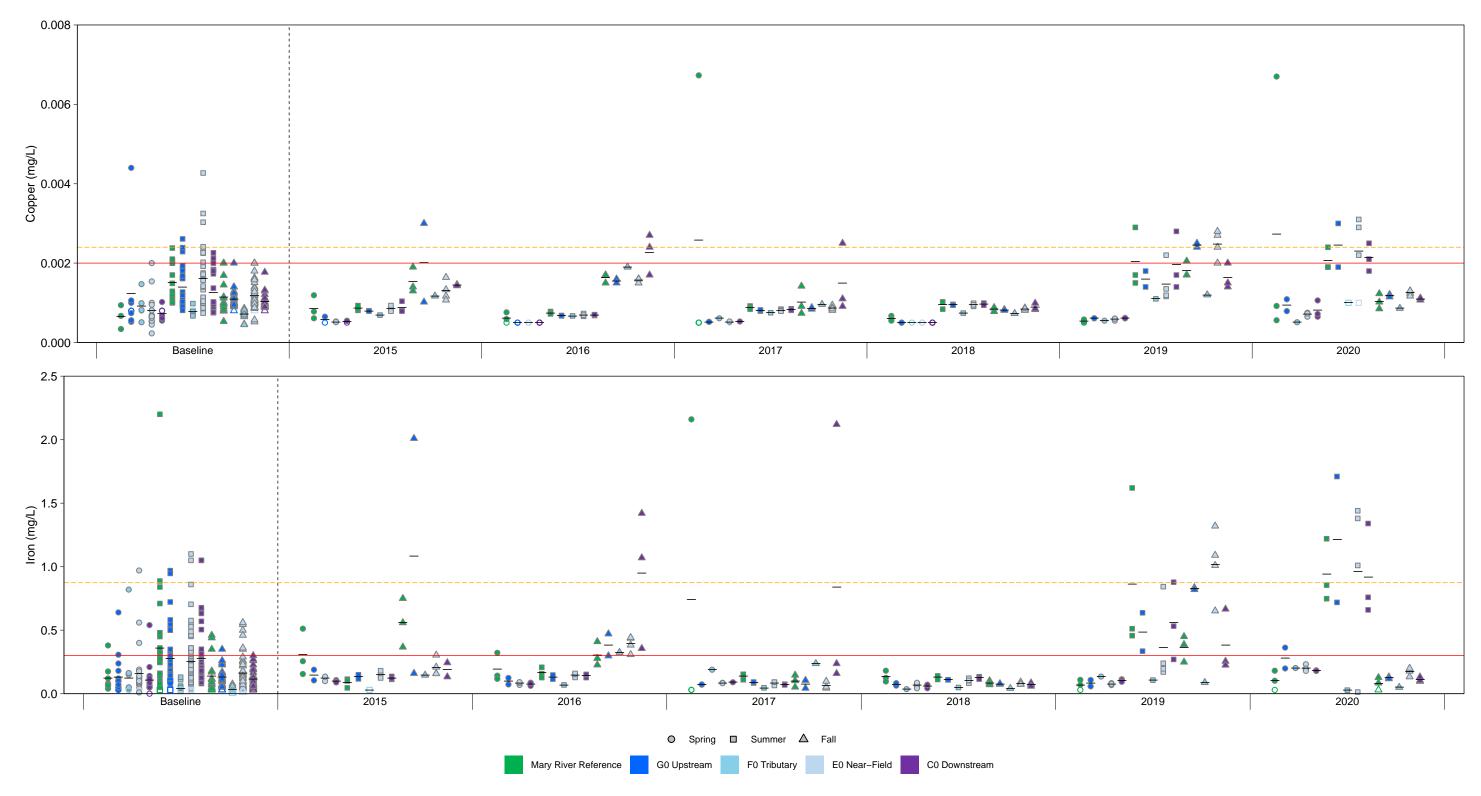


Figure C.23: Temporal Comparison of Water Chemistry at Mary River Stations Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

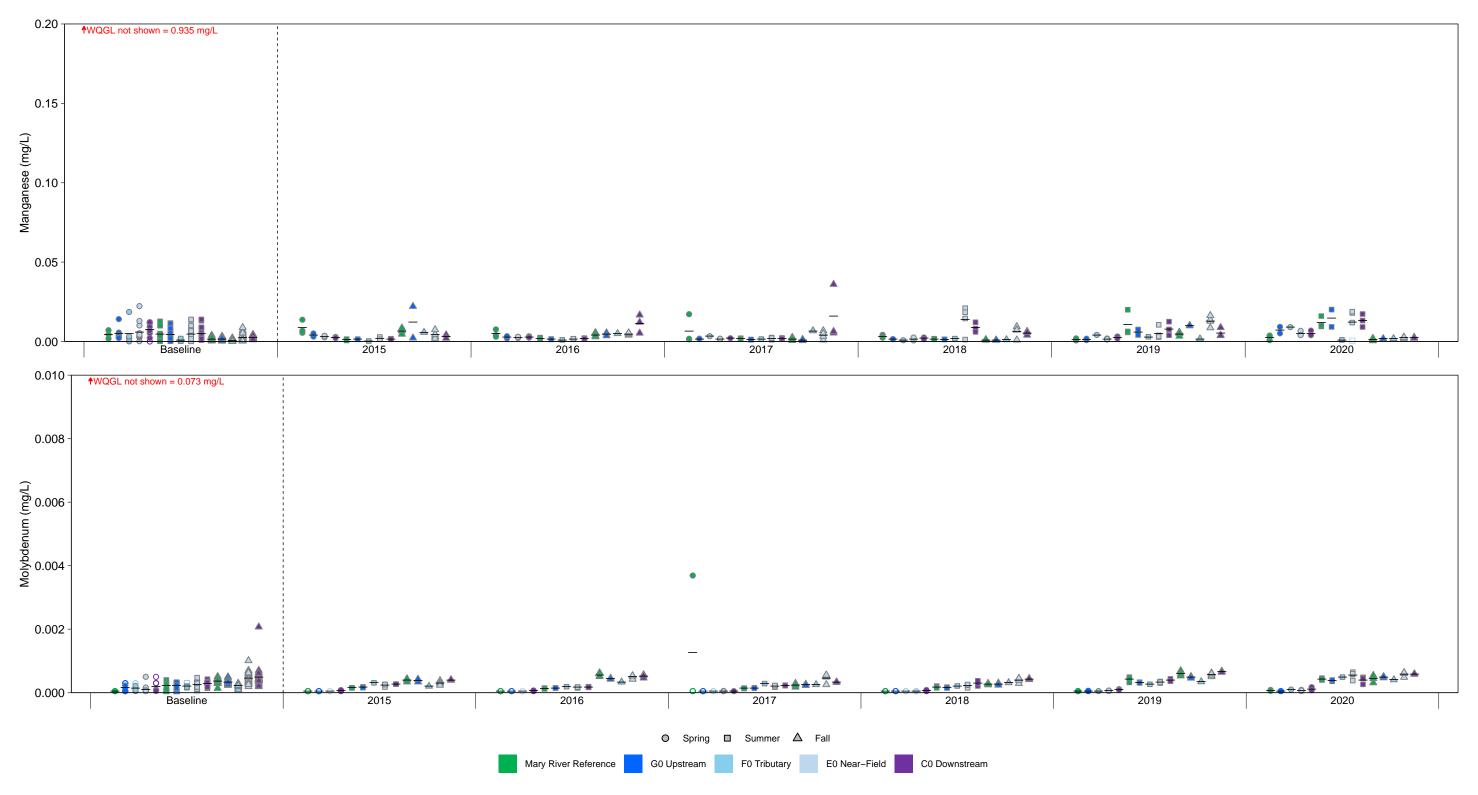


Figure C.23: Temporal Comparison of Water Chemistry at Mary River Stations Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

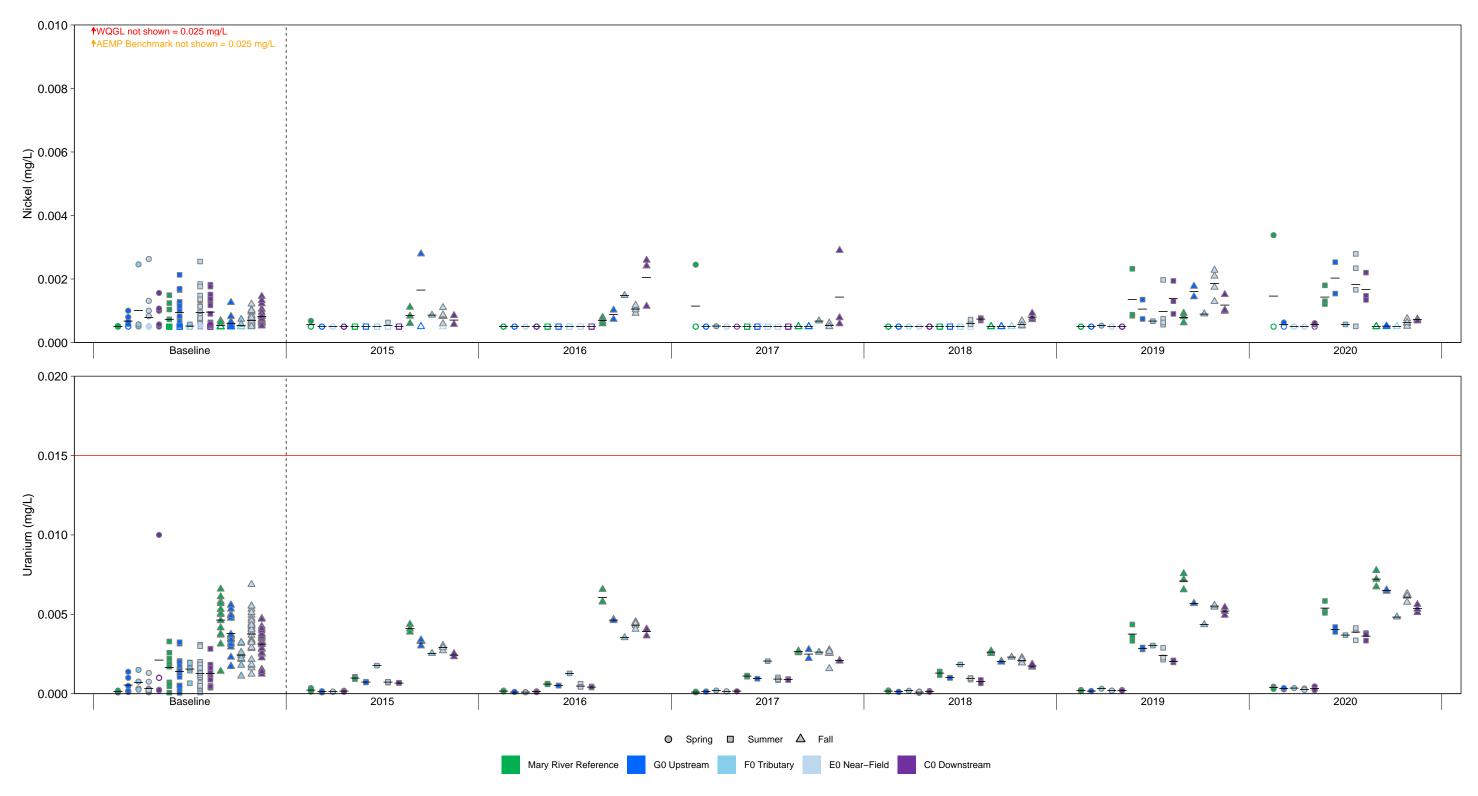


Figure C.23: Temporal Comparison of Water Chemistry at Mary River Stations Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

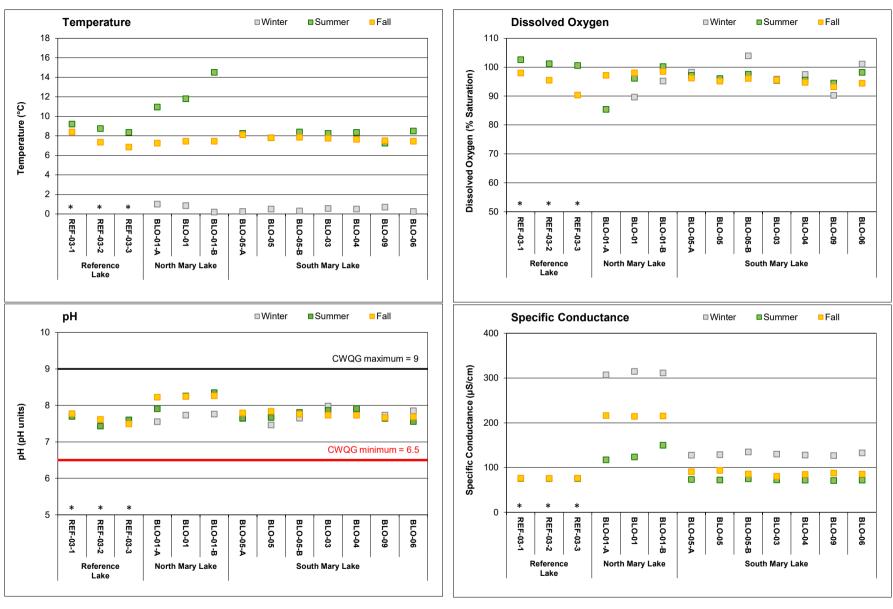


Figure C.24: Comparison of *In Situ* Water Quality Variables Measured at Mary Lake Water Quality Monitoring Stations in Winter, Summer, and Fall 2020, Mary River Project CREMP

Notes: Lake values represent mean of surface and bottom in situ water quality measurements. * Reference Lake 3 (REF-03) was not sampled in winter.

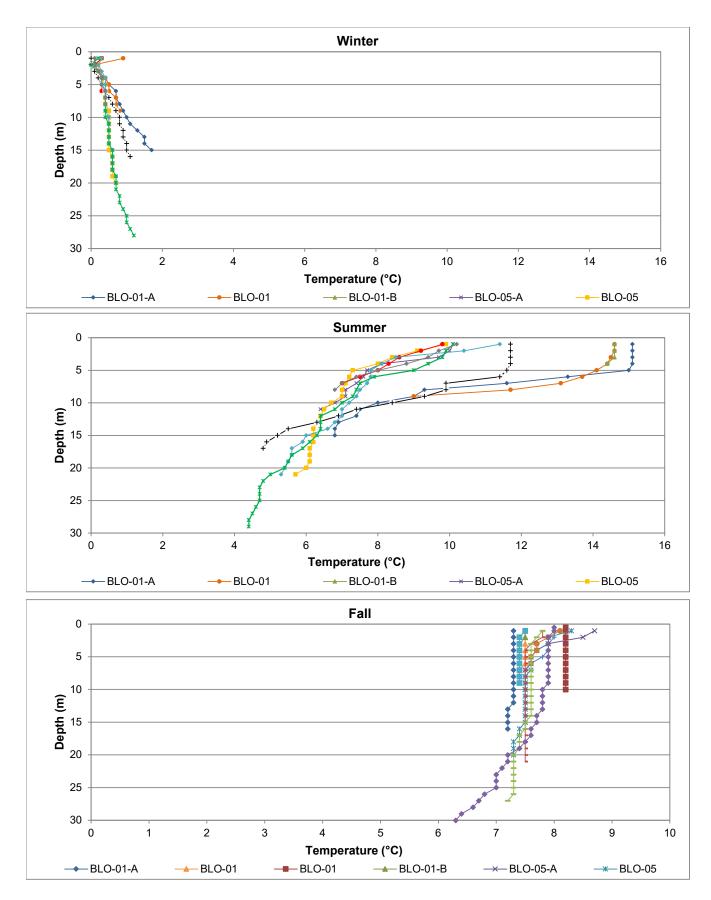


Figure C.25: Vertical Profiles of Temperature Measured at Mary Lake in Winter, Summer, and Fall, 2020

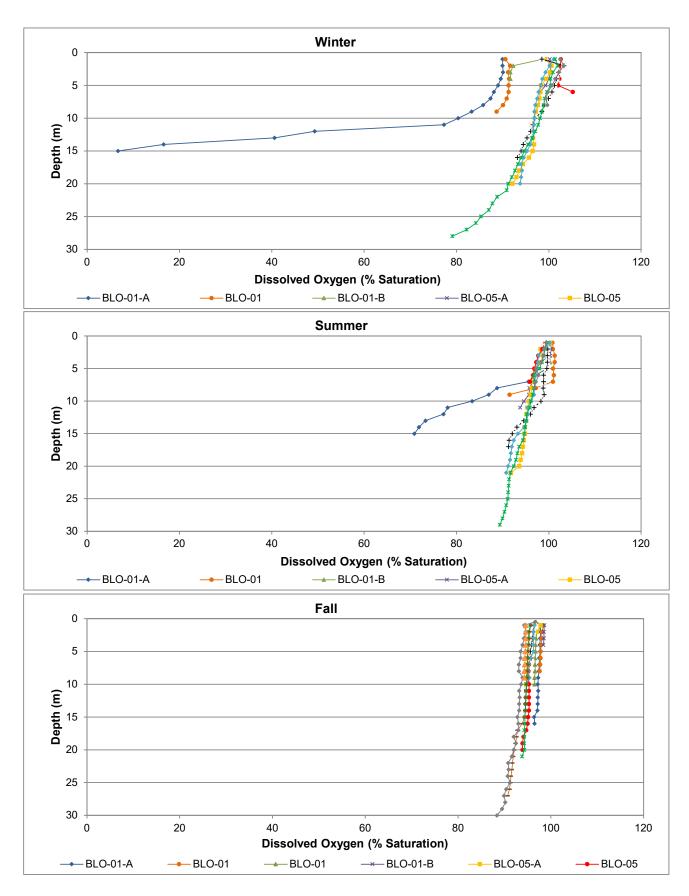


Figure C.26: Vertical Profiles of Dissolved Oxygen Measured at Mary Lake in Winter, Summer, and Fall, 2020

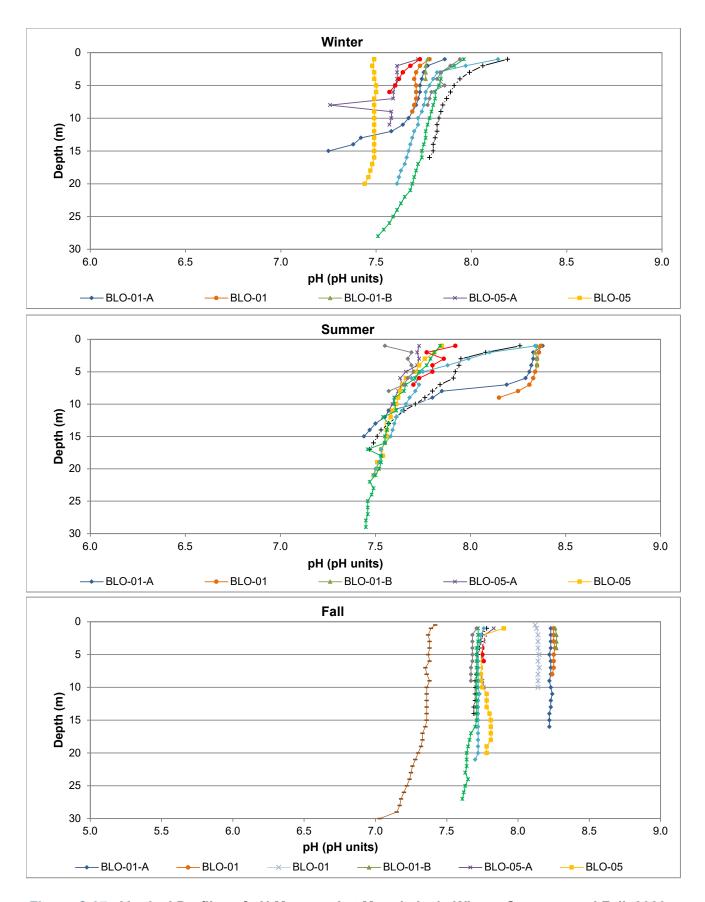


Figure C.27: Vertical Profiles of pH Measured at Mary Lake in Winter, Summer, and Fall, 2020

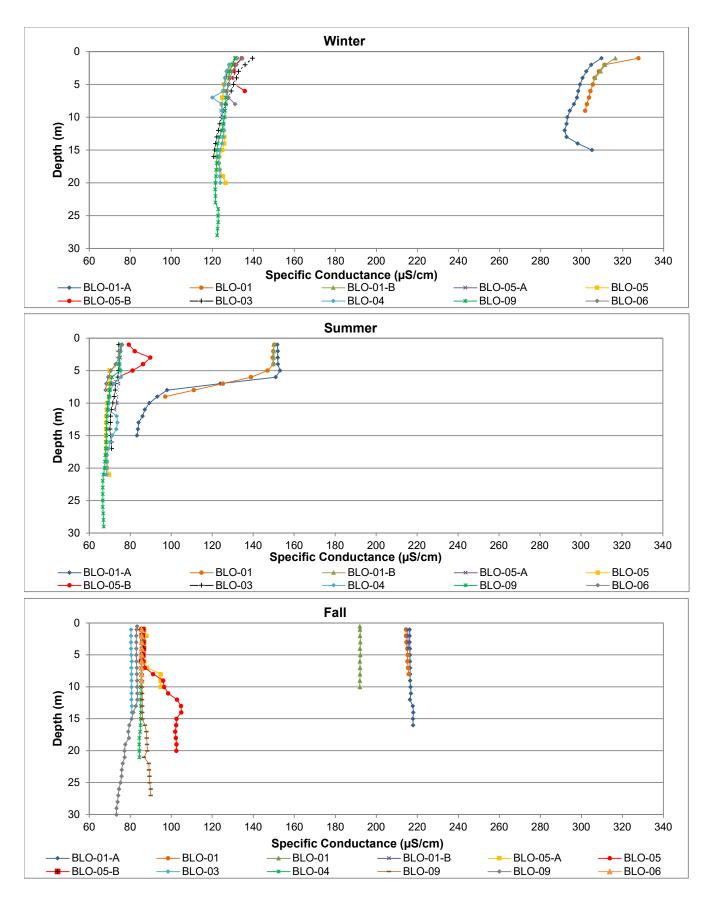


Figure C.28: Vertical Profiles of Specific Conductance Measured at Mary Lake in Winter, Summer, and Fall, 2020

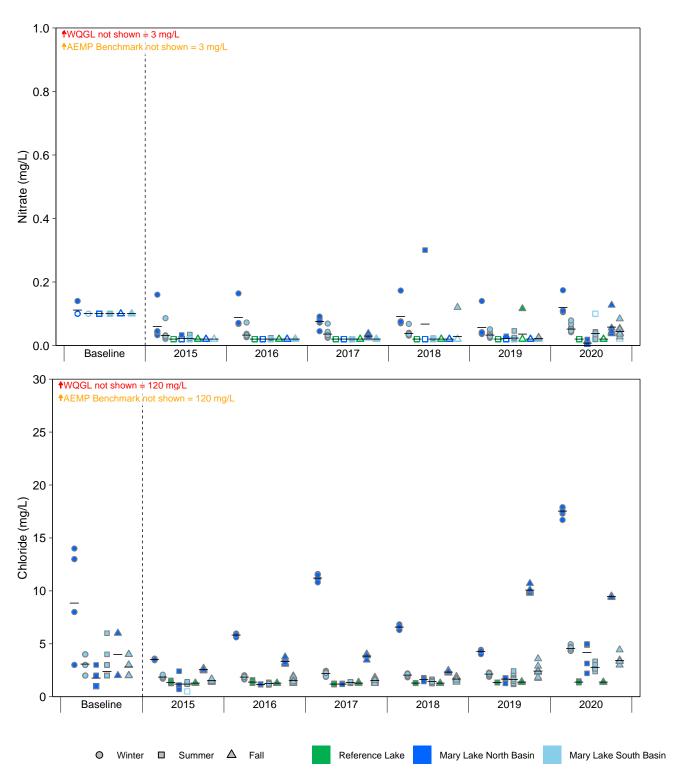


Figure C.29: Temporal Comparison of Water Chemistry at Mary Lake (BL0) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

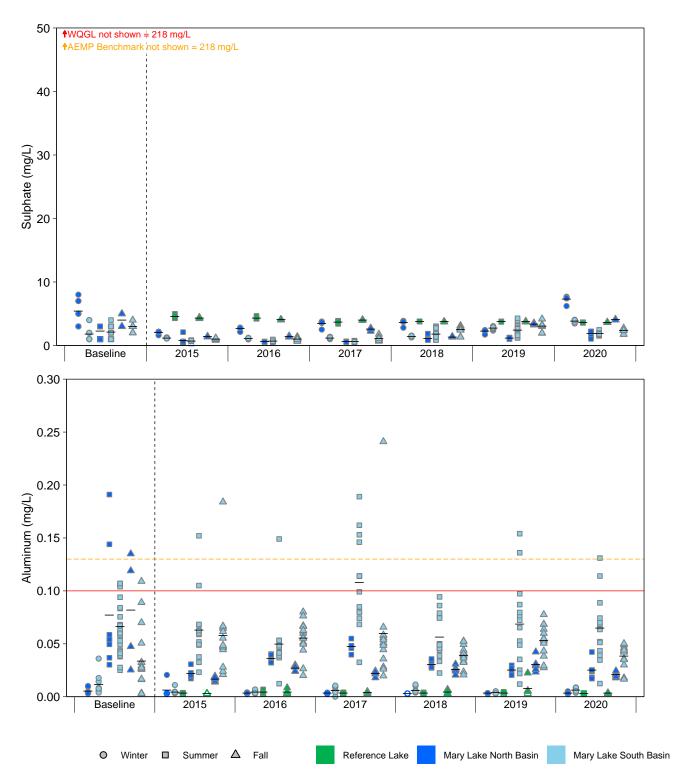


Figure C.29: Temporal Comparison of Water Chemistry at Mary Lake (BL0) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

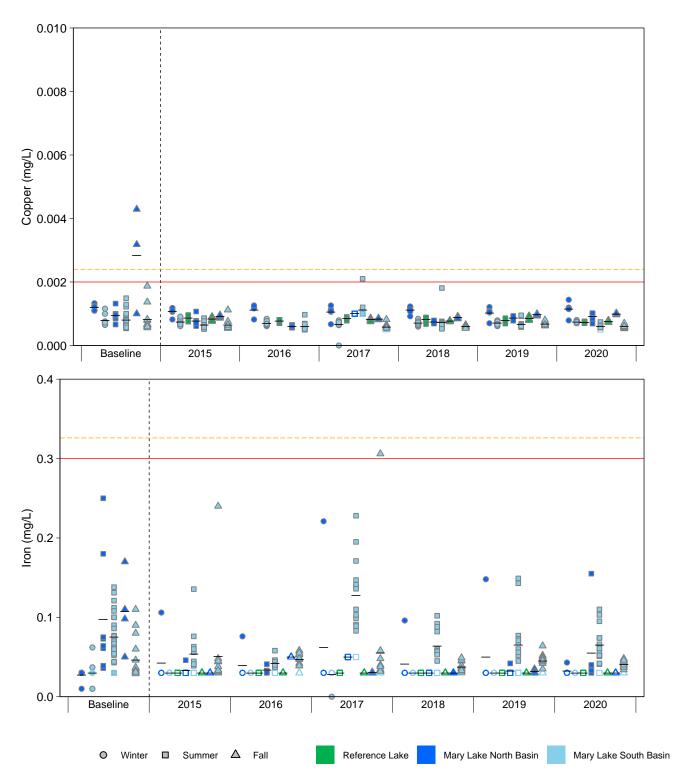


Figure C.29: Temporal Comparison of Water Chemistry at Mary Lake (BL0) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

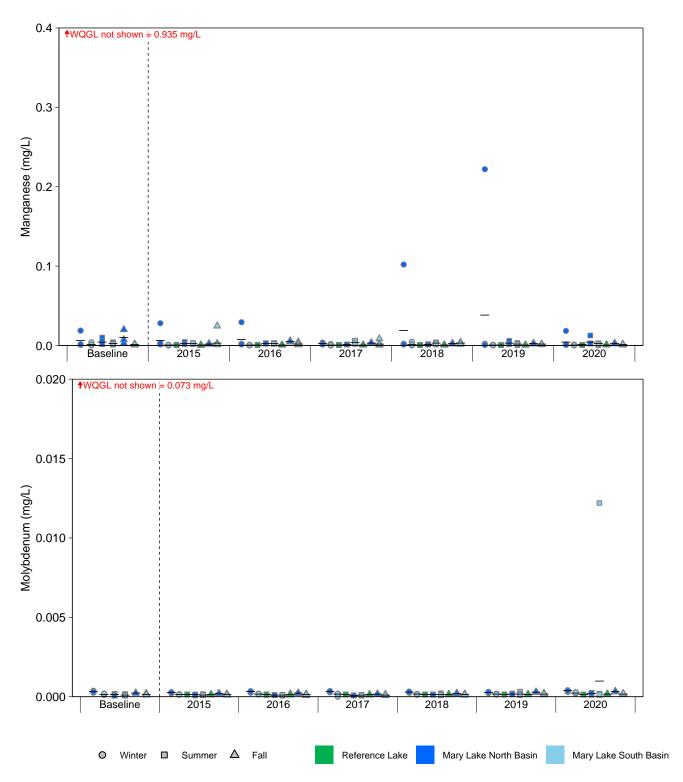


Figure C.29: Temporal Comparison of Water Chemistry at Mary Lake (BL0) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

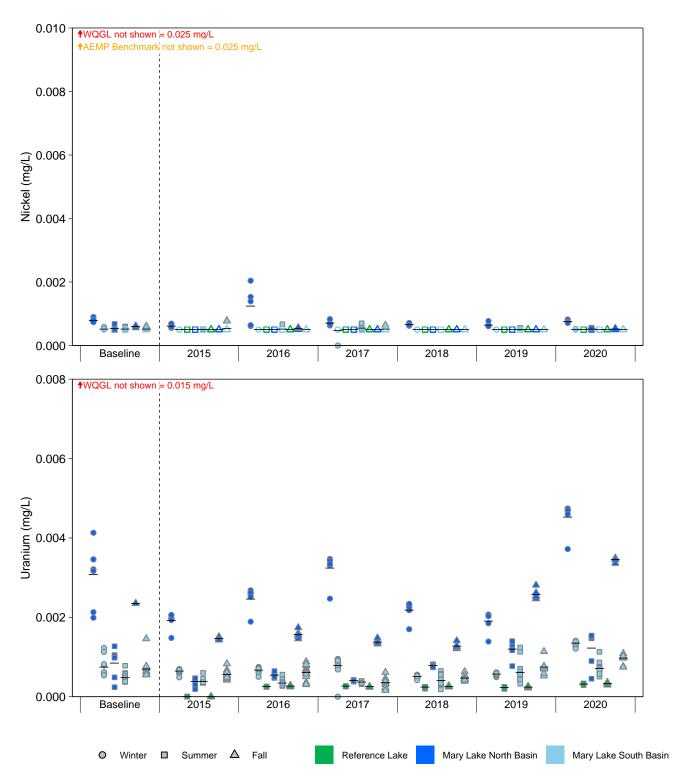


Figure C.29: Temporal Comparison of Water Chemistry at Mary Lake (BL0) Over Mine Baseline (2006 to 2013) and Operations (2015 to 2020) Periods

Table C.1: In Situ Water Quality Data Collected from Lotic Environments for the Mary River Project CREMP, Spring 2020

					In Situ \	Water Qua	ality Para	meter	
Study	Area	Station	Sampling Date	Temperature	Dissolved C	Oxygen	рН	Specific Conductance	Turbidity
				(°C)	(% saturated)	(mg/L)	pii	(µS/cm)	(NTU)
		CLT-REF4	4-Jul-20	5.9	97.3	12.1	7.70	55.8	-0.30
	Reference Creek	CLT-REF3	4-Jul-20	4.9	97.9	12.6	7.71	54.9	-0.84
	Stations	MRY-REF3	4-Jul-20	3.7	98.3	13.0	7.67	33.1	5.30
		MRY-REF2	4-Jul-20	5.5	98.1	12.4	7.62	56.9	-0.50
		L1-08	4-Jul-20	3.2	96.2	12.9	7.79	90.7	0.35
Camp Lake		L1-02	2-Jul-20	11.7	96.6	10.5	8.02	114.8	0.28
System		L2-03	2-Jul-20	15.7	97.7	9.7	8.01	244.9	15.90
	CLT-1	L1-09	2-Jul-20	13.0	97.1	10.2	8.12	141.0	1.97
		L1-05	3-Jul-20	10.0	99.0	11.2	8.13	144.0	1.13
		L0-01	3-Jul-20	9.3	98.9	11.4	7.98	147.8	0.61
	CLT-2	K0-01	3-Jul-20	9.4	98.7	11.3	7.95	143.2	-0.54
	Camp Lake	J0-01	4-Jul-20	3.3	95.8	12.9	7.88	151.8	-0.07
Sheardown	0DL T ::	D1-05	2-Jul-20	8.4	94.8	11.3	8.00	142.7	5.03
Lake System	SDL Tribs	D1-00	2-Jul-20	14.3	96.8	9.9	8.05	264.0	3.26
	Tom River	10-01	4-Jul-20	7.1	99.6	12.1	7.73	61.9	1.16
		G0-09-A	4-Jul-20	4.9	95.5	12.3	7.75	66.6	-0.12
		G0-09	4-Jul-20	4.6	95.5	12.3	7.68	63.0	1.50
		G0-09-B	4-Jul-20	3.8	96.1	12.7	7.71	40.9	9.20
		G0-03	3-Jul-20	10.8	96.9	10.8	7.63	45.4	10.76
		G0-01	3-Jul-20	9.9	100.6	11.4	7.73	40.6	6.43
Mary		F0-01	3-Jul-20	11.0	98.7	10.9	7.90	94.3	5.25
River/Lake System	Mary River	E0-10	3-Jul-20	10.6	100.0	11.1	7.74	73.5	5.20
	1 (140)	E0-03	3-Jul-20	8.6	100.2	11.7	7.90	44.3	6.71
		E0-20	3-Jul-20	7.3	100.0	12.0	7.68	41.7	6.52
		E0-21	3-Jul-20	7.7	98.6	11.8	8.01	41.5	6.85
		C0-10	3-Jul-20	7.0	101.3	12.3	7.68	40.5	7.01
		C0-05	3-Jul-20	6.4	101.8	12.6	7.90	65.8	6.94
		C0-01	3-Jul-20	6.2	101.8	12.6	7.65	50.2	9.42

Table C.2: In Situ Water Quality Data Collected from Lotic Environments for the Mary River Project CREMP, Summer 2020

					In Situ W	ater Qua	lity Para	meter		
Study	Area	Station	Sampling Date	Temperature	Dissolved O	xygen	рН	Specific Conductance	Turbidity	
				(°C)	(% saturated)	(mg/L)	ρπ	(µS/cm)	(NTU)	
		CLT-REF4	2-Aug-20	8.8	97.8	11.4	8.08	141.9	-0.96	
	Reference Creek	CLT-REF3	2-Aug-20	5.8	98.5	12.4	8.03	121.6	-0.82	
	Stations	MRY-REF3	2-Aug-20	11.0	99.9	11.0	7.88	117.0	20.67	
		MRY-REF2	2-Aug-20	13.3	101.0	10.6	8.06	126.3	0.28	
		L1-08	2-Aug-20	4.6	99.0	12.8	8.01	151.5	-0.87	
Camp Lake		L1-02	1-Aug-20	9.6	98.5	11.2	8.37	218.8	-1.97	
System		L2-03	1-Aug-20	12.7	97.2	10.3	8.11	376.5	1.09	
	CLT-1	L1-09	1-Aug-20	10.9	99.2	11.0	8.28	265.4	-1.19	
		L1-05	1-Aug-20	10.2	97.7	11.0	8.37	269.9	-0.84	
		L0-01	1-Aug-20	10.5	99.2	11.1	8.34	280.3	-1.25	
	CLT-2	K0-01	1-Aug-20	10.3	99.9	11.2	8.43	293.2	-1.65	
	Camp Lake	J0-01	2-Aug-20	11.8	103.1	11.2	8.05	149.8	-0.49	
Sheardown	CDI Tribo	D1-05 DL Tribs		6.6	92.5	11.3	7.83	216.5	-1.05	
Lake System	SDL IIIDS	D1-00	2-Aug-20	9.8	96.1	10.9	7.96	453.1	0.67	
	Tom River	10-01	2-Aug-20	10.6	100.4	11.2	8.31	216.3	-1.28	
		G0-09-A	2-Aug-20	9.0	96.1	11.2	8.15	187.2	14.52	
		G0-09	1-Aug-20	10.0	96.8	10.9	8.38	184.9	31.42	
		G0-09-B	1-Aug-20	10.2	96.7	10.9	8.33	172.4	24.20	
		G0-03	1-Aug-20	4.8	96.5	11.0	8.02	161.5	42.01	
		G0-01	31-Jul-20	13.3	98.5	10.3	8.31	167.1	21.01	
Mary		F0-01	31-Jul-20	11.7	97.7	10.6	8.33	335.6	-1.17	
River/Lake System	Mary River	E0-10	31-Jul-20	13.1	98.4	10.3	8.23	171.2	30.25	
		E0-03	31-Jul-20	12.1	99.0	10.6	8.16	172.7	42.19	
		E0-20	31-Jul-20	12.0	100.3	10.8	8.21	172.1	41.64	
		E0-21	31-Jul-20	11.7	99.2	10.8	8.23	172.3	43.72	
		C0-10	30-Jul-20	11.1	98.1	10.8	8.15	168.4	21.33	
		C0-05	30-Jul-20	11.7	99.3	10.7	8.24	166.6	29.80	
		C0-01	30-Jul-20	12.0	98.4	10.6	8.26	168.0	34.42	

Table C.3: *In Situ* Water Quality Data Collected From Lotic Environments for the Mary River Project CREMP, Fall 2020

				In Situ Water Quality Parameter										
Study	Area	Station	Sampling Date	Temperature	Dissolved	Oxygen	Нq	Specific Conductance	Turbidity					
				(°C)	(% saturated)	(mg/L)	Pi.	(µS/cm)	(NTU)					
		CLT-REF4	21-Aug-19	4.5	96.9	12.6	8.15	182.8	0.4					
	Reference	CLT-REF3	21-Aug-19	2.9	98.3	13.3	8.04	101.6	0.5					
	Creek Stations	MRY-REF3	21-Aug-19	5.6	97.9	12.3	7.70	170.7	8.0					
		MRY-REF2	21-Aug-19	5.1	97.5	12.5	8.02	182.4	0.6					
		L1-08	18-Aug-19	2.7	97.8	13.3	8.21	188.9	0.3					
Camp Lake System		L1-02	19-Aug-19	4.8	97.7	12.6	8.20	243.9	0.2					
	CLT-1	L2-03	19-Aug-19	11.7	98.3	10.7	8.01	443.3	2.3					
	CL1-1	L1-09	19-Aug-19	4.8	96.7	12.4	7.98	301.9	0.6					
		L1-05	19-Aug-19	4.7	97.2	12.5	8.02	304.0	0.6					
		L0-01	19-Aug-19	9.5	97.2	11.1	8.27	310.4	0.7					
	CLT-2	K0-01	19-Aug-19	10.1	99.2	11.2	8.42	341.7	0.2					
	Camp Lake	J0-01	18-Aug-19	9.3	97.8	11.2	7.79	155.1	0.3					
Sheardown	SDL Tribs	D1-05	19-Aug-19	5.3	94.9	12.0	7.98	243.3	0.2					
Lake System	SDL TIBS	D1-00	19-Aug-19	10.3	98.6	11.1	8.16	365.2	2.3					
	Tom River	10-01	19-Aug-19	6.3	99.4	12.3	8.25	263.5	0.2					
		G0-09-A	20-Aug-19	9.6	96.8	11.0	8.38	246.6	0.3					
		G0-09	20-Aug-19	9.5	97.4	11.1	8.40	247.1	3.2					
		G0-09-B	20-Aug-19	9.8	99.0	11.0	8.36	237.0	6.0					
		G0-03	20-Aug-19	8.4	98.5	11.6	8.33	224.0	4.1					
		G0-01	20-Aug-19	6.5	99.2	12.2	8.26	227.1	5.5					
Mary		F0-01	20-Aug-19	7.2	98.2	11.9	8.33	399.6	1.3					
River/Lake System	Mary River	E0-10	20-Aug-19	6.2	98.9	12.2	8.27	255.4	5.2					
		E0-03	20-Aug-19	5.2	98.9	12.6	8.30	239.5	6.6					
		E0-20	20-Aug-19	5.6	100.1	12.6	8.22	236.5	7.7					
		E0-21	20-Aug-19	5.2	100.0	12.7	8.22	245.3	8.0					
		C0-10	20-Aug-19	6.5	102.9	12.6	8.23	234.9	4.1					
		C0-05	20-Aug-19	5.8	101.2	12.7	8.02	231.3	4.7					
		C0-01	20-Aug-19	5.5	100.3	12.7	8.00	229.4	2.9					

Table C.4: Dissolved Metal Concentrations at Reference Creek Monitoring Stations, Mary River Project CREMP, 2020

				Spring Sam	pling Event			Summer Sar	npling Event			Fall Sampling Event				
Para	meters	Units	CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2	CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2	CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2		
			04-Jul-20	04-Jul-20	04-Jul-20	04-Jul-20	03-Aug-20	03-Aug-20	03-Aug-20	03-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20		
	Aluminum (Al)	mg/L	0.0200	0.0128	0.0289	0.0120	0.0055	0.0096	0.111	0.0173	0.0066	0.0083	0.0442	0.0152		
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010		
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010		
	Barium (Ba)	mg/L	0.00275	0.00344	0.00330	0.00313	0.00588	0.00643	0.0106	80800.0	0.00709	0.00900	0.0142	0.0100		
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050		
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050		
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010		
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010		
	Calcium (Ca)	mg/L	5.76	5.49	2.65	5.43	13.8	11.7	9.72	12.4	18.9	16.0	14.7	17.1		
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050		
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010		
	Copper (Cu)	mg/L	<0.00050	0.00086	0.00053	<0.00050	0.00055	0.00110	0.00122	0.00065	0.00064	0.00119	0.00116	0.00071		
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.054	<0.030	<0.030	<0.030	<0.030	<0.030		
<u>v</u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000077	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050		
Metals	Lithium (Li)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
≥	Magnesium (Mg)	mg/L	3.27	3.32	1.39	3.21	7.73	6.92	4.87	7.01	11.3	10.7	7.48	10.4		
<u> </u>	Manganese (Mn)	mg/L	0.000105	0.000293	0.000726	0.000422	<0.000070	0.000805	0.00067	0.000526	0.000073	0.000955	0.000360	0.000611		
SSC	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050		
Ö	Molybdenum (Mo)	mg/L	0.000094	0.000305	0.000134	0.000089	0.000353	0.000745	0.000639	0.000247	0.000563	0.000887	0.000619	0.000329		
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00065	<0.00050	<0.00050	<0.00050	0.00075	<0.00050	<0.00050		
	Potassium (K)	mg/L	0.38	0.43	0.44	0.43	0.68	0.73	1.14	0.85	0.83	0.96	1.31	1.05		
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
	Silicon (Si)	mg/L	0.51	0.61	0.42	0.43	0.64	0.86	1.22	0.66	0.60	0.91	1.08	0.79		
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010		
	Sodium (Na)	mg/L	0.584	0.575	1.14	0.959	2.33	1.56	4.71	2.66	3.38	2.22	6.73	4.09		
	Strontium (Sr)	mg/L	0.00462	0.00385	0.00591	0.00467	0.0117	0.00841	0.0236	0.0123	0.0155	0.0115	0.0320	0.0164		
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010		
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010		
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.00354	<0.010	<0.010	<0.010	<0.010	<0.010		
	Uranium (U)	mg/L	0.000517	0.000447	0.000260	0.000330	0.00824	0.00423	0.00154	0.00212	0.0136	0.00854	0.00326	0.00372		
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030		

Note: "-" indicates no data reported.

Table C.5: In Situ Water Quality Profile Data Collected at Reference Lake 3 Water Quality Monitoring Stations in Summer 2020, Mary River Project CREMP

Depth	T	emperature (°0	C)	Disso	olved Oxygen (mg/L)	Dissolved	d Oxygen (% S	aturation)		pH (pH units)		Specific	Conductance	(µS/cm)
(m)	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01
Date Collected	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20
1.0	12.0	12.2	12.2	10.89	10.78	10.80	101.0	100.6	100.7	7.90	7.93	8.03	76.0	76.3	76.0
2.0	12.0	12.2	12.2	10.91	10.84	10.83	101.1	100.7	100.9	7.88	7.83	7.95	76.1	76.2	76.0
3.0	11.9	12.2	12.2	10.94	10.77	10.83	101.2	100.3	101.0	7.87	7.75	7.93	76.1	76.1	76.1
4.0	11.6	12.2	12.2	11.17	10.80	10.83	102.1	100.6	101.0	7.85	7.74	7.91	76.1	76.2	76.1
5.0	10.4	12.1	12.2	11.53	10.79	10.83	103.1	100.1	100.9	7.83	7.72	7.89	76.0	76.5	76.1
6.0	9.3	8.2	9.2	11.99	12.33	11.86	104.3	104.1	101.8	7.75	7.61	7.85	76.1	75.6	76.4
7.0	8.4	7.5	7.5	12.35	12.48	12.41	105.3	104.0	103.3	7.76	7.56	7.78	75.6	75.4	75.8
8.0	7.3	7.3	7.3	12.60	12.51	12.52	104.6	103.5	103.3	7.72	7.53	7.74	75.7	75.5	75.5
9.0	7.2	7.1	6.9	12.64	12.56	12.54	104.4	103.6	103.1	7.70	7.51	7.70	75.4	75.4	75.5
10.0	6.7	7.0	6.7	12.74	12.56	12.57	104.2	103.6	102.7	7.68	7.50	7.67	75.5	75.5	75.4
11.0	6.3	6.8	6.7	12.77	12.56	12.57	103.5	103.0	102.6	7.66	7.48	7.65	75.2	75.4	75.4
12.0	5.8	6.6	6.6	12.84	12.57	12.57	102.7	102.5	102.4	7.64	7.47	7.64	75.5	75.4	75.4
13.0	5.7	6.4	6.5	12.81	12.60	12.61	102.2	102.0	102.2	7.61	7.45	7.63	75.4	75.4	75.5
14.0	5.7	6.2	6.3	12.79	12.60	12.61	101.7	101.8	102.1	7.60	7.43	7.62	75.4	75.4	75.4
15.0	5.4	6.1	6.2	12.71	12.60	12.63	100.6	101.6	101.9	7.56	7.42	7.62	75.4	75.4	75.4
16.0	5.3	6.1	-	12.71	12.60	-	100.4	101.3	-	7.58	7.41	-	75.4	75.4	-
17.0	5.3	5.9	-	12.58	12.59	-	100.0	100.8	-	7.55	7.40	-	75.4	75.4	-
18.0	5.2	5.8	-	12.67	12.61	-	99.7	100.8	-	7.54	7.40	-	75.4	75.4	-
19.0	5.2	5.7	-	12.65	12.61	-	99.5	100.6	-	7.54	7.38	-	75.4	75.4	-
20.0	5.1	5.4	-	12.63	12.54	-	99.2	99.3	-	7.53	7.30	-	75.4	75.4	-
21.0	5.1	5.4	-	12.61	12.54	-	98.9	99.3	-	7.52	7.31	-	75.4	75.4	-
22.0	5.1	5.4	-	12.60	12.53	-	98.7	99.1	-	7.52	7.32	-	75.5	75.5	-
23.0	5.0	5.4	-	12.57	12.51	-	98.4	98.9	-	7.51	7.32	-	75.5	75.5	-
24.0	4.9	5.3	-	12.55	12.48	-	98.1	98.5	-	7.50	7.31	-	75.5	75.5	-
25.0	4.9	5.3	-	12.54	12.46	-	98.0	98.3	-	7.49	7.31	-	75.5	75.5	-
26.0	4.9	-	-	12.52	-	-	97.8	-	-	7.49	-	-	75.5	-	-
27.0	4.9	-	-	12.49	-	-	97.5	-	-	7.48	-	-	75.5	-	-
28.0	4.9	-	-	12.48	-	-	97.4	-	-	7.48	-	-	75.5	-	-
29.0	4.8	-	-	12.44	-	-	97.0	-	-	7.47	-	-	75.5	-	-
30.0	4.8	-	-	12.42	-	-	96.8	-	-	7.47	-	-	75.5	-	-
31.0	4.8	-	-	12.42	-	-	96.7	-	-	7.47	-	-	75.5	-	-
32.0	4.8	-	-	12.41	-	-	96.6	-	-	7.46	-	-	75.5	-	-
33.0	4.8	-	-	12.39	-	-	96.4	-	-	7.45	-	-	75.5	-	-
34.0	4.8	-	-	12.37	-	-	96.3	-	-	7.45	-	-	75.5	-	-
35.0	4.7	-	-	12.35	-	-	96.1	-	-	7.45	-	-	75.5	-	-
36.0	4.7	-	-	12.31	-	-	95.8	-	-	7.45	-	-	75.5	-	-

Notes: "-" = no data / not applicable. Total depth at stations REF3-03, REF3-02, and REF3-01 was 36.7, 30.3, and 15.4 m, respectively, at the time of summer sampling.

Table C.6: In Situ Water Quality Profile Data Collected at Reference Lake 3 Water Quality Monitoring Stations in Fall 2020, Mary River Project CREMP

Depth	Т	emperature (°0	C)	Dissolved Oxygen (mg/L)			Dissolved	l Oxygen (% S	aturation)		pH (pH units)		Specific Conductance (μS/cm)		
(m)	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01	REF3-03	REF3-02	REF3-01
Date Collected	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20
1.0	8.9	8.8	8.6	11.56	11.58	11.51	99.5	99.6	98.7	7.82	7.86	7.85	76.6	76.8	77.5
2.0	8.7	8.7	8.5	11.60	11.57	11.56	99.6	99.3	98.8	7.79	7.82	7.82	76.3	76.7	76.9
3.0	8.6	8.6	8.4	11.60	11.58	11.56	99.5	99.3	98.7	7.78	7.82	7.81	76.3	76.7	76.8
4.0	8.6	8.6	8.4	11.61	11.56	11.56	99.3	99.0	98.6	7.77	7.81	7.80	76.3	76.6	76.8
5.0	8.3	8.5	8.4	11.61	11.58	11.56	98.8	98.9	98.6	7.76	7.80	7.80	76.3	76.5	76.6
6.0	8.3	8.4	8.4	11.60	11.57	11.54	98.6	98.7	98.4	7.77	7.79	7.79	76.3	76.4	76.5
7.0	8.2	8.4	8.3	11.59	11.56	11.53	98.4	98.5	98.2	7.76	7.79	7.79	76.3	76.4	76.5
8.0	8.2	8.3	8.3	11.58	11.54	11.53	98.3	98.3	98.1	7.78	7.78	7.79	76.3	76.4	76.4
9.0	8.2	8.3	8.3	11.58	11.54	11.53	98.3	98.2	98.1	7.77	7.78	7.78	76.3	76.4	76.4
10.0	8.2	8.3	8.3	11.58	11.53	11.52	98.2	98.1	97.9	7.77	7.78	7.78	76.3	76.4	76.5
11.0	8.2	8.3	8.2	11.57	11.52	11.52	98.2	98.0	97.8	7.77	7.77	7.77	76.3	76.4	76.5
12.0	8.2	8.3	8.2	11.57	11.52	11.51	98.2	97.9	97.7	7.77	7.77	7.77	76.3	76.4	76.5
13.0	8.2	8.3	8.2	11.56	11.51	11.50	98.1	97.8	97.7	7.77	7.77	7.76	76.3	76.4	76.4
14.0	8.2	8.3	-	11.55	11.53	-	98.0	98.0	-	7.78	7.77	-	76.3	76.3	-
15.0	8.1	8.2	-	11.54	11.53	-	97.8	98.0	-	7.77	7.77	-	76.3	76.3	-
16.0	8.1	8.2	-	11.54	11.53	-	97.7	97.9	-	7.77	7.77	-	76.3	76.3	-
17.0	8.1	8.2	-	11.54	11.52	-	97.7	97.8	-	7.76	7.76	-	76.3	76.3	-
18.0	8.1	8.2	-	11.53	11.51	-	97.7	97.7	-	7.76	7.76	-	76.3	76.3	-
19.0	8.1	8.1	-	11.52	11.49	-	97.6	97.3	-	7.77	7.75	-	76.3	76.3	-
20.0	8.0	8.1	-	11.51	11.47	-	97.3	97.1	-	7.76	7.74	-	76.3	76.3	-
21.0	7.9	8.0	-	11.52	11.49	-	97.9	96.9	-	7.75	7.73	-	76.3	76.3	-
22.0	7.0	7.6	-	11.64	11.49	-	96.5	96.2	-	7.71	7.68	-	76.3	76.3	-
23.0	6.3	7.5	-	11.88	11.47	-	95.7	95.2	-	7.65	7.66	-	76.2	76.2	-
24.0	5.4	6.8	-	12.11	11.57	-	95.9	94.0	-	7.57	7.60	-	75.7	75.8	-
25.0	5.1	6.0	-	12.16	11.62	-	95.5	93.4	-	7.52	7.50	-	75.4	75.9	-
26.0	5.1	5.9	-	12.14	11.53	-	95.3	92.4	-	7.48	7.45	-	75.3	75.8	-
27.0	5.0	-	-	12.04	-	-	94.3	-	-	7.43	-	-	75.5	-	-
28.0	5.0	-	-	11.98	-	-	93.8	-	-	7.41	-	-	75.5	-	-
29.0	4.9	-	-	11.86	-	-	92.8	-	-	7.39	-	-	75.5	-	-
30.0	4.9	-	-	11.76	-	-	92.0	-	-	7.37	-	-	76.6	-	-
31.0	4.9	-	-	11.62	-	-	90.8	-	-	7.35	-	-	75.6	-	-
32.0	4.8	-	-	11.24	-	-	87.7	-	-	7.30	-	-	75.8	-	-
33.0	4.8	-	-	10.57	-	-	82.3	-	-	7.23	-	-	76.1	-	-

Notes: "-" = no data / not applicable. Total depth at stations REF3-03, REF3-02, and REF3-01 was 36.7, 30.3, and 15.4 m, respectively, at the time of fall sampling.

Table C.7: Sampling Depth, Water Clarity Measures, and Surface and Bottom *In Situ* Water Quality Measures Collected at Reference Lake 3 Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Danlingto ID	Date	Station	Secchi	Colour/	Depth	Temperature	Dissolve	d Oxygen	pН	Specific
Replicate ID	Sampled	Depth (m)	Depth (m)	Clarity	sampled	(°C)	(mg/L)	(% sat.)	(pH units)	Conductance (µS/cm)
DEE 02.4	44 4 20	40.5	8.05	clear,	surface	10.1	12.71	114.4	7.67	75.5
REF 03-1	14-Aug-20	10.5	6.05	colourless	bottom	9.7	11.94	108.2	7.12	76.8
REF 03-2	14-Aug-20		7.4	clear,	surface	10.3	13.09	118.5	7.38	74.9
KEF 03-2	14-Aug-20	-	7.4	colourless	bottom	9.2	11.83	104.6	6.94	82.1
REF 03-3	14 Aug 20	10.0	9.15	clear,	surface	10.1	12.59	112.6	7.41	74.9
KEF 03-3	14-Aug-20	10.0	9.15	colourless	bottom	9.4	13.00	115.0	7.56	75.2
REF 03-4	14 Aug 20	8.5	8.12	clear,	surface	10.2	13.33	120.5	7.16	74.9
KEF 03-4	14-Aug-20	6.5	0.12	colourless	bottom	9.4	13.03	115.0	7.13	74.8
REF 03-5	14 Aug 20	11.0	7.92	clear,	surface	9.8	12.99	116.0	7.26	74.8
KEF 03-3	14-Aug-20	11.0	7.92	colourless	bottom	8.9	13.34	116.7	7.20	74.5
REF 03-6	14-Aug-20	20.5	8.55	clear,	surface	10.2	12.46	112.4	7.20	75.1
KEF 03-0	14-Aug-20	20.5	0.55	colourless	bottom	6.1	13.73	112.0	6.94	78.1
REF 03-7	14 Aug 20	23.0	8.10	clear,	surface	10.2	12.79	115.2	7.35	75.2
KEF 03-7	14-Aug-20	23.0	0.10	colourless	bottom	5.8	12.82	103.5	6.27	76.0
DEE 02 0	14 Aug 20	10.0	9.84	clear,	surface	10.2	13.42	121.4	7.27	75.1
REF 03-8	14-Aug-20	19.0	9.04	colourless	bottom	5.7	15.78	127.9	6.95	75.2
REF 03-9	15 Aug 20	21.0	7.18	clear,	surface	9.6	10.92	97.3	7.13	75.0
KEF 03-9	15-Aug-20	21.0	7.10	colourless	bottom	5.6	12.93	104.2	6.53	74.0
DEE 02 40	15 Aug 20	10 E	9.20	clear,	surface	9.7	10.81	96.6	6.89	75.0
KEF 03-10	REF 03-10 15-Aug-20 19.5 8.29		colourless	bottom	5.9	12.91	105.2	6.82	74.3	

Note: "-" indicates data not collected.

Table C.8: Statistical Comparison of Bottom *In Situ* Water Quality Between Littoral and Profundal Stations of Reference Lake 3, Mary River Project CREMP, August 2020

		Statistical 1	est Results					Summary Sta	atistics		
Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Station Type	n	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Secchi Depth	togual		NO		Littoral	5	8.1	0.6	0.3	7.4	9.2
(m)	tequal	none	NO	0.621	Profundal	5	8.4	1.0	0.4	7.2	9.8
Temperature	togual	tequal none YES		0.001	Littoral	5	9.3	0.3	0.1	8.9	9.7
(°C)	tequal	none	TEG		Profundal	5	5.8	0.2	0.1	5.6	6.1
Dissolved	tequal	log10	NO	0.147	Littoral	5	12.6	0.7	0.3	11.8	13.3
Oxygen (mg/L)	tequal	log10	NO	0.147	Profundal	5	13.6	1.3	0.6	12.8	15.8
Dissolved	togual	nono	NO	0.801	Littoral	5	111.9	5.2	2.3	104.6	116.7
Oxygen (% saturation)	tequal	none	NO	0.001	Profundal	5	110.6	10.3	4.6	103.5	127.9
рН	togual	nono	YES	0.019	Littoral	5	7.19	0.23	0.10	6.94	7.56
(units)	tequal	none	153	0.019	Profundal	5	6.70	0.30	0.13	6.27	6.95
Specific	M-W	rank	NO	0.600	Littoral	5	76.7	3.2	1.4	74.5	82.1
Conductance (µS/cm)	IVI-VV	rank	NO	0.600	Profundal	5	75.5	1.6	0.7	74.0	78.1

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.9: Dissolved Metal Concentrations at Reference Lake 3 Monitoring Stations, Mary River Project CREMP, 2020

					Summer Sar	mpling Event					Fall Samp	ling Event		
	Davamatava	l lmita	REF3-01	REF3-01	REF3-02	REF3-02	REF3-03	REF3-03	REF3-01	REF3-01	REF3-02	REF3-02	REF3-03	REF3-03
	Parameters	Units	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface
		-	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20
	Aluminum (Al)	mg/L	0.0614	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0108
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00643	0.00618	0.00626	0.00609	0.00618	0.00624	0.00649	0.00637	0.00644	0.00632	0.00633	0.00630
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	6.83	6.75	7.19	7.26	6.69	7.00	7.20	7.33	7.21	7.26	7.11	7.23
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00072	0.00069	0.00070	0.00068	0.00068	0.00069	0.00074	0.00074	0.00070	0.00074	0.00071	0.00072
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	<0.030	<0.030	<0.030
a s	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
/let	Lithium (Li)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dissolved Metals	Magnesium (Mg)	mg/L	4.32	4.22	4.31	4.19	4.24	4.25	4.88	4.88	4.88	4.86	4.75	4.80
<u>×</u>	Manganese (Mn)	mg/L	0.000211	0.000247	0.000140	0.000279	0.000225	0.000241	0.000143	0.000160	0.000079	0.000159	0.000117	0.000164
089	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Dis	Molybdenum (Mo)	mg/L	0.000129	0.000119	0.000129	0.000133	0.000133	0.000136	0.000153	0.000180	0.000151	0.000152	0.000146	0.000148
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	0.89	0.86	0.86	0.85	0.84	0.86	0.92	0.97	0.91	0.94	0.89	1.03
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.48	0.44	0.50	0.47	0.48	0.47	0.48	0.47	0.49	0.47	0.54	0.48
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	0.980	0.889	0.906	0.879	0.868	0.896	1.00	1.02	1.01	1.00	0.993	1.13
	Strontium (Sr)	mg/L	0.00788	0.00799	0.00837	0.00839	0.00826	0.00834	0.00807	0.00811	0.00809	0.00813	0.00796	0.00828
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.000293	0.000307	0.000306	0.000318	0.000292	0.000313	0.000345	0.000354	0.000322	0.000340	0.000296	0.000329
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.10: Average Relative Percent Difference (RPD) Values between Water Chemistry Samples Taken at the Top and Bottom of the Water Column at Lake Monitoring Stations, Mary River Project CREMP, 2020

Dove		Reference	ce Lake		Camp Lake		Shear	down Lake Nort	hwest	Shear	down Lake Sou	theast	Mar	y Lake North B	asin	Mar	y Lake South B	asin
Parai	meters	Summer	Fall	Winter	Summer	Fall	Winter	Summer	Fall	Winter	Summer	Fall	Winter	Summer	Fall	Winter	Summer	Fall
	Conductivity (lab)	0.4	1.3	5.0	2.8	39	5	4	0	2.7	6.4	0.7	2.3	29	0.5	5.9	6.3	1.1
als	pH (lab)	2.8	2.0	2.4	2.0	3.7	1.5	4.0	0.5	1.2	5.4	0.5	2.3	4.4	0.4	1.2	3.2	0.9
ou	Hardness (as CaCO ₃)	1.6	0.7	6.5	2.5	41	5.1	3.3	1.5	2.1	8.4	0.9	3.4	27	0.6	4.0	8.1	1.2
Conventionals ^b	Total Suspended Solids (TSS)	0	0	0	1.0	0	0	21	0	0	0	6.0	0	0	0	0	15	6.6
J Ve	Total Dissolved Solids (TDS)	15	11	7.8	5.7	78	2.6	9.3	16	7.1	9.6	17	3.4	30	3.7	11	9.9	7.9
ဝိ	Turbidity	15	15	26	9.5	29	20	24	5.8	54	39	4.0	52	36	10.0	14	31	5.6
	Alkalinity (as CaCO ₃)	9.3	3.9	5.7	2.6	32	5.6	3.7	19	2.4	6.6	1.1	2.3	28	2.0	5.3	7.6	3.0
	Total Ammonia	0	25	56	1.5	13	52	3.8	24	38	38	4.8	0	68	0	0	0	0
Þ	Nitrate	0	0	70	13	19	13	10	12	7.4	27	13	17	46	46	18	22	33
an Cs	Nitrite	0	0	0	0	0	0	36	0	0	26	0	0	15	0	0	0	0
nts	Total Kjeldahl Nitrogen (TKN)	0	4.2	28	8.2	2.9	12	8.9	3.7	1.3	13	1.3	10.0	6.0	6.3	10	0	0
utrien Orga	Biocontou Organio Garbon	1.9	3.7	15	27	31	9.8	16	3.6	13	38	13	10	31	16	5.4	17	8.3
Ν	Total Organic Carbon	2.8	2.9	8.9	5.4	17	5.6	11	5.2	5.0	8.4	3.1	6.4	9.5	51	6.5	11	6.8
	Total Phosphorus	39	4.2	39	36	34	84	22	38	24	27	23	20	42	30	1.4	30	45
	Phenols	0	9.2	34	53	23	14	10	43	1.9	36	0	28	0	0	8.0	0	16
suc	Bromide (Br)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Anions	Chloride (CI)	3.6	0.7	14	2.6	34	5.3	3.9	0.6	2.9	5.1	1.1	2.9	41	1.2	6.0	9.6	4.9
٧	Sulphate (SO ₄)	1.3	0.5	7.0	2.9	44	5.4	7.5	0.1	4.9	9.9	0.7	7.6	38	1.1	6.4	7.3	4.4
	Aluminum (Al)	4.2	10	102	16	20	50	41	41	42	48	10	17	40	16	25	40	14
	Antimony (Sb)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Arsenic (As)	0	0	1.9	0	0	0	0	1.6	1.9	0	0	6.1	29	0	0	0	1.4
	Barium (Ba)	3.8	13	4.9	5.0	42	5.3	3.2	2.1	2.9	2.3	3.5	4.1	25	2.4	4.7	9.9	3.0
	Boron (B)	0	0	0	0	0	5.8	23	2.6	3.4	0	0	0	0	0	0	0	0
	Cadmium (Cd)	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Calcium (Ca)	2.4	2.4	7.2	3.3	41	5.7	4.3	1.3	2.8	6.8	1.5	2.5	27	0.6	3.4	6.0	0.8
	Chromium (Cr)	0	0	0	21	0	0	15	0	0	21	0	0	28	0	0	0	0
	Cobalt (Co)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Copper (Cu)	2.3	5.3	17	5.8	17	11	5.4	2.8	9.6	4.6	12	20	18	2.7	5.4	9.0	6.4
	Iron (Fe)	0	0	0	36	0	0	42	14	0	50	5.7	12	50	0	0	29	9.1
	Lead (Pb)	0	0	48	0	0	11	0	0	0	10	9.0	0	6.1	0	0	22	0
<u> </u>	Lithium (Li)	0	0	6.0	4.9	3.3	8.8	9.0	3.2	6.4	8.6	11	6.9	3.2	10	0	0	0
Metals	Magnesium (Mg)	2.6	1.6	4.6	1.4	41	5.0	6.1	1.2	3.5	4.2	1.0	1.4	28 47	2.1	4.7	9.6	2.8
	Manganese (Mn)	8.9	11 0	58 0	12 0	43 0	2.8	0	38 0	37 0	54 0	2.2 0	79 0	0	2.9	45 2.3	35 5.0	13 0
otal	Mercury (Hg) Molybdenum (Mo)	3.1	8.8	16	8.9	35	9.0	4.5	2.2	7.6	10	2.3	9.8	35	0.4	6.3	39	6.4
Tot	Nickel (Ni)	0	0.0	18	7.6	6.3	9.0	3.9	3.4	5.1	9.9	2.6	5.7	7.6	3.9	1.7	0	0.4
	Potassium (K)	2.3	0.7	8.1	2.8	30	6.3	4.0	1.3	4.3	2.6	0.5	2.4	23	0.6	5.4	8.3	1.8
	Selenium (Se)	0	0.7	0.1	0.7	0	0.3	7.1	0	0	0	0.5	0	0	0.0	0	0	0
	Silicon (Si)	4.7	6.6	26	2.2	25	15	4.8	2.4	16	19	4.1	16	7.5	2.3	6.8	9.8	4.7
	Silver (Ag)	0	0.0	0	0	0	0	44	0	0	0	0	0	0	0	0.8	0	0
	Sodium (Na)	2.5	1.5	12	3.6	40	6.0	6.1	1.0	3.4	4.4	1.3	2.6	41	1.4	4.4	11	2.1
	Strontium (Sr)	5.2	1.1	5.7	3.9	41	5.3	4.9	0.5	2.1	5.5	0.8	2.8	33	3.0	6.7	7.6	2.0
	Thallium (TI)	0	0	0	0	0	0	0	0.5	0	0	0.8	0	0	0	0.7	0	0
	Tin (Sn)	0	0	6.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Titanium (Ti)	0	0	0.7	27	0	0	44	0	0	62	0	0	66	0	0	0	0
	Uranium (U)	8.9	8.2	11	6.5	43	6.7	7.7	1.3	3.8	13	1.0	7.8	53	1.6	5.8	14	2.3
	Vanadium (V)	0.9	0.2	0	0.5	0	0.7	0	0	0	0	0	0	0	0	0	0	0
	Zinc (Zn)	0	0	38	32	0	16	0	0	20	0	0	0	0	0	0	18	0
	(J	<u> </u>	30	UZ.	<u> </u>	10	J	<u> </u>	20	J	<u> </u>		J	<u> </u>		10	

Note: Shaded values indicate RDP >30%.

Table C.11: *In Situ* Water Quality Measurements Collected at Camp Lake Tributary 1 and Tributary 2 Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Study Area	Station	Sampling Date	Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% Saturation)	pH (pH units)	Specific Conductance (µS/cm)
	REF-CRK-B1	10-Aug-20	9.9	10.42	95.3	7.71	132.4
Unnamed	REF-CRK-B2	10-Aug-20	9.0	10.61	94.6	7.58	132.8
Reference	REF-CRK-B3	10-Aug-20	8.4	10.68	93.2	7.48	132.8
Creek	REF-CRK-B4	10-Aug-20	8.0	11.09	96.5	7.50	130.8
	REF-CRK-B5	10-Aug-20	7.6	11.30	98.0	7.57	133.0
	CLT-1-US-B1	17-Aug-20	7.9	10.51	92.0	8.22	240.0
Camp Lake	CLT-1-US B2	17-Aug-20	7.8	10.59	92.5	8.17	241.0
Tributary 1	CLT-1-US-B3	17-Aug-20	7.8	10.72	93.4	8.17	243.2
Upstream	CLT-1-US-B4	17-Aug-20	7.7	10.74	93.6	8.17	246.6
	CLT-1-US-B5	17-Aug-20	8.4	10.27	91.3	8.13	318.0
	CLT-1-DS-B1	8-Aug-20	12.4	11.67	115.5	8.30	292.2
Camp Lake	CLT-1-DS-B2	8-Aug-20	12.3	11.23	107.3	7.91	299.0
Tributary 1	CLT-1-DS-B3	8-Aug-20	12.2	11.43	109.7	7.96	289.0
Downstream	CLT-1-DS-B4	8-Aug-20	11.9	11.55	110.7	8.18	289.3
	CLT-1-DS-B5	8-Aug-20	11.5	11.94	112.8	8.03	289.0
	CLT-2-US-B1	9-Aug-20	11.1	10.90	103.4	8.26	307.4
Camp Lake	CLT-2-US-B2	9-Aug-20	11.0	11.22	103.4	8.09	307.7
Tributary 2	CLT-2-US-B3	9-Aug-20	10.4	11.61	106.9	8.18	307.4
Upstream	CLT-2-US-B4	9-Aug-20	10.2	11.69	107.0	8.13	287.5
	CLT-2-US-B5	9-Aug-20	9.5	11.66	105.8	8.20	308.1
	CLT-2-DS-B1	9-Aug-20	8.7	12.63	111.5	8.33	311.5
Camp Lake	CLT-2-DS-B2	9-Aug-20	8.3	12.68	110.3	8.10	311.2
Tributary 2	CLT-2-DS-B3	9-Aug-20	7.8	12.91	111.5	8.08	309.7
Downstream	CLT-2-DS-B4	9-Aug-20	6.1	13.64	113.0	8.00	312.0
	CLT-2-DS-B5	9-Aug-20	5.9	13.85	115.0	8.03	310.0

Table C.12: In Situ Water Quality Summary Statistics for the Camp Lake Tributary Benthic Stations, Mary River Project CREMP, August 2020

					<u> </u>	95% Confide	ence Interval		
Water Temperature (°C) Dissolved Oxygen (mg/L) Dissolved Oxygen (% Saturation) PH (units) REI CLT CLT CLT CLT CLT CLT CLT CLT CLT CL	Study Area	Sample Size	Mean	Standard Deviation	Standard Error	Lower Bound	Upper Bound	Minimum	Maximum
	REF-CRK Unnamed Reference Creek	5	8.6	0.9	0.4	7.9	9.2	7.6	9.9
Water	CLT1-US North Branch	5	7.9	0.3	0.1	7.7	8.1	7.7	8.4
Temperature	CLT1-DS Lower Main Stem	5	12.1	0.4	0.2	11.8	12.3	11.5	12.4
(°C)	CLT2-US Upstream	5	10.4	0.7	0.3	10.0	10.9	9.5	11.1
Dissolved Oxygen	CLT2-DS Downstream	5	7.4	1.3	0.6	6.4	8.3	5.9	8.7
Dissolved Oxygen (mg/L)	REF-CRK Unnamed Reference Creek	5	10.82	0.36	0.16	10.55	11.09	10.42	11.30
Dissolved	CLT1-US North Branch	5	10.57	0.19	0.09	10.43	10.71	10.27	10.74
	CLT1-DS Lower Main Stem	5	11.56	0.27	0.12	11.37	11.76	11.23	11.94
(mg/L)	CLT2-US Upstream	5	11.42	0.35	0.15	11.16	11.67	10.90	11.69
	CLT2-DS Downstream	5	13.14	0.57	0.25	12.73	13.56	12.63	13.85
	REF-CRK Unnamed Reference Creek	5	95.5	1.8	0.8	94.2	96.9	93.2	98.0
Dissolved	CLT1-US North Branch	5	92.6	1.0	0.4	91.9	93.3	91.3	93.6
	CLT1-DS Lower Main Stem	5	111.2	3.1	1.4	108.9	113.5	107.3	115.5
(% Saturation)	CLT2-US Upstream	5	105.3	1.8	0.8	104.0	106.6	103.4	107.0
	CLT2-DS Downstream	5	112.3	1.8	0.8	110.9	113.6	110.3	115.0
	REF-CRK Unnamed Reference Creek	5	7.57	0.09	0.04	7.50	7.63	7.48	7.71
	CLT1-US North Branch	5	8.17	0.03	0.01	8.15	8.20	8.13	8.22
	CLT1-DS Lower Main Stem	5	8.08	0.16	0.07	7.96	8.19	7.91	8.30
(45)	CLT2-US Upstream	5	8.17	0.07	0.03	8.12	8.22	8.09	8.26
	CLT2-DS Downstream	5	8.11	0.13	0.06	8.01	8.20	8.00	8.33
	REF-CRK Unnamed Reference Creek	5	132	0.9	0.4	132	133	131	133
Specific	CLT1-US North Branch	5	258	33.8	15.1	233	283	240	318
Conductance	CLT1-DS Lower Main Stem	5	292	4.3	1.9	289	295	289	299
(µS/cm)	CLT2-US Upstream	5	304	9.0	4.0	297	310	288	308
	CLT2-DS Downstream	5	311	1.0	0.4	310	312	310	312

Table C.13: In Situ Water Quality Statistical Comparisons among Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

	O	verall 3-group	Comparison		Pair-wis	e, <i>post hoc</i> comparisons ^a		
Metric	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	(I) Area	(J) Area	Significant Difference Between Areas?	P-value
Water					REF-CRK Unnamed Reference Creek	CLT1 North Branch	NO	0.215
Temperature	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT1 Lower Main Stem	YES	<0.001
(°C)					CLT1 North Branch	CLT1 Lower Main Stem	YES	<0.001
Dissolved					REF-CRK Unnamed Reference Creek	CLT1 North Branch	NO	0.360
Oxygen	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT1 Lower Main Stem	YES	0.003
(mg/L)					CLT1 North Branch	CLT1 Lower Main Stem	YES	<0.001
Dissolved					REF-CRK Unnamed Reference Creek	CLT1 North Branch	NO	0.117
Oxygen	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT1 Lower Main Stem	YES	<0.001
(% saturation)					CLT1 North Branch	CLT1 Lower Main Stem	YES	<0.001
					REF-CRK Unnamed Reference Creek	CLT1 North Branch	YES	<0.001
pH (units)	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT1 Lower Main Stem	YES	<0.001
(3)					CLT1 North Branch	CLT1 Lower Main Stem	NO	0.371
Specific					REF-CRK Unnamed Reference Creek	CLT1 North Branch	YES	0.034
Conductance	K-W	rank	YES	0.0050	REF-CRK Unnamed Reference Creek	CLT1 Lower Main Stem	YES	0.001
(µS/cm)					CLT1 North Branch	CLT1 Lower Main Stem	NO	0.288

Highlighted values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Signficant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table C.14: Water Chemistry at Lotic Camp Lake Tributary (CLT) Monitoring Stations, Mary River Project CREMP, 2020

			Water				Sprin	g Sampling	Event		
	Parameters	Units	Quality Guideline	AEMP Benchmark ^b	L1-08	L1-02	L2-03	L1-09	L1-05	L0-01	K0-01
			(WQG) ^a		04-Jul-20	02-Jul-20	02-Jul-20	02-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20
	Conductivity (lab)	μS/cm	-	-	97.5	124	258	151	155	160	154
<u>v</u>	pH (lab)	рН	6.5 - 9.0	-	7.93	8.14	8.16	8.23	8.15	8.20	8.18
ona	Hardness (as CaCO ₃)	mg/L	-	-	44.5	59.9	103	68.7	69.3	71.2	70.4
Conventionals	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	2.7	9.9	2.6	<2.0	<2.0	<2.0
) NC	Total Dissolved Solids (TDS)	mg/L	-	-	92	80	158	109	118	104	120
ၓ	Turbidity	NTU	-	-	1.27	1.15	15.8	3.17	2.07	1.68	0.55
	Alkalinity (as CaCO ₃)	mg/L	•	-	46	59	93	66	70	70	62
ý	Total Ammonia	mg/L	1	0.855	<0.010	<0.010	0.064	0.011	<0.010	<0.010	<0.010
Nutrients and Organics	Nitrate	mg/L	3	3	0.081	<0.020	1.03	0.151	0.159	0.137	0.135
)rgs	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	0.0089	<0.0050	<0.0050	<0.0050	<0.0050
D D	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.081	<0.021	1.0389	0.151	0.159	0.137	0.135
sar	Dissolved Organic Carbon	mg/L	-	-	2.27	3.03	4.79	3.32	3.50	3.41	2.81
ent	Total Organic Carbon	mg/L	-	-	2.62	4.38	5.87	4.78	4.57	4.68	3.86
utri	Total Phosphorus	mg/L	0.030^{α}	-	0.0042	0.0032	0.0197	0.0033	0.0184	<0.0030	0.0075
Z	Phenols	mg/L	0.004 ^a	-	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010
SI	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	1.26	1.57	16.4	4.33	4.47	4.41	2.38
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	2.59	2.55	8.22	3.50	3.36	3.57	11.8
	Aluminum (Al)	mg/L	0.100	0.179	0.0248	0.0139	0.270	0.0560	0.0546	0.0592	0.0229
	Antimony (Sb)	mg/L	0.020^{α}	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	0.00018	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00691	0.00825	0.0124	0.00884	0.00880	0.00903	0.00856
	Beryllium (Be)	mg/L	0.011 ^a	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	0.017	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	8.67	11.8	20.6	13.7	14.0	14.5	13.9
	Chromium (Cr)	mg/L	0.0089	0.000856	<0.00050	<0.00050	0.00059	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	<0.00010	<0.00010	0.00027	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0022	0.00221	0.00190	0.00164	0.00192	0.00184	0.00179	0.00116
	Iron (Fe)	mg/L	0.30	0.326	<0.030	<0.030	0.420	0.087	0.081	0.073	<0.030
	Lead (Pb)	mg/L	0.001	0.001	0.000056	<0.000050	0.000987	0.000116	0.000100	0.000091	<0.000050
als	Lithium (Li)	mg/L	-	-	<0.0010	<0.0010	0.0033	0.0014	0.0015	0.0016	0.0012
Met	Magnesium (Mg)	mg/L	-	-	5.62	7.23	13.1	8.42	8.78	9.19	8.91
Total Metals	Manganese (Mn)	mg/L	0.935^{β}	-	0.00104	0.000528	0.0197	0.00381	0.00352	0.00280	0.000933
1	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.073	-	0.000570	0.000435	0.00199	0.000727	0.000758	0.000710	0.000308
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	0.00060	0.00711	0.00080	0.00080	0.00085	0.00052
	Potassium (K)	mg/L	-	-	1.47	1.39	2.85	1.67	1.67	1.66	1.20
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.66	0.67	1.23	0.78	0.79	0.82	0.67
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010		<0.000010	<0.000010	<0.000010
1	Sodium (Na)	mg/L	-	-	0.470	0.897	9.30	2.34	2.47	2.48	1.85
1	Strontium (Sr)	mg/L	-	-	0.00601	0.00658	0.0202	0.0103	0.0114	0.0113	0.00886
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00111	0.000707	0.0150	0.00268	0.00280	0.00247	0.000625
	Vanadium (V)	mg/L	0.006 ^a	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	<0.0030	0.0034	<0.0030	<0.0030	<0.0030	<0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake Tributaries.

Table C.14: Water Chemistry at Lotic Camp Lake Tributary (CLT) Monitoring Stations, Mary River Project CREMP, 2020

			Water				Summ	er Sampling	Event		
	Parameters	Units	Quality Guideline	AEMP Benchmark ^b	L1-08	L1-02	L2-03	L1-09	L1-05	L0-01	K0-01
			(WQG) ^a		03-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20
	Conductivity (lab)	μS/cm	-	-	157	227	393	274	283	289	300
<u> </u>	pH (lab)	рН	6.5 - 9.0	-	8.03	8.24	8.01	8.21	8.22	8.26	8.34
Conventionals	Hardness (as CaCO ₃)	mg/L	•	-	73	108	147	121	125	138	147
enti	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	2.1	<2.0
Š	Total Dissolved Solids (TDS)	mg/L	-	-	92	109	191	125	129	141	153
ပိ	Turbidity	NTU	-	-	0.24	0.14	2.38	0.81	0.84	0.71	0.20
	Alkalinity (as CaCO ₃)	mg/L	•	-	78	110	138	120	120	125	134
S	Total Ammonia	mg/L	-	0.855	<0.010	<0.010	0.024	<0.010	<0.010	<0.010	<0.010
Nutrients and Organics	Nitrate	mg/L	3	3	0.127	0.021	1.52	0.277	0.306	0.256	0.047
rgs	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	0.0099	<0.0050	<0.0050	<0.0050	<0.0050
D D	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	0.32	0.18	<0.15	<0.15	<0.15
ar	Dissolved Organic Carbon	mg/L	-	-	2.64	3.37	6.01	5.27	4.35	4.67	3.88
ents	Total Organic Carbon	mg/L	-	-	3.60	4.10	7.48	5.01	5.83	5.69	4.36
utri	Total Phosphorus	mg/L	0.030^{α}	-	<0.0030	<0.0030	0.0093	<0.0030	0.0033	<0.0030	<0.0030
Ž	Phenols	mg/L	0.004 ^a	-	<0.0010	0.0015	0.0012	<0.0010	<0.0010	<0.0010	<0.0010
S	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	2.02	3.99	27.7	10.4	11.2	12.1	9.11
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	5.00	5.34	16.4	7.51	7.87	8.54	14.9
	Aluminum (Al)	mg/L	0.100	0.179	0.0122	0.0051	0.0495	0.0151	0.0164	0.0147	0.0094
	Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	0.00015	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.0105	0.0138	0.0151	0.0141	0.0144	0.0156	0.0155
	Beryllium (Be)	mg/L	0.011 ^α	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	0.025	0.012	0.012	0.011	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	14.7	20.9	29.4	24.6	24.8	26.5	27.6
	Chromium (Cr)	mg/L	0.0089	0.000856	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	0.00019	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0022	0.00226	0.00217	0.00134	0.00190	0.00194	0.00199	0.00159
	Iron (Fe)	mg/L	0.30	0.326	<0.030	<0.030	0.423	0.135	0.134	0.100	<0.030
	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	0.000092	<0.000050	<0.000050		<0.000050
<u> </u>	Lithium (Li)	mg/L	-	_	<0.0010	0.0015	0.0042	0.0025	0.0026	0.0027	0.0021
eta	Magnesium (Mg)	mg/L	_	_	9.05	13.4	19.1	15.2	15.3	16.5	16.6
<u>≅</u>	Manganese (Mn)	mg/L	0.935^{β}	_	0.000710	0.000556	0.0323	0.00933	0.00890	0.00715	0.00230
Total Metals	Mercury (Hg)	mg/L	0.000026	_							<0.0000050
	Molybdenum (Mo)	mg/L	0.073	_	0.00143	0.000882	0.00361	0.00138	0.00137	0.00122	0.000594
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	0.00064	0.00139	0.00092	0.00107	0.00125	0.00074
	Potassium (K)	mg/L	-	-	2.38	2.22	4.05	2.67	2.56	2.69	2.10
	Selenium (Se)	mg/L	0.001	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	_	0.84	0.99	0.94	1.08	1.11	1.18	0.86
1	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.00010	<0.000010		<0.000010		<0.00010
	Sodium (Na)	mg/L	-	-	0.779	2.27	16.0	5.85	5.70	5.92	5.68
	Strontium (Sr)	mg/L	_	_	0.0111	0.0126	0.0311	0.0221	0.0233	0.0239	0.0195
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	_	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	_	0.00559	0.00348	0.0247	0.00786	0.00751	0.00672	0.00326
	Vanadium (V)	mg/L	0.013 0.006 ^α	0.006	<0.00339	<0.0010	<0.0010	<0.00780	<0.00731	<0.0012	<0.00320
	Zinc (Zn)	mg/L	0.000	0.030	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ZIIIO (ZII)	mg/L	0.030	0.030	~0.0030	~0.0030	~0.0030	~U.UU3U	~0.0030	~0.0030	~0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake Tributaries.

Table C.14: Water Chemistry at Lotic Camp Lake Tributary (CLT) Monitoring Stations, Mary River Project CREMP, 2020

			Water				Fall	Sampling E	vent		
	Parameters	Units	Quality Guideline	AEMP Benchmark ^b	LI-08	L1-02	L2-03	L1-09	L0-05	L0-01	K0-01
			(WQG) ^a		28-Aug-20	30-Aug-20	29-Aug-20	30-Aug-20	30-Aug-20	29-Aug-20	29-Aug-20
	Conductivity (lab)	μS/cm	-	-	190	242	449	288	298	315	345
<u>s</u>	pH (lab)	рН	6.5 - 9.0	-	8.08	8.20	8.11	8.17	8.18	8.33	8.43
one	Hardness (as CaCO ₃)	mg/L	-	-	100	125	191	145	149	153	167
Conventionals	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
N C	Total Dissolved Solids (TDS)	mg/L	-	-	97	<10	236	85	81	163	192
ပ	Turbidity	NTU	•	-	0.24	0.12	2.62	1.40	0.63	0.62	0.23
	Alkalinity (as CaCO ₃)	mg/L	•	-	88	113	156	134	135	130	136
ý	Total Ammonia	mg/L	•	0.855	0.022	<0.010	0.036	0.015	0.014	<0.010	<0.010
Nutrients and Organics	Nitrate	mg/L	3	3	0.101	0.049	1.71	0.345	0.383	0.322	0.148
rga	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	0.0124	<0.0050	<0.0050	<0.0050	<0.0050
D D	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	0.54	0.16	0.21	0.16	<0.15
s an	Dissolved Organic Carbon	mg/L	-	-	2.49	2.52	8.00	3.54	3.54	4.28	3.08
ents	Total Organic Carbon	mg/L	-	-	2.70	3.02	6.86	3.94	4.07	4.22	3.50
utri	Total Phosphorus	mg/L	0.030^{α}	-	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Ž	Phenols	mg/L	0.004 ^a	-	<0.0010	<0.0010	0.0018	0.0017	0.0010	0.0012	0.0017
S	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	3.01	6.05	34.4	14.1	14.7	15.2	13.6
₹	Sulphate (SO ₄)	mg/L	218 ^β	218	6.38	8.11	19.6	10.7	10.8	11.9	26.2
	Aluminum (Al)	mg/L	0.100	0.179	0.0104	0.0055	0.0979	0.0092	0.0117	0.0162	0.0089
	Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	0.00014	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.0122	0.0151	0.0180	0.0160	0.0162	0.0164	0.0184
	Beryllium (Be)	mg/L	0.011 ^α	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	0.023	0.012	0.012	0.012	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00008	<0.000010	<0.000010			<0.000010		
	Calcium (Ca)	mg/L	-	-	19.3	24.3	35.7	28.0	27.7	28.6	31.8
	Chromium (Cr)	mg/L	0.0089	0.000856	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	0.00024	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0022	0.00216	0.00216	0.00159	0.00199	0.00200	0.00189	0.00152
	Iron (Fe)	mg/L	0.30	0.326	<0.030	<0.030	0.522	0.111	0.104	0.084	<0.030
	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	0.000222	<0.000050	<0.000050	<0.000050	<0.000050
<u> </u>	Lithium (Li)	mg/L	-	-	<0.0010	0.0015	0.0042	0.0024	0.0025	0.0028	0.0019
eta	Magnesium (Mg)	mg/L	_	_	12.1	15.7	24.2	18.0	18.2	18.4	20.3
Total Metals	Manganese (Mn)	mg/L	0.935^{β}	-	0.000673	0.000554	0.0382	0.00920	0.00774	0.00603	0.000767
Tota	Mercury (Hg)	mg/L	0.000026	_			<0.000050				
	Molybdenum (Mo)	mg/L	0.073	_	0.00152	0.00102	0.00385	0.00154	0.00149	0.00141	0.000734
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	0.00063	0.00165	0.00089	0.00106	0.00106	0.00065
	Potassium (K)	mg/L	-	-	2.60	2.52	4.40	2.81	2.79	2.79	2.45
	Selenium (Se)	mg/L	0.001	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	_	0.93	0.98	1.08	1.05	1.11	1.16	0.72
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-		0.885	2.80	19.0	6.93	6.98	7.09	7.36
	Strontium (Sr)	mg/L			0.0147	0.0146	0.0385	0.93	0.98	0.0271	0.0221
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00147	<0.00010	<0.00010	<0.00010	<0.0010	<0.0011	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L			<0.010	<0.010	<0.010	<0.00010	<0.00010	<0.00010	<0.00010
	Uranium (TI)		0.015	_	0.00972	0.00589	0.0332	0.0110	0.0103	0.00935	0.00460
	` ,	mg/L	0.015 0.006 ^α	0.006	<0.00972	<0.00589	<0.0010	<0.0010	<0.00103		<0.00460
	Vanadium (V)	mg/L	0.006	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
<u> </u>	Zinc (Zn)	mg/L	0.030	0.030	<u>\0.0030</u>	\U.UU3U	\U.UU3U	~0.0030	~0.0030	~0.0030	<u>~0.0030</u>

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake Tributaries.

Table C.15: Magnitude of Elevation in Seasonal Average Water Chemistry (Total Metal Concentration Data Provided) Between the Camp Lake Tributaries and Average Reference Creek Stations, Mary River Project CREMP, 2020

		Sp	ring			Sun	nmer			F	all	
		CLT1		CLT2		CLT1		CLT2		CLT1		CLT2
Parameter	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01
Conductivity (lab)	2.0	4.7	2.8	2.8	1.4	2.9	2.1	2.2	1.2	2.6	1.7	2.0
Hardness (as CaCO ₃)	2.2	4.4	3.0	3.0	1.6	2.6	2.2	2.6	1.4	2.3	1.8	2.0
Total Suspended Solids (TSS)	0.7	3.1	0.7	0.6	0.7	0.7	0.8	0.7	1.0	1.0	1.0	1.0
Total Dissolved Solids (TDS)	1.0	1.9	1.3	1.4	1.2	2.3	1.6	1.8	0.5	2.4	1.1	1.9
Turbidity	0.6	8.4	1.2	0.3	0.0	0.4	0.1	0.0	0.1	1.1	0.4	0.1
Alkalinity (as CaCO ₃)	2.2	3.9	2.9	2.6	1.5	2.3	2.0	2.2	1.5	2.3	1.9	2.0
Total Ammonia	1.0	6.4	1.0	1.0	0.8	2.0	0.8	0.8	1.6	3.6	1.3	1.0
Nitrate	2.5	52	7.5	6.8	1.2	25	4.5	0.8	1.0	23	4.6	2.0
Nitrite	1.0	1.8	1.0	1.0	1.0	2.0	1.0	1.0	1.0	2.5	1.0	1.0
Total Kjeldahl Nitrogen (TKN)	2.4	49	7.1	6.4	1.0	2.1	1.1	1.0	1.0	3.6	1.2	1.0
Dissolved Organic Carbon	1.4	2.5	1.8	1.5	0.9	1.7	1.4	1.1	1.1	3.5	1.6	1.3
Total Organic Carbon	1.6	2.6	2.1	1.7	1.3	2.5	1.8	1.4	1.3	3.2	1.9	1.6
Total Phosphorus	0.8	4.4	1.8	1.7	0.5	1.4	0.5	0.5	0.8	0.8	0.8	0.8
Phenols	1.0	1.0	1.0	1.0	1.3	1.2	1.0	1.0	0.5	0.9	0.6	0.8
Bromide (Br)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Chloride (CI)	1.2	13	3.6	2.0	0.7	6.8	2.8	2.2	0.6	4.9	2.1	1.9
Sulphate (SO ₄)	2.0	6.3	2.7	9.0	0.9	3.0	1.4	2.7	0.8	2.1	1.2	2.8
Aluminum (Al)	0.2	3.5	0.7	0.3	0.0	0.2	0.0	0.0	0.1	1.7	0.2	0.2
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.0	1.8	1.0	1.0	0.8	1.2	0.8	0.8	1.0	1.4	1.0	1.0
Barium (Ba)	2.1	3.4	2.5	2.4	1.3	1.6	1.6	1.6	1.3	1.7	1.6	1.8
Beryllium (Be)	1.0	1.0	1.0	1.0	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Boron (B)	1.0	1.7	1.0	1.0	1.0	2.5	1.2	1.0	1.0	2.3	1.2	1.0
Cadmium (Cd)	1.0	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0
Calcium (Ca)	2.1	4.2	2.9	2.9	1.5	2.5	2.1	2.3	1.3	2.2	1.7	1.9
Chromium (Cr)	1.0	1.2	1.0	1.0	0.6	0.6	0.6	0.6	1.0	1.0	1.0	1.0
Cobalt (Co)	1.0	2.7	1.0	1.0	0.6	1.2	0.6	0.6	1.0	2.4	1.0	1.0
Copper (Cu)	2.9	2.3	2.6	1.6	1.9	1.2	1.7	1.4	2.1	1.6	1.9	1.5
Iron (Fe)	0.4	5.5	1.0	0.4	0.1	1.7	0.5	0.1	0.5	7.9	1.5	0.5
Lead (Pb)	0.5	9.2	1.0	0.5	0.1	0.4	0.2	0.2	0.5	2.4	0.5	0.5
Lithium (Li)	1.0	3.3	1.5	1.2	1.2	3.9	2.4	2.0	1.3	4.2	2.6	1.9
Magnesium (Mg)	2.2	4.6	3.1	3.1	1.7	2.9	2.3	2.5	1.5	2.5	1.9	2.1
Manganese (Mn)	0.6	15	2.5	0.7	0.2	11	2.8	0.8	0.6	38	7.5	0.8
Mercury (Hg)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Molybdenum (Mo)	3.4	13	4.9	2.1	2.5	7.9	2.9	1.3	2.2	6.7	2.6	1.3
Nickel (Ni)	1.1	14	1.6	1.0	0.8	2.0	1.6	1.1	1.0	2.9	1.8	1.2
Potassium (K)	3.2	6.3	3.7	2.7	2.5	4.4	2.8	2.3	2.5	4.2	2.7	2.4
Selenium (Se)	1.0	1.0	1.0	1.0	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Silicon (Si)	1.1	2.0	1.3	1.1	0.7	0.8	0.9	0.7	1.0	1.0	1.3	0.8
. ,	1.0	1.0	1.0	1.1	0.7		0.9	0.7		1.0		
Silver (Ag) Sodium (Na)	0.8	1.0	2.9	2.2		0.5			1.0 0.5	4.8	1.0	1.0
Strontium (Sr)	1.3	4.1	2.9	1.8	0.6	5.8 2.2	2.1 1.7	2.1 1.4	0.8	2.1	1.8 1.5	1.9
,					0.9							1.2
Thallium (TI)	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2	1.0	1.0	1.0	1.0
Tin (Sn)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Titanium (Ti)	0.9	0.9	0.9	0.9	0.4	0.4	0.4	0.4	1.0	1.0	1.0	1.0
Uranium (U)	2.0	34	6.0	1.4	1.1	6.1	1.8	0.8	1.1	4.5	1.4	0.6
Vanadium (V)	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0
Zinc (Zn)	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference value).

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference value).

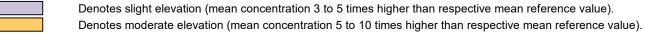

Denotes differences in method detection limit between the indicated study area and that of the reference creeks, precluding an evaluation of magnitude of elevation.

Table C.16: Dissolved Metal Concentrations at Camp Lake Tributary Water Quality Monitoring Stations, Mary River Project CREMP, 2020

					Sprin	g Sampling	Event					Summ	er Sampling	Event					Fall	l Sampling E	vent		
Para	meters	Units	L1-08	L1-02	L2-03	L1-09	L1-05	L0-01	K0-01	L1-08	L1-02	L2-03	L1-09	L1-05	L0-01	K0-01	LI-08	L1-02	L2-03	L1-09	L0-05	L0-01	K0-01
			04-Jul-20	02-Jul-20	02-Jul-20	02-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	28-Aug-20	30-Aug-20	29-Aug-20	30-Aug-20	30-Aug-20	29-Aug-20	29-Aug-20
7	Aluminum (AI)	mg/L	0.0085	0.0086	0.0228	0.0115	0.0112	0.0088	0.0088	0.0067	0.0031	0.0121	0.0046	0.0049	0.0046	0.0036	0.0062	<0.0030	0.0081	0.0033	0.0033	0.0031	0.0296
,	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
,	Arsenic (As)	mg/L	<0.00010	<0.00010	0.00011	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00013	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00013	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00668	0.00807	0.0102	0.00852	0.00846	0.00853	0.00854	0.0102	0.0133	0.0144	0.0137	0.0140	0.0159	0.0174	0.0124	0.0153	0.0171	0.0159	0.0162	0.0166	0.0187
I	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
I	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	0.016	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.023	0.011	0.012	0.012	<0.010	<0.010	<0.010	0.022	0.011	0.011	0.012	<0.010
(Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	8.61	11.9	20.0	13.8	13.8	14.1	14.0	14.7	21.6	28.0	23.8	25.2	27.0	28.8	19.6	23.5	36.7	27.7	27.7	29.9	31.9
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
(Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00016	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00019	<0.00010	<0.00010	<0.00010	<0.00010
(Copper (Cu)	mg/L	0.00210	0.00187	0.00111	0.00176	0.00167	0.00168	0.00113	0.00217	0.00207	0.00117	0.00186	0.00186	0.00199	0.00166	0.00212	0.00213	0.00147	0.00194	0.00197	0.00186	0.00157
	ron (Fe)	mg/L	<0.030	<0.030	0.059	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.229	0.084	0.086	0.064	<0.030	<0.030	<0.030	0.221	0.067	0.062	0.039	<0.030
<u></u>	₋ead (Pb)	mg/L	<0.000050	<0.000050	0.000109	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
eta	_ithium (Li)	mg/L	<0.0010	<0.0010	0.0028	0.0013	0.0014	0.0013	0.0011	<0.0010	0.0015	0.0039	0.0023	0.0024	0.0030	0.0024	0.0010	0.0012	0.0043	0.0023	0.0022	0.0028	0.0022
β	Magnesium (Mg)	mg/L	5.59	7.31	12.8	8.33	8.45	8.77	8.63	8.83	13.1	18.8	14.9	15.1	17.1	18.3	12.5	16.0	24.2	18.4	19.5	19.0	21.3
l ve	Manganese (Mn)	mg/L	0.000513	0.000350	0.0130	0.00251	0.00217	0.00194	0.000488	0.000457	0.000467	0.0303	0.00852	0.00704	0.00597	0.00212	0.000438	0.000465	0.0329	0.00854	0.00704	0.00422	0.000630
issc	Mercury (Hg)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050
١	Molybdenum (Mo)	mg/L	0.000592	0.000458	0.00252	0.000753	0.000786	0.000759	0.000307	0.00139	0.000911	0.00338	0.00139	0.00137	0.00141	0.000686	0.00154	0.00107	0.00386	0.00151	0.00147	0.00141	0.000734
	Nickel (Ni)	mg/L	<0.00050	0.00057	0.00106	0.00069	0.00069	0.00076	<0.00050	<0.00050	0.00064	0.00123	0.00091	0.00108	0.00127	0.00082	<0.00050	0.00061	0.00143	0.00086	0.00101	0.00104	0.00069
	Potassium (K)	mg/L	1.44	1.38	2.72	1.65	1.60	1.59	1.20	2.54	2.17	4.00	2.54	2.56	2.60	2.24	2.66	2.52	4.44	2.88	2.86	2.81	2.53
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
,	Silicon (Si)	mg/L	0.65	0.64	0.81	0.71	0.68	0.71	0.63	0.81	0.98	0.89	1.05	1.08	1.15	0.86	0.94	0.98	0.96	1.05	1.11	1.16	0.75
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	0.467	0.918	9.07	2.39	2.36	2.43	1.83	0.751	2.24	15.7	5.75	5.70	5.90	6.16	0.952	2.90	19.7	7.31	7.25	7.38	8.00
	Strontium (Sr)	mg/L	0.00589	0.00660	0.0196	0.0103	0.0111	0.0113	0.00878	0.0111	0.0128	0.0290	0.0220	0.0235	0.0246	0.0201	0.0154	0.0146	0.0371	0.0262	0.0272	0.0273	0.0226
	Γhallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Γin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Γitanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
ا	Jranium (U)	mg/L	0.00116	0.000751	0.0147	0.00284	0.00286	0.00253	0.000653	0.00556	0.00364	0.0229	0.00757	0.00754	0.00675	0.00336	0.0101	0.00579	0.0340	0.0108	0.0104	0.00972	0.00464
,	/anadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.17: Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations Between the Camp Lake Tributaries and Average Reference Creek Stations, Mary River Project CREMP, 2020

		Spi	ring			Sun	nmer			F	all	
Parameter		CLT1		CLT2		CLT1		CLT2		CLT1		CLT2
i didiliotoi	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01
Aluminum (Al)	0.5	0.6	0.5	0.5	0.1	0.3	0.1	0.1	0.2	0.4	0.2	1.6
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.0	1.1	1.0	1.0	1.0	1.3	1.0	1.0	1.0	1.3	1.0	1.0
Barium (Ba)	2.3	1.3	2.7	2.7	1.5	1.9	2.0	2.2	1.4	1.7	1.6	1.9
Beryllium (Be)	1.0	1.3	1.0	1.0	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Bismuth (Bi)	1.0	1.3	1.0	1.0	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Boron (B)	1.0	1.6	1.0	1.0	1.0	2.3	1.2	1.0	1.0	2.2	1.2	1.0
Cadmium (Cd)	1.0	1.1	1.0	1.0	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0
Calcium (Ca)	2.1	1.7	2.9	2.9	1.5	2.4	2.2	2.4	1.3	2.2	1.7	1.9
Chromium (Cr)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cobalt (Co)	1.0	1.0	1.0	1.0	1.0	1.6	1.0	1.0	1.0	1.9	1.0	1.0
Copper (Cu)	3.3	1.3	2.8	1.9	2.4	1.3	2.2	1.9	2.3	1.6	2.0	1.7
Iron (Fe)	1.0	1.6	1.0	1.0	0.8	6.4	2.0	0.8	1.0	7.4	1.6	1.0
Lead (Pb)	1.0	1.9	1.0	1.0	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0
Lithium (Li)	1.0	2.6	1.3	1.1	1.2	3.6	2.6	2.2	1.1	4.3	2.6	2.2
Magnesium (Mg)	2.3	1.9	3.1	3.1	1.7	2.8	2.5	2.8	1.4	2.4	1.9	2.1
Manganese (Mn)	1.1	25	5.4	1.3	0.9	59	13	4.1	0.9	66	11	1.3
Mercury (Hg)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Molybdenum (Mo)	3.4	5.1	4.9	2.0	2.3	6.8	2.8	1.4	2.2	6.4	2.4	1.2
Nickel (Ni)	1.1	2.0	1.5	1.0	1.1	2.3	2.2	1.5	1.0	2.5	1.8	1.2
Potassium (K)	3.4	3.2	3.8	2.9	2.8	4.7	3.0	2.6	2.5	4.3	2.7	2.4
Selenium (Se)	1.0	1.3	1.0	1.0	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Silicon (Si)	1.3	1.0	1.4	1.3	1.1	1.1	1.3	1.0	1.1	1.1	1.3	0.9
Silver (Ag)	1.0	0.5	1.0	1.0	0.5	0.5	0.5	0.5	1.0	1.0	1.0	1.0
Sodium (Na)	0.9	3.2	3.0	2.2	0.5	5.6	2.1	2.2	0.5	4.8	1.8	1.9
Strontium (Sr)	1.3	1.4	2.3	1.8	0.9	2.1	1.7	1.4	0.8	2.0	1.4	1.2
Thallium (TI)	1.0	1.3	1.0	1.0	1.3	1.3	1.3	1.3	1.0	1.0	1.0	1.0
Tin (Sn)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Titanium (Ti)	1.0	1.2	1.0	1.0	1.2	1.2	1.2	1.2	1.0	1.0	1.0	1.0
Uranium (U)	2.5	3.6	6.8	1.7	1.1	5.7	1.7	0.8	1.1	4.7	1.4	0.6
Vanadium (V)	1.0	1.1	1.0	1.0	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0
Zinc (Zn)	1.0	1.2	1.0	1.0	1.2	1.2	1.2	1.2	1.0	1.0	1.0	1.0

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference value).

Denotes differences in method detection limit between the indicated study area and that of the reference creeks, precluding an evaluation of magnitude of elevation.

Table C.18: Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations at the Camp Lake Tributaries between 2020 and Mine Baseline (2005 to 2013) Periods

		Sp	ring			Sun	nmer			F	all	
Variable		CLT1		CLT2		CLT1		CLT2		CLT1		CLT2
	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01	North Branch	Upper Main Stem L2-03	Lower Main Stem	Station KO-01
Aluminum (Al)	1.2	7.2	1.4	1.6	1.0	1.7	1.1	0.7	1.2	3.0	1.2	8.4
Antimony (Sb)	0.5	1.0	1.0	0.6	0.7	1.0	1.0	0.6	0.7	1.0	1.0	0.6
Arsenic (As)	1.0	1.1	1.0	1.0	1.0	1.3	1.0	1.0	1.0	1.3	1.0	1.0
Barium (Ba)	2.4	2.3	2.2	1.6	1.7	1.6	1.7	2.1	1.4	1.0	1.1	1.8
Beryllium (Be)	0.3	5.0	5.0	0.4	0.5	2.1	2.1	0.4	0.5	2.1	2.1	0.4
Bismuth (Bi)	1.1	1.0	1.0	1.1	1.1	1.0	1.0	1.1	1.1	1.0	1.0	1.1
Boron (B)	0.5	1.6	1.0	0.6	0.6	2.3	1.2	1.0	1.0	2.2	1.1	1.0
Cadmium (Cd)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9
Calcium (Ca)	2.4	1.7	2.0	1.9	1.8	1.3	1.8	2.1	1.3	0.8	1.0	1.5
Chromium (Cr)	-	-	-	-	-	-	-	0.5	-	-	-	-
Cobalt (Co)	0.6	1.0	1.0	0.6	0.8	1.5	1.0	0.6	0.8	1.8	1.0	0.6
Copper (Cu)	2.1	1.8	1.8	1.5	1.3	1.4	1.2	1.7	1.3	2.1	1.1	0.7
Iron (Fe)	1.2	1.7	1.2	1.1	1.6	1.2	2.6	1.4	1.8	2.1	1.3	1.4
Lead (Pb)	0.5	2.2	1.0	0.6	0.7	1.0	1.0	0.6	0.7	1.0	1.0	0.6
Lithium (Li)	0.7	2.8	2.5	0.5	0.5	1.2	1.1	1.0	0.5	0.7	0.7	0.7
Magnesium (Mg)	2.4	1.9	2.1	1.9	1.8	1.6	1.9	2.3	1.4	1.2	1.3	1.6
Manganese (Mn)	0.4	4.6	0.8	0.1	1.5	2.4	3.4	3.1	1.1	2.3	1.5	0.5
Mercury (Hg)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0
Molybdenum (Mo)	2.9	17	5.2	2.1	2.9	16	3.2	2.4	1.9	15	2.4	1.7
Nickel (Ni)	0.8	1.4	1.0	0.2	1.0	1.2	1.9	0.4	0.9	1.1	1.1	0.4
Potassium (K)	2.3	3.4	2.3	2.0	1.9	4.1	2.0	2.3	1.5	3.0	1.6	1.9
Selenium (Se)	-	-	-	-	-	-	-	-	-	-	-	0.0
Silicon (Si)	1.7	1.4	1.7	1.4	1.6	1.0	1.7	1.4	1.3	0.7	1.1	1.2
Silver (Ag)	0.3	-	-	0.2	0.5	-	_	0.2	0.6	-	-	0.2
Sodium (Na)	2.0	8.9	4.0	4.8	2.4	8.8	5.2	5.6	1.9	5.9	3.2	4.4
Strontium (Sr)	2.8	1.5	1.9	2.5	2.3	0.9	1.8	2.6	1.8	0.3	0.5	1.9
Thallium (TI)	1.3	-	-	1.3	1.4	2.5	2.4	1.2	1.6	2.5	2.5	0.2
Tin (Sn)	0.3	1.0	1.0	0.0	0.4	1.0	1.0	0.0	0.4	1.0	1.0	0.0
Titanium (Ti)	1.3	1.0	1.0	1.2	1.1	1.0	1.0	1.2	1.1	1.0	1.0	1.5
Uranium (U)	5.9	66	15	4.4	7.7	40	9.7	4.8	3.1	21	3.9	2.6
Vanadium (V)	1.0	1.0	1.0	1.0	0.8	1.0	1.0	0.9	0.9	1.0	1.0	0.6
Zinc (Zn)	2.1	2.1	1.5	1.9	2.2	1.7	1.2	1.2	2.2	1.6	2.1	2.4

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference value).

Table C.19: In Situ Water Quality Statistical Comparisons among Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

	O	verall 3-group	Comparison		Pair-wise, po	ost hoc comparisons ^a		
Metric	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	(I) Area	(J) Area	Significant Difference Between Areas?	P-value
Water					REF-CRK Unnamed Reference Creek	CLT2 Upstream	YES	0.028
Temperature	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT2 Downstream	NO	0.163
(°C)					CLT2 Upstream	CLT2 Downstream	YES	<0.001
Dissolved					REF-CRK Unnamed Reference Creek	CLT2 Upstream	NO	0.119
Oxygen	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT2 Downstream	YES	<0.001
(mg/L)					CLT2 Upstream	CLT2 Downstream	YES	<0.001
Dissolved					REF-CRK Unnamed Reference Creek	CLT2 Upstream	YES	<0.001
Oxygen	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT2 Downstream	YES	<0.001
(% saturation)					CLT2 Upstream	CLT2 Downstream	YES	<0.001
					REF-CRK Unnamed Reference Creek	CLT2 Upstream	YES	<0.001
pH (units)	ANOVA	none	YES	< 0.001	REF-CRK Unnamed Reference Creek	CLT2 Downstream	YES	<0.001
, ,					CLT2 Upstream	CLT2 Downstream	NO	0.578
Specific					REF-CRK Unnamed Reference Creek	CLT2 Upstream	YES	0.077
Conductance	K-W	rank	YES	0.0020	REF-CRK Unnamed Reference Creek	CLT2 Downstream	YES	<0.001
(µS/cm)					CLT2 Upstream	CLT2 Downstream	YES	0.077

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Signficant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table C.20: In Situ Water Quality Profile Data Collected at Camp Lake Water Quality Monitoring Stations in Winter, Mary River Project CREMP, April 2020

Depth		Tem	perature (°C)			Dissolv	ed Oxygen	(mg/L)		ı	Dissolved (Oxygen (%	Saturation)		p	H (pH unit	s)			Specific C	Conductan	ce (µS/cm)	
(m)	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09
Date Collected	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20
1.0	0.0	1.1	0.4	0.0	0.3	15.30	14.77	14.66	14.51	14.51	104.6	104.6	101.7	99.4	102.6	7.85	7.82	8.02	7.97	7.96	192.1	186.1	187.3	171.6	188.4
2.0	0.0	0.2	0.1	0.1	0.1	14.92	15.03	14.77	14.46	14.75	102.4	103.5	101.5	99.5	101.5	7.70	7.81	7.97	7.93	7.88	184.8	185.1	182.2	176.7	183.2
3.0	0.2	0.3	0.3	0.3	0.2	14.78	14.86	14.56	14.27	14.60	101.8	102.5	100.5	98.6	100.8	7.76	7.80	7.93	7.92	7.86	183.0	181.9	179.2	174.5	179.8
4.0	0.3	0.3	0.3	0.4	0.3	14.68	14.71	14.45	14.16	14.46	101.3	101.6	99.9	98.0	100.0	7.74	7.79	7.91	7.91	7.86	182.2	180.6	178.1	173.6	178.6
5.0	0.4	0.4	0.4	0.4	0.4	14.52	14.62	14.38	14.06	14.33	100.4	101.0	99.4	97.5	99.2	7.73	7.77	7.90	7.92	7.84	180.9	179.7	177.4	172.7	177.2
6.0	0.4	0.4	0.4	0.5	0.4	14.42	14.56	14.28	13.92	14.17	99.8	100.8	98.9	96.6	98.2	7.72	7.76	7.89	7.90	7.83	180.0	179.1	176.7	171.5	175.9
7.0	0.4	0.4	0.5	0.6	0.5	14.34	14.49	14.13	13.83	14.05	99.3	100.4	98.1	96.2	97.6	7.71	7.75	7.89	7.91	7.83	179.1	178.4	175.6	170.7	175.2
8.0	0.5	0.5	0.5	0.6	0.5	14.20	14.40	14.00	13.68	13.90	98.5	99.9	97.2	95.3	96.7	7.70	7.74	7.88	7.90	7.83	178.2	177.8	174.9	169.7	173.9
9.0	0.5	0.5	0.6	0.7	0.6	14.12	14.21	13.83	13.52	13.80	98.1	98.8	96.3	95.1	96.1	7.70	7.71	7.88	7.90	7.82	177.5	177.7	173.8	169.0	173.3
10.0	0.6	0.6	0.7	0.7	0.7	14.04	13.95	13.63	13.51	13.65	97.8	97.2	95.1	94.4	95.2	7.70	7.68	7.87	7.89	7.82	177.0	177.6	172.6	168.2	172.3
11.0	0.7	-	8.0	0.8	0.8	13.45	1	13.45	13.38	13.52	94.0	-	94.1	93.6	94.5	7.65	1	7.86	7.89	7.82	179.0	-	171.8	167.6	171.7
12.0	0.7	-	8.0	0.9	0.8	12.68	-	13.33	13.25	13.40	88.6	-	93.4	92.2	93.9	7.54	-	7.85	7.88	7.81	180.2	-	171.1	166.9	171.0
13.0	-	-	0.9	0.9	0.9	-	-	13.15	13.09	13.28	-	-	92.3	92.2	93.2	-	-	7.84	7.85	7.81	-	-	179.4	166.3	170.5
14.0	-	-	1.0	1.0	0.9	-	-	12.97	12.97	13.09	-	-	91.2	91.3	92.1	-	-	7.83	7.85	7.80	-	-	169.9	165.7	169.6
15.0	-	-	1.0	1.0	1.0	-	-	12.73	12.91	12.84	-	-	89.7	91.1	90.5	-	-	7.81	7.84	7.78	-	-	169.2	165.1	168.6
16.0	-	-	1.1	1.1	1.1	•	1	12.25	12.51	12.6	ı	-	86.5	88.4	81.0	-	1	7.79	7.84	7.74	-	-	169.0	164.8	168
17.0	-	-	-	1.2	-	•	1	-	11.70	-	ı	-	-	82.9	ı	-	1	-	7.79	-	-	-	-	164.5	-
18.0	-	-	-	1.2	-	-	-	-	11.43	-	-	-	-	81.0	-	-	•	-	7.77	-	-	-	-	165.0	-
19.0	-	-	-	1.2	-	-	-	-	11.25	-	-	-	-	79.7	-	-	•	-	7.74	-	-	-	-	165.7	-
20.0	-	-	-	1.3	-	-	-	-	11.11	-	-	-	-	78.8	-	-	•	-	7.71	-	-	-	-	166.6	-
21.0	-	-	-	1.3	-	-	-	-	10.99	-	-	-	-	78.0	-	-	•	-	7.69	-	-	-	-	167.1	-
22.0	-	-	-	1.3	-	-	-	-	11.11	-	-	-	-	78.8	-	-	•	-	7.66	-	-	-	-	168.7	-
23.0	-	-	-	1.3	-	-	-	-	10.96	-	-	-	-	77.9	-	-	•	-	7.64	-	-	-	-	169.2	-
24.0	-	-	-	1.4	-	-	-	-	10.14	-	-	-	-	72.0	-	-	•	-	7.62	-	-	-	-	169.0	-
25.0	-	-	-	1.5	-	-	-	-	9.91	-	-	-	-	70.9	-	-	•	-	7.57	-	-	-	-	168.9	-
26.0	-	-	-	1.6	-	-	-	-	9.40	-	-	-	-	68.3	-	-	-	-	7.54	-	-	-	-	168.5	-
27.0	-	-	-	1.7	-	-	-	-	8.50	-	-	-	-	62.4	-	-	-	-	7.51	-	-	-	-	169.0	-
28.0	-	-	-	1.8	-	-	-		7.82	-	-	-		56.5	-	-	1	-	7.47	-	-	-	-	171.4	-
29.0	-	-	-	2.0	-	-	-	-	6.90	-	-	-	-	50.2	-	-	-	-	7.43	-	-	-	-	172.8	-
30.0	-	-	-	2.0	-	-	-	-	6.14	-	-	-		44.6	-	-	1	-	7.39	-	-	-	-	174.2	-
31.0	-	-	-	2.1	-	-	-	-	5.19	-	-	-	-	37.9	-	-	-	-	7.34	-	-	-	-	177.7	-
32.0		-	-	2.3				-	3.22		-			23.7	-		-	-	7.27	-			-	185.6	-

Notes: "-" = data not available / data not applicable. Total depth at stations JLO-02, JLO-10, JLO-01, JLO-07, and JLO-09 was 1.69, 1.25, 1.72, 1.63, and 1.53 m, respectively, at the time of winter sampling. Ice thickness at stations JLO-02, JLO-10, JLO-01, JLO-07, and JLO-09 was 1.69, 1.25, 1.72, 1.63, and 1.53 m, respectively, at the time of winter sampling.

Table C.21: In Situ Water Quality Profile Data Collected at Camp Lake Water Quality Monitoring Stations in Summer, Mary River Project CREMP, July 2020

Depth		Ten	perature ((°C)			Dissolv	ed Oxyger	(mg/L)			Dissolved (Oxygen (%	Saturation)		p	H (pH units	s)			Specific C	onductanc	e (µS/cm)	
(m)	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-09
Date Collected	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20
1.0	13.9	13.7	13.4	13.6	13.3	11.00	11.05	11.14	15.16	11.15	106.5	106.5	106.8	107.2	106.6	8.19	8.13	8.13	8.12	8.05	154.6	153.8	152.8	151.7	156.2
2.0	13.9	13.4	13.3	13.2	12.7	11.01	11.14	11.19	11.27	11.43	106.5	106.7	106.9	107.4	107.7	8.18	8.10	8.12	8.10	8.10	154.7	152.9	152.4	151.8	151.0
3.0	10.9	11.0	12.0	10.4	11.5	12.20	11.99	11.53	12.17	11.90	110.3	108.6	106.9	109.2	109.1	8.09	8.06	8.11	8.05	8.07	151.6	151.1	152.7	150.3	150.5
4.0	7.5	8.2	8.6	8.9	10.3	13.01	12.85	12.72	12.62	12.20	108.3	109.0	109.0	108.9	108.8	8.01	8.00	8.05	8.01	8.06	148.3	148.5	148.8	149.0	149.4
5.0	7.0	7.2	7.1	7.8	8.9	12.93	12.88	12.92	12.90	12.74	106.6	106.7	106.8	108.5	110.0	7.95	7.93	7.93	7.99	8.02	148.1	148.2	148.3	148.2	148.4
6.0	6.6	6.8	6.7	7.3	7.6	12.85	12.84	12.93	12.96	12.86	104.8	105.2	105.7	107.5	107.7	7.89	7.88	7.90	7.96	7.93	148.0	148.2	148.0	148.1	148.4
7.0	6.4	6.7	6.6	6.9	6.7	12.83	12.79	12.87	13.01	12.87	104.2	104.7	105.0	106.9	105.2	7.88	7.88	7.90	7.94	7.92	148.1	148.0	148.0	147.9	147.9
8.0	6.3	6.6	6.4	6.3	6.4	12.78	12.80	12.86	12.91	12.88	103.6	104.2	104.4	104.7	104.5	7.87	7.87	7.88	7.91	7.89	148.0	148.2	147.8	147.8	147.9
9.0	6.3	-	6.3	6.3	6.3	12.76	-	12.81	12.85	12.80	103.4	-	103.7	104.0	103.4	7.85	-	7.86	7.88	7.88	148.1	-	147.9	147.9	147.9
10.0	6.3	-	6.1	6.0	6.1	12.75	-	12.72	12.72	12.73	103.3	-	102.6	102.4	102.6	7.85	-	7.85	7.85	7.85	148.0	-	147.9	147.8	147.9
11.0	6.2	-	6.1	6.0	6.0	12.70	-	12.68	12.65	12.66	102.7	-	102.2	101.5	101.6	7.83	-	7.84	7.83	7.82	148.1	-	147.9	147.9	147.9
12.0	-	-	6.0	5.9	5.9	-	-	12.64	12.59	12.60	-	-	101.6	100.9	101.0	-	-	7.82	7.82	7.82	-	-	147.8	147.8	147.8
13.0	-	-	6.0	5.8	5.8	-	-	12.63	12.57	12.55	-	-	101.5	100.5	100.3	-	-	7.82	7.80	7.80	-	-	147.8	147.8	147.9
14.0	-	-	5.8	5.7	5.7	-	-	12.55	12.53	12.52	-	-	100.5	100.0	100.0	-	-	7.81	7.79	7.79	-	-	147.9	147.8	147.8
15.0	-	-	5.7	5.7	5.7	-	-	12.51	12.50	12.50	-	-	99.8	99.7	99.6	-	-	7.79	7.78	7.78	-	-	147.9	147.9	147.8
16.0	-	-	-	5.6	5.6	-	-	-	12.46	12.48	-	-	-	99.1	99.3	-	-	-	7.78	7.78	-	-	-	147.9	147.8
17.0	-	-	-	5.5	5.5	-	-	-	12.42	12.46	-	-	-	98.6	98.9	-	-	-	7.77	7.77	-	-	-	147.9	147.8
18.0	-	-	-	5.5	-	-	-	-	12.40	-	-	-	-	98.5	-	-	-	-	7.76	-	-	-	-	147.9	-
19.0	-	-	-	5.5	-	-	-	-	12.39	-	-	-	-	98.3	-	-	-	-	7.75	-	-	-	-	147.9	-
20.0	-	-	-	5.5	-	-	-	-	12.37	-	-	-	-	98.1	-	-	-	-	7.75	-	-	-	-	147.9	-
21.0	-	-	-	5.4	-	-	-	-	12.35	-	-	-	-	97.9	-	-	-	-	7.74	-	-	-	-	147.9	-
22.0	-	-	-	5.4	-	-	-	-	12.34	-	-	-	-	97.8	-	-	-	-	7.74	-	-	-	-	147.9	-
23.0	-	-	-	5.4	-	-	-	-	12.33	-	-	-	-	97.7	-	-	-	-	7.74	-	-	-	-	147.9	-
24.0	-	-	-	5.4	-	-	-	-	12.31	-	-	-	-	97.4	-	-	-	-	7.73	-	-	-	-	147.9	-
25.0	-	-	-	5.4	-	-	-	-	12.29	-	-	-	-	97.3	-	-	-	-	7.73	-	-	-	-	148.0	-
26.0	-	-	-	5.4	-	-	-	-	12.28	-	-	-	-	97.1	-	-	-	-	7.73	-	-	-	-	147.9	-
27.0	-	-	-	5.4	-	-	-	-	12.26	-	-	-	-	97.0	-	-	-	-	7.73	-	-	-	-	148.0	-
28.0	-	-	-	5.4	-	-	-	-	12.25	-	-	-	-	96.9	-	-	-	-	7.72	-	-	-	-	148.0	-
29.0	-	-	-	5.4	-	-	-	-	12.24	-	-	-	-	96.8	-	-	-	-	7.72	-	-	-	-	148.0	-
30.0	-	-	-	5.4	-	-	-	-	12.23	-	-	-	-	96.8	-	-	-	-	7.72	-	-	-	-	148.0	-
31.0	-	-	-	5.4	-	-	-	-	12.23	-	-	-	-	96.7	-	-	-	-	7.72	-	-	-	-	148.0	-
32.0	-	-		5.4	-	-	-	-	12.22	-	-	-	-	96.7	-		-	-	7.72	-	-	-	-	148.0	-

Notes: "-" = no data / not applicable. Total depth at stations JLO-02, JLO-10, JLO-01, JLO-07, and JLO-09 was 11.4, 8.8, 15.5, 34.1, and 18.9 m, respectively, at the time of summer sampling.

Table C.22: In Situ Water Quality Profile Data Collected at Camp Lake Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth			Tempera	ture (°C)					Dissolved O	xygen (mg/L)			Diss	olved Oxyge	en (% Satura	tion)	
(m)	JLO-02	JLO-10	JLO-01	JLO-07	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-07	JLO-09
Date Collected	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	18-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	18-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	18-Aug-20	30-Aug-20
0.5	-	-	ı	-	8.4	-	-	-	-	-	10.46	-	-	-	-	-	91.2	-
1.0	9.2	9.0	8.8	8.4	8.4	8.4	11.50	11.50	11.59	11.59	10.48	11.5	100.5	99.8	99.7	98.9	91.7	98.1
2.0	9.2	8.9	8.7	8.4	8.4	8.2	11.56	11.59	11.59	11.62	10.48	11.6	100.6	99.7	99.7	99.0	91.2	98.5
3.0	9.2	8.7	8.5	8.4	8.4	8.2	11.56	11.59	11.62	11.61	10.46	11.6	100.5	99.4	99.2	99.0	91.3	98.4
4.0	8.7	8.5	8.4	8.3	8.4	8.2	11.61	11.62	11.60	11.61	10.44	11.6	99.4	99.1	99.0	98.9	91.3	98.5
5.0	8.3	8.3	8.3	8.2	8.4	8.2	11.63	11.61	11.62	11.60	10.43	11.6	99.1	98.7	98.8	98.5	91.1	98.4
6.0	8.3	8.1	8.2	8.2	8.4	8.2	11.63	11.60	11.62	11.58	10.43	11.6	98.7	98.3	98.7	98.3	90.9	98.3
7.0	8.2	8.1	8.2	8.1	8.4	8.2	11.62	11.58	11.59	11.57	10.44	11.6	98.6	98.0	98.5	98.1	91.3	98.2
8.0	8.1	8.1	8.1	8.1	8.4	8.2	11.62	11.55	11.58	11.55	10.44	11.6	98.5	97.7	98.1	98.0	91.2	98.2
9.0	8.1	0.8	8.1	8.1	8.4	8.1	11.57	11.61	11.55	11.54	10.44	11.6	97.9	98.2	97.8	97.8	91.0	98.2
10.0	8.0		8.1	8.1	8.4	8.1	11.56	-	11.53	11.53	10.43	11.6	97.6	-	97.7	97.7	91.0	98.0
11.0	-		8.1	8.1	8.4	8.1	-	-	11.51	11.52	10.42	11.6	-	-	97.4	97.6	91.0	97.9
12.0	-		8.1	8.1	8.4	8.1	-	-	11.50	11.48	10.42	11.6	-	-	97.4	97.3	91.1	97.9
13.0	-	1	8.1	8.1	8.4	1	-	-	11.49	11.48	10.38	-	-	-	97.3	97.3	90.7	-
14.0	-	-	8.1	8.1	8.4	-	-	-	11.48	11.47	10.41	-	-	-	97.2	97.2	90.8	-
15.0	-	-	-	8.1	8.4	-	-	-	-	11.47	10.42	-	-	-	-	97.1	91.0	-
16.0	-	-	-	8.1	8.4	1	-	-	-	11.45	10.38	-	-	-	-	96.9	90.6	-
17.0	-	-	-	8.1	8.4	-	-	-	-	11.45	10.40	-	-	-	-	96.9	90.7	-
18.0	-	-	-	8.1	8.4	-	-	-	-	11.44	10.42	-	-	-	-	96.8	90.9	-
19.0	-	-	-	8.1	8.4	-	-	-	-	11.44	10.37	-	-	-	-	96.8	90.5	-
20.0	-	-	-	8.1	8.4	-	-	-	-	11.43	10.37	-	-	-	-	96.7	90.6	-
21.0	-	-	-	8.1	8.4	-	-	-	-	11.43	10.40	-	-	-	-	96.7	90.7	-
22.0	-	-	-	8.1	8.4	-	-	-	-	11.42	10.36	-	-	-	-	96.6	90.6	-
23.0	-	-	-	8.0	8.4	-	-	-	-	11.40	10.38	-	-	-	-	96.3	90.7	-
24.0	-	-	-	8.0	8.3	-	-	-	-	11.39	10.42	-	-	-	-	96.3	90.9	-
25.0	-	-	-	8.0	8.3	-	-	-	-	11.37	10.41	-	-	-	-	96.1	90.7	-
26.0	-	-	-	8.0	8.3	-	-	-	-	11.34	10.42	-	-	-	-	95.9	90.9	-
27.0	-	-	-	8.0	8.3	-	-	-	-	11.21	10.37	-	-	-	-	94.6	90.9	-
28.0	-	-	-	7.9	8.3	-	-	-	-	11.16	10.41	-	-	-	-	94.2	90.6	-
29.0	-	-	-	7.9	8.3	-	-	-	-	11.13	10.40	-	-	-	-	93.9	90.6	-
30.0					8.2						10.46						90.7	

Notes: "-" = no data / not applicable. August 18, 2020 sampling was conducted by Minnow. Camp Lake water profile sampling on all other dates was conducted by Baffinland. Total depth at Stations JLO-02, JLO-10, JLO-01, JLO-07, and JLO-09 was 11.4, 10.2, 15.8, 32.2, and 14.1 m, respectively, at the time of fall sampling.

Table C.22: In Situ Water Quality Profile Data Collected at Camp Lake Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth			рН (рН	l units)					Specific Condu	ıctance (μS/cm)		
(m)	JLO-02	JLO-10	JLO-01	JLO-07	JLO-07	JLO-09	JLO-02	JLO-10	JLO-01	JLO-07	JLO-07	JLO-09
Date Collected	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	18-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	18-Aug-20	30-Aug-20
0.5	-	-	-	-	7.79	-	-	-	-	-	154.1	-
1.0	8.11	8.11	8.11	8.08	7.80	8.00	153.8	153.2	153.2	153.0	153.9	154.6
2.0	8.11	8.12	8.11	8.08	7.81	8.04	153.8	153.6	153.2	153.1	154.2	153.3
3.0	8.12	8.11	8.11	8.08	7.82	8.04	154.4	153.5	153.7	153.2	154.0	153.2
4.0	8.13	8.12	8.11	8.08	7.82	8.05	162.7	154.0	153.2	153.2	154.2	153.3
5.0	8.13	8.11	8.11	8.08	7.83	8.05	154.5	153.9	153.2	153.1	154.3	153.1
6.0	8.12	8.11	8.11	8.08	7.84	8.05	154.1	154.2	153.2	152.9	154.1	153.1
7.0	8.11	8.10	8.11	8.08	7.84	8.06	155.7	154.6	153.2	152.9	154.3	153.1
8.0	8.12	8.09	8.10	8.07	7.85	8.06	157.3	154.9	153.2	152.8	154.1	153.1
9.0	8.11	8.09	8.09	8.07	7.85	8.06	156.8	155.1	153.2	152.8	154.1	153.2
10.0	8.10	-	8.09	8.07	7.85	8.07	156.8	-	153.0	152.8	154.0	153.2
11.0	-	1	8.08	8.07	7.86	8.07	-	-	153.1	152.8	154.0	153.2
12.0	-	-	8.08	8.07	7.86	8.07	-	-	153.1	152.8	154.1	153.3
13.0	-	-	8.08	8.07	7.86	-	-	-	153.2	152.8	154.0	-
14.0	-	-	8.08	8.07	7.86	-	-	-	153.2	152.9	154.1	-
15.0	-	-	-	8.07	7.86	-	-	-	-	153.0	154.1	-
16.0	-	-	-	8.07	7.87	-	-	-	-	153.0	154.1	-
17.0	-	-	-	8.07	7.86	-	-	-	-	153.0	154.2	-
18.0	-	-	-	8.07	7.87	-	-	-	-	153.1	154.2	-
19.0	-	-	-	8.07	7.87	-	-	-	-	153.3	154.2	-
20.0	-	-	-	8.07	7.87	-	-	-	-	153.1	154.1	-
21.0	-	-	-	8.07	7.87	-	-	-	-	153.3	154.1	-
22.0	-	-	-	8.07	7.87	-	-	-	-	153.4	154.1	-
23.0	-	-	-	8.07	7.87	-	-	-	-	153.4	154.1	-
24.0	-	-	-	8.06	7.86	-	-	-	-	153.2	154.1	-
25.0	-	-	-	8.06	7.85	-	-	-	-	153.3	154.0	-
26.0	-	-	-	8.05	7.86	-	-	-	-	153.4	154.1	-
27.0	-	-	-	8.02	7.85	-	-	-	-	153.6	154.1	-
28.0	-	-	-	8.02	7.84	-	-	-	-	153.6	154.0	-
29.0	-	-	-	8.00	7.84	-	-	-	-	153.9	154.0	-
30.0					7.81						153.8	

Notes: "-" = no data / not applicable. August 18, 2020 sampling was conducted by Minnow. Camp Lake water profile sampling on all other dates was conducted by Baffinland. Total depth at Stations JLO-02, JLO-10, JLO-01, JLO-07, and JLO-09 was 11.4, 10.2, 15.8, 32.2, and 14.1 m, respectively, at the time of fall sampling.

Table C.23: Sampling Depth, Water Clarity Measures, and Surface and Bottom *In Situ* Water Quality Measures Collected at Camp Lake Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Catego	orization &	Date	Station Depth	Secchi Depth	Colour/	Depth	Temperature	Dissolve	d Oxygen	рН	Specific Conductance
Rep	licate ID	Sampled	(m)	(m)	Clarity	sampled	(°C)	(mg/L)	(% sat.)	(units)	(μS/cm)
	JLO-02	18-Aug-20	11.0	4.29	clear. colourless	surface	8.3	10.58	92.1	7.78	154.6
	JLO-02	10-Aug-20	11.0	4.29	clear, colouriess	bottom	8.2	9.63	83.3	7.73	155.7
ions	JLO-21	18-Aug-20	10.0	4.72	clear, colourless	surface	8.3	10.71	92.9	7.60	155.6
Stat	JLO-21	16-Aug-20	10.0	4.72	clear, colouriess	bottom	8.3	9.34	81.8	7.32	154.7
low)	JLO-20	18-Aug-20	7.0	5.15	clear. colourless	surface	8.3	10.65	92.7	7.65	154.2
Littoral (Shallow) Stations	320-20	10-Aug-20	7.0	5.15	clear, colouriess	bottom	8.3	10.14	88.3	7.64	154.1
ral (JLO-19	11-Aug-20	7.5	6.23	clear. colourless	surface	10.8	10.58	98.6	8.13	148.1
Litto	320-19	TT-Aug-20	7.5	0.20	ciear, colouriess	bottom	9.8	9.12	83.8	7.23	147.3
	JLO-18	11-Aug-20	12.0	7.10	clear, colourless	surface	10.9	10.33	95.9	8.13	150.1
	020-10	11-7 tag-20	12.0	7.10	cical, colouness	bottom	7.1	8.96	75.4	7.56	158.2
	JLO-01	18-Aug-20	18.0	5.08	clear, colourless	surface	8.4	10.89	95.7	7.70	154.4
	020-01	107 tag-20	10.0	0.00	olear, colouriess	bottom	8.3	9.90	86.4	7.27	155.5
ions	JLO-07	11-Aug-20	33.0	6.40	clear, colourless	surface	10.4	10.40	95.7	8.70	147.4
Stat	020-07	11-7 tag-20	00.0	0.40	olear, colouriess	bottom	6.0	11.04	91.1	7.26	144.0
(dəə	JLO-16	11-Aug-20	16.0	6.44	clear, colourless	surface	10.3	10.42	95.8	8.05	148.2
a (D	020-10	11-7 tag-20	10.0	0.44	olear, colouriess	bottom	6.8	10.01	84.5	7.53	145.1
Profundal (Deep) Stations	JLO-11	11-Aug-20	28.5	7.50	clear, colourless	surface	10.0	10.57	96.7	7.94	147.4
Prof	020 11	. 1 7 tag 20	20.0	7.00	5.531, 65.6411655	bottom	5.8	12.22	101.9	7.45	144.4
	JLO-11	11-Aug-20	17.0	5.71	clear, colourless	surface	9.8	10.59	95.6	7.72	147.3
	0LO-12	11-Aug-20	17.0	5.71	olear, colouriess	bottom	6.2	11.11	92.5	7.27	144.8

Table C.24: Statistical Comparison of Bottom *In Situ* Water Quality Between Camp Lake Littoral and Profundal Stations, Mary River Project CREMP, August 2020

		Statistical T	est Results				Summar	y Statistics		
Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Lake Zone	Mean (n = 5)	Standard Deviation	Standard Error	Minimum	Maximum
Secchi Depth	tegual	none	NO	0.298	Littoral	5.49	1.15	0.51	4.29	7.10
(m)	tequal	none	NO	0.290	Profundal	6.22	0.91	0.41	5.08	7.50
Temperature	tomusl	2000	YES	0.005	Littoral	8.34	0.96	0.43	7.10	9.80
(°C)	tequal	none	YES	0.025	Profundal	6.62	1.01	0.45	5.80	8.30
Dissolved	tomusl	200	YES	0.017	Littoral	9.4	0.5	0.2	9.0	10.1
Oxygen (mg/L)	tequal	none	YES	0.017	Profundal	10.9	0.9	0.4	9.9	12.2
Dissolved	to much	nana	VEC	0.045	Littoral	82.5	4.7	2.1	75.4	88.3
Oxygen (% saturation)	tequal	none	YES	0.045	Profundal	91.3	6.8	3.0	84.5	101.9
рН	4		NO	0.044	Littoral	7.50	0.21	0.10	7.23	7.73
(units)	tequal	none	NO	0.241	Profundal	7.36	0.13	0.06	7.26	7.53
Specific	to much		VEC	0.005	Littoral	154.0	4.1	1.8	147.3	158.2
Conductance (µS/cm)	tequal	none	YES	0.035	Profundal	146.8	4.9	2.2	144.0	155.5

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.25: Statistical Comparison of Bottom *In Situ* Water Quality Between Camp Lake and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical 1	est Results				Summ	ary Statistic	s		
Lake Zone	Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Station Depth	tequal	nono	NO	0.690	Reference	4	10.00	1.08	0.54	8.50	11.00
	(m)	tequal	none	NO	0.090	Camp	5	9.50	2.18	0.97	7.00	12.00
	Secchi Depth	tequal	none	YES	0.002	Reference	5	8.12	0.64	0.29	7.38	9.15
Littoral (Shallow) Stations	(m)	tequal	none	ILS	0.002	Camp	5	5.49	1.15	0.51	4.29	7.10
tati	Temperature	tequal	none	YES	0.061	Reference	5	9.32	0.29	0.13	8.90	9.70
S C	(°C)	tequal	none	TES	0.001	Camp	5	8.34	0.96	0.43	7.10	9.80
<u>8</u>	Dissolved Oxygen	tequal	none	YES	0.001	Reference	5	12.6	0.7	0.3	11.8	13.3
hal	(mg/L)	tequal	none	TES	0.001	Camp	5	9.4	0.5	0.2	9.0	10.1
s) ı	Dissolved Oxygen	tequal	none	YES	0.001	Reference	5	111.9	5.2	2.3	104.6	116.7
ora	(% saturation)	tequal	none	TES	0.001	Camp	5	82.5	4.7	2.1	75.4	88.3
Į	pН	tequal	none	YES	0.060	Reference	5	7.19	0.23	0.10	6.94	7.56
-	(units)	tequal	none	TES	0.000	Camp	5	7.50	0.21	0.10	7.23	7.73
	Specific Conductance	tequal	none	YES	0.001	Reference	5	76.7	3.2	1.4	74.5	82.1
	(μS/cm)	tequal	none	TES	0.001	Camp	5	154.0	4.1	1.8	147.3	158.2
	Station Depth	tequal	none	NO	0.605	Reference	5	20.60	1.56	0.70	19.00	23.00
	(m)	tequal	none	NO	0.003	Camp	5	22.50	7.73	3.46	16.00	33.00
	Secchi Depth	tequal	none	YES	0.006	Reference	5	8.39	0.96	0.43	7.18	9.84
SL	(m)	tequal	none	TES	0.000	Camp	5	6.22	0.91	0.41	5.08	7.50
Profundal (Deep) Stations	Temperature	tequal	none	NO	0.120	Reference	5	5.82	0.19	0.09	5.60	6.10
St	(°C)	tequal	none	NO	0.120	Camp	5	6.62	1.01	0.45	5.80	8.30
dee	Dissolved Oxygen	tegual	log10	YES	0.003	Reference	5	13.6	1.3	0.6	12.8	15.8
ě	(mg/L)	tequal	10910	TES	0.003	Camp	5	10.9	0.9	0.4	9.9	12.2
nda	Dissolved Oxygen	tequal	log10	YES	0.006	Reference	5	110.6	10.3	4.6	103.5	127.9
ofur	(% saturation)	tequal	10910	TES	0.000	Camp	5	91.3	6.8	3.0	84.5	101.9
Ą	pH	tegual	none	YES	0.002	Reference	5	6.70	0.30	0.13	6.27	6.95
	(units)	iequai	Hone	123	0.002	Camp	5	7.36	0.13	0.06	7.26	7.53
	Specific Conductance	M-W	rank	YES	0.008	Reference	5	75.5	1.6	0.7	74.0	78.1
	(μS/cm)	IVI-VV	Idilk	TEO	0.008	Camp	5	146.8	4.9	2.2	144.0	155.5

Highlighted values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.26: Water Chemistry at Camp Lake (JLO) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water						Winter Sam	pling Event					Spring Sampling Event			Summer Sai	mpling Event		
	Parameters	Units	Quality	AEMP	JL0-02	JL0-02	JL0-10	JL0-10	JL0-01	JL0-01	JL0-07	JL0-07	JL0-09	JL0-09	J0-01	JL0-02	JL0-02	JL0-10	JL0-10	JL0-01	JL0-01
	. u.u.iiotoio	00	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	outlet	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		12-Apr-20	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	14-Apr-20	04-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20
	Conductivity (lab)	umho/cm			179	186	178	187	170	182	179	176	171	185	163	152	158	152	159	151	156
<u> </u>	pH (lab)	pН	6.5 - 9.0	_	7.84	7.90	7.79	7.79	7.66	7.81	7.19	7.82	7.69	7.77	7.83	7.89	8.14	7.90	8.13	8.06	8.12
l e	Hardness (as CaCO ₃)	mg/L			96.3	102	97.4	99.4	90.2	101	91.1	96	90.5	98.2	76.4	70.7	72.3	68.2	70.7	73.5	72
Ιĕ	Total Suspended Solids (TSS)	mg/L			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Š	Total Dissolved Solids (TDS)	mg/L			100	93	118	132	112	114	130	128	119	100	132	80	86	79	93	82	86
Ö	Turbidity	NTU			<0.10	0.13	<0.10	<0.10	<0.10	<0.10	0.15	0.14	<0.10	0.28	1.03	0.81	0.87	0.85	0.73	0.81	0.75
ľ	Alkalinity (as CaCO ₃)	mg/L			79	84	80	84	76	83	76	79	79	83	69	65.1	68.7	66.3	67.4	65.0	67.5
	Total Ammonia	mg/L	-	0.855	0.018	0.042	0.019	0.020	<0.010	0.020	<0.010	0.020	<0.010	0.019	<0.010	<0.0050	<0.0050	< 0.0050	0.0054	< 0.0050	< 0.0050
	Nitrate	mg/L	3	3	0.029	0.096	0.041	0.032	0.049	0.030	0.145	0.031	0.051	0.033	0.053	0.0410	0.0404	0.0433	0.0402	0.0491	0.0407
Ę "	Nitrite	mg/L	0.06	0.06	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010
ts a	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	0.17	<0.15	0.40	<0.15	0.25	0.17	<0.15	<0.15	<0.15	0.109	0.126	0.126	0.114	0.105	0.115
e ie	Dissolved Organic Carbon	mg/L	-	-	2.78	2.20	2.11	2.30	2.05	2.31	1.88	2.24	3.07	2.69	2.74	5.17	2.19	1.78	2.34	2.46	2.06
불호	Total Organic Carbon	mg/L	-	-	2.62	3.00	2.72	2.82	2.62	2.63	2.32	2.64	2.79	3.22	3.76	1.96	2.04	1.89	2.07	1.95	2.08
z	Total Phosphorus	mg/L	0.020°	-	<0.0030	0.0092	<0.0030	<0.0030	0.0032	0.0083	0.0042	0.0043	<0.0030	<0.0030	0.0066	0.0034	0.0043	0.0038	0.0025	0.0027	0.0021
	Phenols	ma/L	0.02d ^a	-	<0.0010	0.0115	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0028	0.0023	0.0016	0.0025	0.0036	0.0019
S	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
ions	Chloride (CI)	mg/L	120	120	5.43	5.73	5.45	5.73	5.16	5.60	8.09	5.39	5.27	5.76	4.73	4.48	4.66	4.46	4.63	4.46	4.61
۶	Sulphate (SO ₄)	mg/L	218β	218	5.05	5.53	5.07	5.31	4.79	5.19	4.79	5.01	4.87	5.32	4.46	4.48	4.66	4.48	4.64	4.47	4.62
	Aluminum (Al)	mg/L	0.100	0.1	< 0.0030	0.0183	0.0035	0.0109	< 0.0030	0.0035	0.0064	0.0539	0.0043	0.0117	0.0219	0.0190	0.0162	0.0176	0.0167	0.0108	0.0178
	Antimony (Sb)	mg/L	0.020α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	0.00011	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	_	0.00876	0.00918	0.00867	0.00885	0.00841	0.00901	0.00868	0.00904	0.00912	0.00976	0.00776	0.00711	0.00757	0.00725	0.00754	0.00686	0.00753
	Beryllium (Be)	mg/L	0.011 ^α	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	1.5	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.0001	<0.000010	0.000017	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000016	<0.000010	<0.000010	<0.000010	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)	mg/L	-	-	18.3	19.7	18.5	19.1	17.5	19.3	17.7	19.1	17.6	19.1	15.0	13.4	14.2	13.7	14.1	14.3	13.9
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	0.00011	0.00013	<0.00010	0.00011	<0.00010	0.00011
	Cobalt (Co)	mg/L	0.0009°	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.004	0.00132	0.00142	0.00116	0.00124	0.00098	0.00116	0.00129	0.00195	0.00117	0.00133	0.00095	0.00092	0.00096	0.00088	0.00096	0.00082	0.00093
	Iron (Fe)	mg/L	0.30	0.300	<0.030	< 0.030	< 0.030	< 0.030	< 0.030	<0.030	<0.030	< 0.030	< 0.030	< 0.030	< 0.030	0.033	0.031	0.026	0.028	0.013	0.037
	Lead (Pb)	mg/L	0.001	0.001	<0.000050	0.000108	<0.000050	0.000114	<0.000050	<0.000050	<0.000050	0.000091	<0.000050	0.000067	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050
20	Lithium (Li)	mg/L	-	-	0.0015	0.0016	0.0016	0.0016	0.0017	0.0017	0.0015	0.0019	0.0013	0.0013	0.0013	0.0011	0.0013	0.0012	0.0013	0.0012	0.0012
Metals	Magnesium (Mg)	mg/L	-	-	12.0	12.4	12.0	12.0	11.6	12.3	11.4	11.8	11.1	12.3	9.42	8.40	8.55	8.45	8.44	8.69	8.65
	Manganese (Mn)	mg/L	0.935 ^β	-	0.000367	0.000479	0.000301	0.000311	0.000460	0.000322	0.0124	0.00123	0.000614	0.000328	0.00210	0.00302	0.00303	0.00296	0.00312	0.00182	0.00315
otal	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
1	Molybdenum (Mo)	mg/L	0.073	-	0.000455	0.000505	0.000466	0.000484	0.000417	0.000476	0.000388	0.000584	0.000456	0.000527	0.000393	0.000384	0.000430	0.000386	0.000434	0.000462	0.000405
1	Nickel (Ni)	mg/L	0.025	0.025	0.00075	0.00087	0.00072	0.00085	0.00069	0.00086	0.00082	0.00098	0.00077	0.00091	0.00084	0.00053	0.00057	0.00051	0.00057	0.00061	0.00060
1	Potassium (K)	mg/L	-	-	1.50	1.61	1.50	1.56	1.46	1.59	1.41	1.57	1.55	1.72	1.33	1.29	1.33	1.25	1.32	1.35	1.33
1	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.000050	0.000059	0.000057	<0.000050	<0.000050
1	Silicon (Si)	mg/L		-	0.42	0.42	0.41	0.42	0.46	0.42	1.51	0.43	0.45	0.42	0.46	0.45	0.47	0.46	0.46	0.45	0.46
1	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
1	Sodium (Na)	mg/L	-	-	2.39	2.56	2.42	2.44	2.35	2.54	3.90	2.64	2.40	2.59	2.00	1.83	1.99	1.78	1.89	1.95	1.97
1	Strontium (Sr)	mg/L	-	-	0.0147	0.0156	0.0147	0.0155	0.0140	0.0153	0.0155	0.0153	0.0149	0.0160	0.0121	0.0110	0.0115	0.0111	0.0115	0.0122	0.0114
1	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
1	Tin (Sn)	mg/L		-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00014	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
1	Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.00089	0.00066	0.00083	0.00093	0.00037	0.00091
1	Uranium (U)	mg/L	0.015	-	0.00128	0.00134	0.00130	0.00133	0.00118	0.00130	0.000938	0.00132	0.00136	0.00146	0.00119	0.00117	0.00136	0.00119	0.00131	0.00120	0.00125
	Vanadium (V)	mg/L	0.006α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	0.0032	<0.0030	0.0036	<0.0030	<0.0030	<0.0030	0.0304	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	< 0.0030	<0.0030	<0.0030	<0.0030
			licable Water O																		

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake system.

Table C.26: Water Chemistry at Camp Lake (JLO) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water			Summer Sar	mpling Event							Fai	II Sampling Ev	ent				
	Parameters	Units	Quality Guideline	AEMP	JL0-07	JL0-07	JL0-09	JL0-09	J0-01	JL0-02	JL0-02	JL0-10	JL0-10	JL0-01	JL0-01	JL0-07	JL0-07	JL0-09	JL0-09	J0-01
			(WQG) ^a	Benchmark ^b	bottom	surface	bottom	surface	outlet	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	outlet
			(WQG)		29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	03-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	29-Aug-20
	Conductivity (lab)	umho/cm		-	151	154	154	155	155	160	157	157	156	156	<3.0	158	157	158	157	158
<u>s</u>	pH (lab)	pН	6.5 - 9.0	-	8.13	8.13	7.85	8.13	8.06	8.14	8.15	8.12	8.13	8.06	6.75	8.12	8.08	8.13	8.12	8.11
ë	Hardness (as CaCO ₃)	mg/L	-		69.2	70.8	70.6	72.3	74.1	82	80	79.5	78.9	79.9	<0.50	78.6	79	76.3	78.5	80.4
ŧ	Total Suspended Solids (TSS)	mg/L			<2.0	<2.0	<2.0	2.1	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Š	Total Dissolved Solids (TDS)	mg/L			89	89	84	84	85	83	<10	80	89	98	88	89	126	<10	167	84
Col	Turbidity	NTU			0.77	0.71	0.79	0.72	0.72	0.36	0.4	0.33	0.29	0.34	<0.10	0.35	0.33	0.33	0.31	0.27
	Alkalinity (as CaCO ₃)	mg/L			65.7	67.2	67.4	67.4	75	72	70	71	70	69	<10	67	69	68	71	69
	Total Ammonia	mg/L		0.855	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.02	<0.010	<0.010	<0.010	0.021
-	Nitrate	mg/L	3	3	0.0563	0.0395	0.0398	0.0408	0.024	0.029	0.028	0.028	0.027	0.027	<0.020	0.052	0.03	0.028	0.027	0.027
a s	Nitrite	mg/L	0.06	0.06	<0.0010	< 0.0010	<0.0010	<0.0010	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
an ic	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.113	0.108	0.114	0.111	<0.15	0.22	0.19	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
rier	Dissolved Organic Carbon	mg/L		-	1.83	1.92	1.96	1.92	2.52	2.45	2.7	2.49	2.38	2.39	< 0.50	2.58	2.37	2.46	2.39	2.79
ž o	Total Organic Carbon	mg/L		-	1.99	1.94	2.02	1.92	3.66	3.1	2.85	3.17	3.02	2.96	1.43	2.98	2.99	3.05	2.94	2.54
-	Total Phosphorus	mg/L	0.020°	-	0.0036	0.0026	0.0056	0.0030	0.0037	<0.0030	<0.0030	0.0072	<0.0030	<0.0030	<0.0030	0.0078	<0.0030	<0.0030	<0.0030	0.0046
L_'	Phenols	mg/L	0.004 ^a	-	<0.0010	0.0043	0.0038	0.0045	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0036	<0.0010	<0.0010	<0.0010	0.0045
ons	Bromide (Br)	mg/L	-	-	< 0.050	<0.050	<0.050	< 0.050	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	Chloride (CI)	mg/L	120	120	4.49	4.56	4.54	4.55	4.58	5.05	4.96	4.92	4.85	4.85	<0.50	5.02	4.83	4.83	4.86	4.81
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	4.45	4.60	4.57	4.59	4.40	5.01	4.77	4.9	4.76	4.73	<0.30	6.82	4.75	4.73	4.76	4.70
'	Aluminum (Al)	mg/L	0.100	0.1	0.0166	0.0177	0.0145	0.0151	0.0106	0.0046	0.0057	0.0043	0.0056	0.0043	<0.0030	0.0052	0.0046	0.0057	0.0061	0.0048
	Antimony (Sb)	mg/L	0.020^{α}	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
'	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.0001	<0.00010	<0.00010	<0.00010
'	Barium (Ba)	mg/L	-	-	0.00735	0.00743	0.00727	0.00759	0.00748	0.00787	0.00741	0.00744	0.00772	0.00725	<0.000050	0.0073	0.00757	0.00741	0.00755	0.00779
	Beryllium (Be)	mg/L	0.011 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
'	Bismuth (Bi)	mg/L	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
'	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
'	Cadmium (Cd)	mg/L	0.00012	0.0001	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	14.2	14.0	13.9	14.4	14.0	15.4	15.3	15.3	15.5	15.3	<0.050	15	14.9	15.1	14.8	15.0
'	Chromium (Cr)	mg/L	0.0089	0.0089	0.00021	0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
'	Copper (Cu)	mg/L	0.002	0.004	0.00092	0.00091	0.00089	0.00091	0.00087	0.0009	0.00082	0.00087	0.00087	0.00082	<0.00050	0.00083	0.00103	0.00087	0.0009	0.00093
	Iron (Fe)	mg/L	0.30	0.300	0.050	0.027	0.023	0.025	0.068	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
un I	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	-	-	0.0012	0.0012	0.0012	0.0012	0.0011	0.0012	0.0013	0.0011	0.0012	<0.0010	<0.0010	0.0011	0.0011	0.0011	0.0011	0.0011
Me	Magnesium (Mg)	mg/L	-	-	8.55	8.70	8.69	8.45	8.62	9.71	9.35	9.37	9.45	9.35	<0.050	9.26	9.44	9.52	9.6	9.69
otal	Manganese (Mn)	mg/L	0.935 ^β	-	0.00296	0.00296	0.00297	0.00302	0.00354	0.00123	0.0011	0.00121	0.00119	0.00125	<0.000070	0.00108	0.00124	0.00119	0.00129	0.00182
P	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
1	Molybdenum (Mo)	mg/L	0.073	-	0.000376	0.000407	0.000387	0.000389	0.000357	0.000407	0.000415	0.00039	0.000416	0.000412	<0.000050	0.00042	0.000391	0.000389	0.000407	0.000398
1	Nickel (Ni)	mg/L	0.025	0.025	0.00060	0.00052	0.00052	<0.00050	0.00066	0.00058	0.00061	0.0006	0.0006	0.00058	<0.00050	0.00063	0.00056	0.0006	0.0006	0.00066
1	Potassium (K)	mg/L	-	-	1.31	1.29	1.28	1.31	1.23	1.35	1.31	1.33	1.32	1.29	<0.20	1.3	1.29	1.3	1.3	1.34
	Selenium (Se)	mg/L	0.001	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1	Silicon (Si)	mg/L	- 0.00005	- 0.0004	0.48	0.46	0.45	0.45	0.40	0.37	0.34	0.33	0.35	0.33	<0.10	0.34	0.34	0.34	0.35	0.36
1	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
l '	Sodium (Na)	mg/L	-	-	1.93	1.88	1.88	1.88	1.87	2.2	2.05	2.09	2.1	2.07	<0.050	2.06	2.09	2.11	2.1	2.13
1	Strontium (Sr)	mg/L	- 0.000	-	0.0111	0.0113	0.0112	0.0109	0.0111	0.0116	0.0112	0.0113	0.0114	0.0112	<0.00010	0.0114	0.0111	0.0112	0.0112	0.0111
1	Thallium (TI)	mg/L	0.0008	8000.0	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
1	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
1	Titanium (Ti)	mg/L	- 0.045	-	0.00075	0.00080	0.00073	0.00076	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
1	Uranium (U)	mg/L	0.015	- 0.000	0.00124	0.00126	0.00126	0.00123	0.00120	0.00147	0.00131	0.00133	0.00134	0.00131	<0.000010	0.00128	0.00133	0.00131	0.00131	0.00131
1	Vanadium (V)	mg/L	0.006°	0.006	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	< 0.0030	0.0259	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Camp Lake system.

Table C.27: Magnitude of Elevation in Seasonal Average Parameter Concentrations (Total Metal Concentration Data Provided) Between Camp Lake and Reference Lake 3 in 2020, and Between Camp Lake 2020 and Baseline (2005 to 2013) Data, Mary River Project CREMP

Parameter	Camp Lake vs Refe	rence Lake 3 in 2020	Саг	mp Lake 2020 vs Base	line
- urumoto	Summer	Fall	Winter	Summer	Fall
Conductivity (lab)	2.0	1.8	1.4	1.3	1.2
Hardness (as CaCO ₃)	2.0	1.9	1.5	1.2	1.2
Total Suspended Solids (TSS)	1.0	1.0	1.0	1.0	1.0
Total Dissolved Solids (TDS)	2.1	1.7	1.4	1.1	1.1
Turbidity	5.3	2.2	0.7	1.5	1.0
Alkalinity (as CaCO ₃)	1.5	1.9	1.2	1.2	1.1
Total Ammonia	0.5	0.8	0.3	0.1	0.4
Nitrate	2.2	1.5	0.5	0.4	0.3
Nitrite	0.2	1.0	1.9	0.0	1.0
Total Kjeldahl Nitrogen (TKN)	0.8	1.0	1.1	0.6	0.5
Dissolved Organic Carbon	0.7	0.7	1.2	1.3	1.3
Total Organic Carbon	0.4	0.8	1.4	1.0	1.5
Total Phosphorus	0.8	1.3	0.7	0.7	0.8
Phenols	2.8	1.2	2.1	2.1	1.3
Bromide (Br)	0.5	1.0	1.1	0.2	0.4
Chloride (CI)	3.3	3.3	4.1	2.3	2.0
Sulphate (SO ₄)	1.3	1.3	3.7	3.1	1.6
Aluminum (Al)	5.3	1.6	7.3	1.3	0.8
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.0	1.0	1.0	1.0	1.0
Barium (Ba)	1.2	1.0	1.5	1.4	1.2
Beryllium (Be)	0.2	1.0	1.1	0.3	2.8
Cadmium (Cd)	0.5	1.0	0.7	0.4	0.9
Calcium (Ca)	2.0	1.9	1.5	1.2	1.2
Chromium (Cr)	0.2	1.0	-	1.0	1.0
Cobalt (Co)	1.0	1.0	1.0	1.0	0.9
Copper (Cu)	1.2	1.1	1.2	0.3	1.0
Iron (Fe)	1.0	1.0	1.1	1.0	1.7
Lead (Pb)	1.0	1.0	0.9	0.6	1.0
Lithium (Li)	1.2	1.1	0.4	0.3	
Magnesium (Mg)	2.0	1.8	1.5	1.2	1.2
Manganese (Mn)	3.6	1.6	2.0	1.4	0.7
Mercury (Hg)	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	3.1	2.4	2.3	2.1	1.8
Nickel (Ni)	1.1	1.2	1.2	0.8	1.0
Potassium (K)	1.5	1.3	-	1.6	1.4
Selenium (Se)	0.1	1.0	-	0.6	-
Silicon (Si)	0.9	0.6	1.1	1.0	0.8
Silver (Ag)	1.0	1.0	1.1	1.6	2.7
Sodium (Na)	2.1	2.0	-	2.1	1.9
Strontium (Sr)	1.4	1.2	2.1	1.6	1.3
Thallium (TI)	0.1	1.0	1.1	0.1	-
Tin (Sn)	1.0	1.0	0.1	0.2	0.1
Titanium (Ti)	0.1	1.0	1.0	0.1	1.0
Uranium (U)	3.9	3.6	2.8	2.7	2.4
Vanadium (V)	0.5	1.0	1.0	0.5	1.0
Zinc (Zn)	1.8	1.0	4.6	2.2	1.3

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference or baseline period value).

Denotes differences in method detection limit between the 2020 and baseline data, precluding an evaluation of magnitude of elevation.

Table C.28: Dissolved Metal Concentrations at Camp Lake Water Quality Monitoring Stations, Mary River Project CREMP, 2020

							Winter Sam	pling Event					Spring Sampling Event			Summer Sar	mpling Event		
	Parameters	Units	JL0-02	JL0-02	JL0-10	JL0-10	JL0-01	JL0-01	JL0-07	JL0-07	JL0-09	JL0-09	J0-01	JL0-02	JL0-02	JL0-10	JL0-10	JL0-01	JL0-01
			bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	outlet	bottom	surface	bottom	surface	bottom	surface
			12-Apr-20	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	14-Apr-20	4-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20
	Aluminum (Al)	mg/L	<0.0030	0.0033	<0.0030	<0.0030	<0.0030	0.0282	<0.0030	<0.0030	<0.0030	0.0171	0.0045	0.0059	0.0046	0.0037	0.0048	0.0028	0.0037
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00012	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.00011	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00882	0.00931	0.00883	0.00927	0.00814	0.0101	0.00854	0.00879	0.00910	0.0107	0.00820	0.00710	0.00809	0.00707	0.00732	0.00735	0.00761
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000029	<0.000010	<0.000010	<0.000010	0.000067	<0.000010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050
	Calcium (Ca)	mg/L	18.8	19.7	19.1	19.4	17.4	19.8	17.6	18.4	17.8	19.1	14.9	14.3	14.0	13.5	14.4	14.8	13.9
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00016	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00126	0.00117	0.00099	0.00118	0.00092	0.00211	0.00098	0.00108	0.00109	0.00230	0.00087	0.00085	0.00095	0.00079	0.00081	0.00073	0.00088
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
<u> </u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000188	<0.000050	<0.000050	<0.000050	0.000539	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	0.0018	0.0018	0.0018	0.0018	0.0017	0.0019	0.0016	0.0019	0.0012	0.0014	0.0013	0.0011	0.0012	0.0011	0.0012	0.0011	0.0011
	Magnesium (Mg)	mg/L	12.0	12.8	12.1	12.4	11.4	12.4	11.5	12.1	11.2	12.3	9.53	8.49	9.05	8.36	8.41	8.85	9.07
Dissolved	Manganese (Mn)	mg/L	0.000186	0.000222	0.000108	0.000189	0.000214	0.00163	0.00855	0.000143	0.000178	0.00137	0.000986	0.00063	0.00114	0.00052	0.00104	0.00027	0.00105
iss	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
"	Molybdenum (Mo)	mg/L	0.000467	0.000478	0.000455	0.000503	0.000426	0.000642	0.000381	0.000474	0.000450	0.000605	0.000399	0.000394	0.000407	0.000383	0.000404	0.000378	0.000392
	Nickel (Ni)	mg/L	0.00074	0.00082	0.00072	0.00077	0.00068	0.00119	0.00076	0.00072	0.00077	0.00100	0.00068	0.00065	0.00065	0.00058	0.00065	0.00059	0.00069
	Potassium (K)	mg/L	1.54	1.65	1.54	1.62	1.42	1.65	1.42	1.54	1.53	1.73	1.34	1.30	1.35	1.22	1.29	1.28	1.37
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)	mg/L	0.41	0.43	0.41	0.44	0.47	0.46	1.58	0.42	0.44	0.45	0.42	0.386	0.421	0.408	0.419	0.427	0.414
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	2.41	2.60	2.46	2.53	2.25	2.74	4.04	2.43	2.35	2.68	2.02	2.02	2.12	1.92	2.03	1.96	2.16
	Strontium (Sr)	mg/L	0.0151	0.0154	0.0151	0.0154	0.0140	0.0162	0.0156	0.0150	0.0150	0.0179	0.0121	0.0111	0.0108	0.0104	0.0110	0.0112	0.0109
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00018	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)	mg/L	0.00131	0.00140	0.00132	0.00135	0.00120	0.00140	0.000938	0.00130	0.00137	0.00154	0.00122	0.00120	0.00134	0.00119	0.00128	0.00125	0.00128
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0157	<0.0030	<0.0030	<0.0030	0.0141	<0.0030	0.0043	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

Table C.28: Dissolved Metal Concentrations at Camp Lake Water Quality Monitoring Stations, Mary River Project CREMP, 2020

				Sumr	mer Sampling I	Event						Fa	ll Sampling Ev	ent				
	Parameters	Units	JL0-07	JL0-07	JL0-09	JL0-09	J0-01	JL0-02	JL0-02	JL0-10	JL0-10	JL0-01	JL0-01	JL0-07	JL0-07	JL0-09	JL0-09	J0-01
			bottom	surface	bottom	surface	outlet	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	outlet
			29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	3-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	29-Aug-20
	Aluminum (Al)	mg/L	0.0039	0.0042	0.0037	0.0047	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0596	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00780	0.00759	0.00712	0.00735	0.00777	0.00751	0.00756	0.0075	0.00752	0.00754	0.000359	0.00745	0.00776	0.00746	0.00739	0.00743
	Beryllium (Be)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	13.7	14.0	14.1	14.4	14.3	16.1	15.6	15.4	15.3	15.9	<0.050	15.2	15.5	15.3	15.3	15.6
	Chromium (Cr)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00086	0.00089	0.00088	0.00091	0.00091	0.0009	0.0009	0.00087	0.00089	0.00088	<0.00050	0.00088	0.00087	0.00088	0.00087	0.00086
	Iron (Fe)	mg/L	<0.010	<0.010	<0.010	<0.010	0.038	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
S	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	0.0011	0.0011	0.0012	0.0012	0.0014	0.0013	0.0013	0.0013	0.0013	0.0015	<0.0010	0.0013	0.0013	0.001	0.0013	0.0014
Β p	Magnesium (Mg)	mg/L	8.49	8.69	8.59	8.82	9.29	10.1	9.97	9.95	9.91	9.79	<0.050	9.86	9.76	9.23	9.8	10.0
olve	Manganese (Mn)	mg/L	0.00094	0.00093	0.00090	0.00097	0.00198	0.000177	0.000372	0.000203	0.000309	0.000107	<0.000070	0.000302	0.000088	0.000166	0.000178	0.00106
Dissolved	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
٥	Molybdenum (Mo)	mg/L	0.000404	0.000392	0.000380	0.000402	0.000398	0.00041	0.000404	0.000402	0.00042	0.000399	<0.000050	0.000413	0.000416	0.000426	0.00039	0.000386
	Nickel (Ni)	mg/L	0.00062	0.00063	0.00064	0.00064	0.00071	0.00059	0.00061	0.00059	0.00059	0.00059	<0.00050	0.00059	0.0006	0.0006	0.00061	0.00062
	Potassium (K)	mg/L	1.24	1.49	1.29	1.33	1.28	1.35	1.36	1.33	1.4	1.34	<0.20	1.34	1.37	1.27	1.31	1.34
	Selenium (Se)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.424	0.412	0.413	0.422	0.39	0.37	0.34	0.35	0.35	0.36	<0.10	0.34	0.35	0.34	0.33	0.36
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	2.01	2.22	1.99	2.04	2.02	2.43	2.3	2.28	2.19	2.27	<0.050	2.21	2.22	2.05	2.2	2.20
	Strontium (Sr)	mg/L	0.0109	0.0113	0.0108	0.0109	0.0110	0.0114	0.0112	0.0113	0.0113	0.0111	<0.00010	0.0112	0.0111	0.0117	0.011	0.0110
	Thallium (TI)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00126	0.00123	0.00123	0.00126	0.00128	0.00147	0.00132	0.00132	0.00133	0.00131	<0.000010	0.00132	0.00133	0.00131	0.00129	0.00132
	Vanadium (V)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0010	0.0029	<0.0010	0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.29: Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations Between Camp Lake and Reference Lake 3 in 2020, and Between Camp Lake 2020 and Baseline (2005 to 2013) Data, Mary River Project CREMP

	Camp Lake vs R		Cam	p Lake 2020 vs Bas	eline
Parameter	Summer	Fall	Winter	Summer	Fall
Aluminum (AI)	0.3	2.0	0.0	0.9	2.9
Antimony (Sb)	1.0	1.0	0.0	0.0	1.0
Arsenic (As)	1.0	1.0	1.0	0.8	1.0
Barium (Ba)	1.2	1.1	0.0	1.4	1.2
Beryllium (Be)	0.2	1.0	1.2	0.2	2.1
Bismuth (Bi)	0.1	1.0	1.0	0.0	1.0
Boron (B)	1.0	1.0	1.0	1.0	1.0
Cadmium (Cd)	0.5	1.0	0.5	0.0	0.8
Calcium (Ca)	2.0	1.9	1.4	1.2	1.2
Chromium (Cr)	0.2	1.0	-	0.9	-
Cobalt (Co)	1.0	1.0	1.0	1.0	0.9
Copper (Cu)	1.2	1.2	1.0	0.6	1.0
Iron (Fe)	0.3	1.0	1.2	0.4	1.7
Lead (Pb)	1.0	1.0	0.7	1.0	1.0
Lithium (Li)	1.1	1.3	0.4	0.0	0.5
Magnesium (Mg)	2.0	1.8	1.5	1.3	1.3
Manganese (Mn)	3.7	1.4	2.1	0.0	0.3
Mercury (Hg)	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	3.0	2.4	2.0	0.0	1.9
Nickel (Ni)	1.3	1.2	1.1	0.7	1.0
Potassium (K)	1.5	1.3	1.0	1.2	1.0
Selenium (Se)	0.1	1.0	-	0.5	-
Silicon (Si)	0.9	0.7	1.1	1.0	0.8
Silver (Ag)	1.0	1.0	1.2	1.8	2.7
Sodium (Na)	2.3	2.0	1.5	1.6	1.6
Strontium (Sr)	1.3	1.3	2.0	1.5	1.3
Thallium (TI)	0.1	1.0	1.2	0.1	2.6
Tin (Sn)	1.0	1.0	0.1	0.2	0.1
Titanium (Ti)	0.0	1.0	1.0	0.0	1.0
Uranium (U)	4.1	3.6	2.6	2.8	2.4
Vanadium (V)	0.5	1.0	1.0	0.5	1.0
Zinc (Zn)	0.6	1.0	2.2	0.6	1.9

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference or baseline period value).

Denotes differences in method detection limit between the 2020 and baseline data, precluding an evaluation of magnitude of elevation.

Table C.30: In Situ Water Quality Measurements Collected at Sheardown Lake Tributary 1, Tributary 12, and Tributary 9 Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Study Area	Station	Sampling Date	Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% Saturation)	pH (pH units)	Specific Conductance (µS/cm)
	REF-CRK-B1	10-Aug-20	9.9	10.42	95.3	7.71	132.4
Unnamed	REF-CRK-B2	10-Aug-20	9.0	10.61	94.6	7.58	132.8
Reference	REF-CRK-B3	10-Aug-20	8.4	10.68	93.2	7.48	132.8
Creek	REF-CRK-B4	10-Aug-20	8.0	11.09	96.5	7.50	130.8
	REF-CRK-B5	10-Aug-20	7.6	11.30	98.0	7.57	133.0
	SDLT-1-R1 B1	17-Aug-20	7.7	10.41	90.6	7.95	451.4
Sheardown Lake	SDLT-1-R1-B2	17-Aug-20	7.6	10.55	91.5	7.02	430.2
Tributary 1	SDLT-1-R1-B3	17-Aug-20	7.3	10.78	93.6	7.87	440.2
Reach 1	SDLT-1-R1-B4	17-Aug-20	7.1	10.87	93.3	7.81	417.5
	SDLT-1-R1-B5	17-Aug-20	7.0	11.00	100.8	7.82	419.5
Sheardown Lake	SDLT-12-DS-B1	13-Aug-20	4.4	9.22	77.5	7.79	376.2
Tributary 12	SDLT-12-DS-B2	13-Aug-20	4.1	9.49	76.9	7.83	370.0
Downstream	SDLT-12-DS-B3	13-Aug-20	4.2	9.71	74.5	7.82	361.7
	SDLT-9-DS-B1	13-Aug-20	5.3	9.26	74.1	7.64	275.8
Sheardown Lake	SDLT-9-DS-B2	13-Aug-20	5.3	10.25	81.0	7.69	284.6
Tributary 9	SDLT-9-DS-B3	13-Aug-20	5.3	10.91	86.7	7.69	284.2
Upstream	SDLT-9-DS-B4	13-Aug-20	5.3	11.35	92.8	7.67	283.6
	SDLT-9-DS-B5	13-Aug-20	5.7	11.35	90.8	7.70	283.4

Table C.31: *In Situ* Water Quality Summary Statistics for the Sheardown Lake Tributary Benthic Stations, Mary River Project CREMP, August 2020

		Cample		Standard	Standard	95% Confide	ence Interval		
Metric	Study Area	Sample Size	Mean	Deviation	Error	Lower Bound	Upper Bound	Minimum	Maximum
	Unnamed Reference Creek	5	8.6	0.9	0.4	7.9	9.2	7.6	9.9
Water Temperature	Sheardown Lake Tributary 1 (SDLT1)	5	7.3	0.3	0.1	7.1	7.6	7.0	7.7
(°C)	Sheardown Lake Tributary 12 (SDLT12)	3	4.2	0.2	0.1	4.1	4.4	4.1	4.4
, ,	Sheardown Lake Tributary 9 (SDLT9)	5	5.4	0.2	0.1	5.2	5.5	5.3	5.7
	Unnamed Reference Creek	5	10.82	0.36	0.16	10.55	11.09	10.42	11.30
Dissolved	Sheardown Lake Tributary 1 (SDLT1)	5	10.72	0.24	0.11	10.55	10.90	10.41	11.00
Oxygen (mg/L)	Sheardown Lake Tributary 12 (SDLT12)	3	9.47	0.25	0.14	9.24	9.71	9.22	9.71
	Sheardown Lake Tributary 9 (SDLT9)	5	10.62	0.89	0.40	9.97	11.28	9.26	11.35
	Unnamed Reference Creek	5	95.5	1.8	0.8	94.2	96.9	93.2	98.0
Dissolved	Sheardown Lake Tributary 1 (SDLT1)	5	94.0	4.0	1.8	91.0	96.9	90.6	100.8
Oxygen (% Saturation)	Sheardown Lake Tributary 12 (SDLT12)	3	76.3	1.6	0.9	74.8	77.8	74.5	77.5
,	Sheardown Lake Tributary 9 (SDLT9)	5	85.1	7.6	3.4	79.5	90.7	74.1	92.8
	Unnamed Reference Creek	5	7.57	0.09	0.04	7.50	7.63	7.48	7.71
рН	Sheardown Lake Tributary 1 (SDLT1)	5	7.69	0.38	0.17	7.41	7.97	7.02	7.95
(units)	Sheardown Lake Tributary 12 (SDLT12)	3	7.81	0.02	0.01	7.79	7.83	7.79	7.83
	Sheardown Lake Tributary 9 (SDLT9)	5	7.68	0.02	0.01	7.66	7.70	7.64	7.70
	Unnamed Reference Creek	5	132	0.9	0.4	131.7	133.0	130.8	133
Specific Conductance	Sheardown Lake Tributary 1 (SDLT1)	4	432	14	6	421	442	418	451
(µS/cm)	Sheardown Lake Tributary 12 (SDLT12)	3	369	7	4	362	376	362	376
,	Sheardown Lake Tributary 9 (SDLT9)	5	282	4	2	280	285	276	285

Table C.32: In Situ Water Quality Statistical Comparisons Among the Sheardown Lake Tributaries and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

		Overall 4-grou	p Comparison			Pair-wise, <i>post hoc</i> comparisons ^a		
Metric	Statistical Test ^a	Transformation	Significant Difference Between Areas?	P-value	(I) Area	(J) Area	Significant Difference Between Areas?	P-value
					Unnamed Reference Creek	Sheardown Tributary 1	YES	<0.001
Water					Unnamed Reference Creek	Sheardown Tributary 12	YES	<0.001
Water Temperature	ANOVA	none	YES	0.001	Unnamed Reference Creek	Sheardown Tributary 9	YES	<0.001
(°C)	ANOVA	none	TES	0.001	Sheardown Tributary 1	Sheardown Tributary 12	YES	0.041
(3)					Sheardown Tributary 1	Sheardown Tributary 9	YES	0.041
					Sheardown Tributary 12	Sheardown Tributary 9	YES	0.041
					Unnamed Reference Creek	Sheardown Tributary 1	YES	0.018
					Unnamed Reference Creek	Sheardown Tributary 12	YES	0.018
Dissolved Oxygen	ANOVA	none	YES	0.019	Unnamed Reference Creek	Sheardown Tributary 9	NO	0.937
(mg/L)	ANOVA	none	TES	0.019	Sheardown Tributary 1	Sheardown Tributary 12	YES	0.047
					Sheardown Tributary 1	Sheardown Tributary 9	YES	0.047
					Sheardown Tributary 12	Sheardown Tributary 9	YES	0.047
					Unnamed Reference Creek	Sheardown Tributary 1	YES	<0.001
	ANOVA				Unnamed Reference Creek	Sheardown Tributary 12	YES	<0.001
Dissolved Oxygen		none	YES	0.001	Unnamed Reference Creek	Sheardown Tributary 9	YES	0.017
(% saturation)	ANOVA	none	TES	0.001	Sheardown Tributary 1	Sheardown Tributary 12	YES	0.098
					Sheardown Tributary 1	Sheardown Tributary 9	YES	0.098
					Sheardown Tributary 12	Sheardown Tributary 9	YES	0.098
					Unnamed Reference Creek	Sheardown Tributary 1	YES	0.019
					Unnamed Reference Creek	Sheardown Tributary 12	YES	0.019
рН	K-W	rank	YES	0.045	Unnamed Reference Creek	Sheardown Tributary 9	NO	0.374
(units)	K-VV	Talik	TES	0.045	Sheardown Tributary 1	Sheardown Tributary 12	NO	0.113
					Sheardown Tributary 1	Sheardown Tributary 9	NO	0.113
					Sheardown Tributary 12	Sheardown Tributary 9	NO	0.113
					Unnamed Reference Creek	Sheardown Tributary 1	YES	<0.001
0					Unnamed Reference Creek	Sheardown Tributary 12	YES	<0.001
Specific Conductance	ANOVA	none	YES	0.001	Unnamed Reference Creek	Sheardown Tributary 9	YES	<0.001
Conductance (μS/cm)	ANOVA	Hone	IES	0.001	Sheardown Tributary 1	Sheardown Tributary 12	YES	<0.001
(μο/οπ)					Sheardown Tributary 1	Sheardown Tributary 9	YES	<0.001
					Sheardown Tributary 12	Sheardown Tributary 9	YES	<0.001

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Signficant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table C.33: Water Chemistry at Sheardown Lake Tributary 1 (SDLT1) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water Quality	AFMD	Spring Sam	pling Event	Summer Sai	mpling Event	Fall Samp	ling Event
	Parameters	Units	Guideline	AEMP Benchmark ^b	D1-05	D1-00	D1-05	D1-00	DI-05	DI-00
			(WQG) ^a	Denominark –	02-Jul-20	02-Jul-20	03-Aug-20	03-Aug-20	29-Aug-20	29-Aug-20
	Conductivity (lab)	umho/cm	-	-	154	280	217	458	248	369
als.	pH (lab)	pН	6.5 - 9.0	-	7.92	8.22	7.85	8.02	7.94	8.20
lü	Hardness (as CaCO ₃)	mg/L	-	-	72.5	128	98.8	205	123	186
ij	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	3.2	<2.0	<2.0	<2.0	<2.0
ě	Total Dissolved Solids (TDS)	mg/L	-	-	99	145	117	278	130	213
Conventionals	Turbidity	NTU	-	-	6.52	4.22	0.32	0.82	0.22	0.17
1	Alkalinity (as CaCO ₃)	mg/L	-	-	64	84	98	125	99	123
	Total Ammonia	mg/L	_	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Nitrate	mg/L	3	3	0.217	0.614	0.219	1.58	0.221	1.18
and	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	0.21	<0.15	0.31
Nutrients Organie	Dissolved Organic Carbon	mg/L	-	-	3.27	3.43	3.20	4.33	2.96	3.24
Į į o	Total Organic Carbon	mg/L	-	-	4.82	4.86	4.41	5.46	3.25	3.58
ĮŽ	Total Phosphorus	mg/L	0.030 ^a	-	0.0073	0.0043	<0.0030	0.0504	<0.0030	<0.0030
	Phenols	mg/L	0.004 ^a	-	0.0025	<0.0010	<0.0010	<0.0010	0.0015	<0.0010
ō	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (Cl)	mg/L	120	120	2.45	6.01	4.34	11.6	6.04	10.7
٩	Sulphate (SO ₄)	mg/L	218 ^β	218	9.47	43.2	14.6	89.6	16.8	47.8
	Aluminum (AI)	mg/L	0.100	0.179	0.0946	0.0946	0.0111	0.0115	0.0077	0.0149
	Antimony (Sb)	mg/L	0.020°	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00878	0.0126	0.0110	0.0191	0.0122	0.0171
	Beryllium (Be)	mg/L	0.011 ^a	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Boron (B)	mg/L	1.5	-	0.011	0.015	0.013	0.018	0.014	0.017
	Cadmium (Cd)	mg/L	0.00012	0.00008	0.000035	0.000016	0.000035	0.000015	0.000037	0.000013
	Calcium (Ca)	mg/L	-	-	13.1	21.8	18.3	35.8	22.1	32.8
	Chromium (Cr)	mg/L	0.0089	0.00856	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	<0.00010	0.00012	<0.00010	0.00012	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0022	0.00321	0.00253	0.00279	0.00204	0.00264	0.00205
	Iron (Fe)	mg/L	0.30	0.326	0.103	0.159	<0.030	0.147	<0.030	0.092
S	Lead (Pb)	mg/L	0.001	0.001	0.000301	0.000167	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	-	-	0.0014	0.0023	0.0013	0.0026	0.0014	0.0024
₩	Magnesium (Mg)	mg/L	-	-	8.90	17.1	13.3	28.0	16.3	24.4
otal	Manganese (Mn)	mg/L	0.935 ^β	-	0.00224	0.00699	0.000675	0.0101	0.000440	0.00541
P	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.000050
	Molybdenum (Mo)	mg/L	0.073	-	0.00395	0.00306	0.00465	0.00314	0.00556	0.00434
	Nickel (Ni)	mg/L	0.025	0.025	0.00153	0.00156	0.00105	0.00152	0.00100	0.00134
	Potassium (K)	mg/L	-	-	2.25	2.63	2.61	3.06	2.77	3.35
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si) Silver (Ag)	mg/L mg/L	0.00025	0.0001	1.35 <0.000010	1.42 <0.00010	1.35 <0.000010	1.49 <0.00010	1.37 <0.000010	1.48 <0.000010
	Sodium (Na)	mg/L mg/L	0.00025	0.0001	1.49	3.42	2.32	5.48	2.90	5.50
	Strontium (Sr)	mg/L	_	-	0.0112	0.0171	0.0146	0.0254	0.0156	0.0218
	Thallium (TI)	mg/L	0.0008	0.0008	<0.0010	<0.0011	<0.00140	<0.00010	<0.0010	<0.0010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00281	0.00460	0.00792	0.00786	0.0131	0.0155
	Vanadium (V)	mg/L	0.006°	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	0.0033	0.0093	<0.0030	0.0083	<0.0030	0.0067
	<u> </u>	g, <u>-</u>	3.300	0.000	0.000	2.3000	3.0000	0.0000	2.3000	0.0001

Indicates parameter concentration above applicable Water Quality Guideline.

Indicates parameter concentration above the AEMP benchmark.

a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data and adopted from the Camp Lake Tributaries.

Table C.34: Magnitude of Elevation in Seasonal Average Parameter Concentrations (Total Metal Concentration Data Provided) Between SDLT1 and Reference Creek Stations in 2020, and at SDLT1 Between 2020 and the Baseline Period

	20	20 vs Reference C	reek		2020 vs Baseline	
Parameter	Spring	Summer	Fall	Spring	Summer	Fall
Conductivity (lab)	4.0	2.5	1.8	2.8	1.9	1.3
Hardness (as CaCO ₃)	4.2	2.7	1.9	2.6	1.7	1.4
Total Suspended Solids (TSS)	0.8	0.7	1.0	1.3	1.0	1.0
Total Dissolved Solids (TDS)	1.4	2.3	1.7	2.5	1.7	1.1
Turbidity	2.9	0.1	0.1	5.1	1.1	0.6
Alkalinity (as CaCO ₃)	3.1	1.8	1.6	2.2	1.4	1.1
Total Ammonia	1.0	0.8	1.0	0.1	0.1	0.2
Nitrate	21	15	9.2	4.3	9.1	6.4
Nitrite	1.0	1.0	1.0	1.0		0.8
Total Kjeldahl Nitrogen (TKN)	7.1	1.2	1.5	0.9	1.2	1.9
Dissolved Organic Carbon	1.7	1.1	1.3	0.9	1.4	1.3
Total Organic Carbon	2.2	1.6	1.6	1.2	1.8	1.4
Total Phosphorus	1.3	4.1	0.8	0.5	5.8	0.7
Phenols	1.8	1.0	0.6			
Bromide (Br)	1.0	1.0	1.0	0.4		
Chloride (CI)	3.5	2.0	1.2	0.6	1.9	1.0
Sulphate (SO ₄)	20	9.4	3.5	49	9.7	3.6
Aluminum (AI)	1.2	0.0	0.2	1.8	0.6	1.0
Antimony (Sb)	1.0	1.0	1.0	0.8	0.8	0.9
Arsenic (As)	1.0	0.8	1.0	1.0	1.0	1.0
Barium (Ba)	3.0	1.6	1.4	2.2	1.6	1.3
Beryllium (Be)	1.0	1.3	1.0		1.0	1.5
	1.0	1.3	1.0	1.0		
Bismuth (Bi)					0.0	4.4
Boron (B)	1.3	1.6	1.6	1.2	0.9	1.1
Cadmium (Cd)	2.6	2.9	2.5	1.2	0.9	1.0
Calcium (Ca)	3.6	2.3	1.7	2.4	1.6	1.3
Chromium (Cr)	1.0	0.6	1.0	2.0	2.1	3.5
Cobalt (Co)	1.1	0.7	1.0	0.8	1.0	0.9
Copper (Cu)	4.0	2.1	2.3	1.0	0.9	1.1
Iron (Fe)	1.7	0.4	0.9	1.4	1.3	1.5
Lead (Pb)	2.2	0.2	0.5	0.8	0.7	8.0
Lithium (Li)	1.9	1.8	1.9	3.7	1.8	1.8
Magnesium (Mg)	4.5	3.1	2.1	2.6	1.8	1.5
Manganese (Mn)	3.4	1.8	2.9	2.1	2.4	2.2
Mercury (Hg)	1.0	1.0	1.0	0.5		
Molybdenum (Mo)	24	8.6	8.6	3.4	1.8	2.1
Nickel (Ni)	3.1	1.8	2.1	0.9	1.0	1.1
Potassium (K)	5.4	3.1	2.9	2.6	1.7	1.7
Selenium (Se)	1.0	1.3	1.0			
Silicon (Si)	2.2	1.1	1.6	1.4	1.1	1.1
Silver (Ag)	1.0	0.5	1.0	0.9		
Sodium (Na)	3.0	1.4	1.1	5.9	3.4	2.0
Strontium (Sr)	2.9	1.4	1.0	3.3	2.0	1.4
Γhallium (TI)	1.0	1.2	1.0	-	-	-
Γin (Sn)	1.0	1.0	1.0	1.0		
Fitanium (Ti)	0.9	0.4	1.0	1.0		
Jranium (U)	8.3	2.0	1.9	5.9	3.1	2.7
/anadium (V)	1.0	0.9	1.0	1.0	0.1	
Zinc (Zn)	2.1	1.9	1.6	5.9	1.5	1.9

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference or baseline period value).

Denotes differences in method detection limit between the 2020 and reference area or baseline data, precluding an evaluation of magnitude of elevation

Table C.35: Dissolved Metal Concentrations at Sheardown Lake Tributary Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Spring Sam	pling Event	Summer Sar	npling Event	Fall Samp	ling Event
	Parameters	Units	D1-05	D1-00	D1-05	D1-00	D1-05	DI-00
			2-Jul-20	2-Jul-20	3-Aug-20	3-Aug-20	29-Aug-20	29-Aug-20
	Aluminum (Al)	mg/L	0.0216	0.0181	0.0055	0.0047	0.0063	0.0039
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00808	0.0125	0.0111	0.0185	0.0119	0.0172
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	0.012	0.014	0.013	0.018	0.014	0.016
	Cadmium (Cd)	mg/L	0.000026	0.000013	0.000036	0.000014	0.000038	0.000015
	Calcium (Ca)	mg/L	14.2	22.9	17.8	36.3	22.2	33.1
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	0.00012	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00294	0.00236	0.00276	0.00199	0.00264	0.00204
	Iron (Fe)	mg/L	<0.030	0.052	<0.030	0.102	<0.030	0.055
σ	Lead (Pb)	mg/L	0.000064	0.000063	<0.000050	<0.000050	<0.000050	<0.000050
etal	Lithium (Li)	mg/L	0.0016	0.0022	0.0011	0.0026	0.0015	0.0023
Σ	Magnesium (Mg)	mg/L	9.02	17.3	13.2	27.7	16.4	25.1
Dissolved Metals	Manganese (Mn)	mg/L	0.000521	0.00508	0.000585	0.00955	0.000421	0.00483
isso	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.00438	0.00314	0.00442	0.00314	0.00546	0.00430
	Nickel (Ni)	mg/L	0.00117	0.00142	0.00100	0.00148	0.00102	0.00131
	Potassium (K)	mg/L	2.19	2.62	2.53	3.13	2.73	3.32
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	1.26	1.29	1.31	1.55	1.39	1.44
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	1.48	3.45	2.33	5.42	3.02	5.76
	Strontium (Sr)	mg/L	0.0115	0.0173	0.0137	0.0243	0.0161	0.0227
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00291	0.00459	0.00788	0.00788	0.0129	0.0163
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	0.0076	<0.0030	0.0075	<0.0030	0.0061

Table C.36: In Situ Water Quality Profile Data Collected at Sheardown Lake NW Water Quality Monitoring Stations in Winter, Mary River Project CREMP, April 2020

Depth			Tempera	ature (°C)					Dissolved O	kygen (mg/L)				Dis	solved Oxyg	en (% Saturat	ion)	
(m)	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7
Date Collected	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20
1.0	0.4	0.2	1.6	2.5	1.9	0.0	14.14	14.02	13.14	13.42	13.10	14.44	98.2	96.4	94.4	98.3	95.3	98.9
2.0	0.2	0.2	0.3	0.3	0.3	0.3	14.18	13.90	14.00	14.50	14.04	14.15	97.8	96.1	96.6	100.4	97.3	97.7
3.0	0.7	0.5	0.7	0.6	0.8	0.4	13.89	13.66	13.70	14.45	13.71	13.92	97.0	95.5	96.1	100.7	96.0	97.3
4.0	0.9	0.9	1.0	0.8	1.0	0.9	13.70	13.47	13.51	14.28	13.50	13.72	96.3	94.9	95.1	100.1	95.0	96.5
5.0	1.1	1.1	1.1	0.9	1.1	1.0	13.55	13.34	13.40	14.18	13.37	13.61	95.6	94.2	94.6	99.6	94.4	96.0
6.0	1.1	1.1	1.1	1.0	1.2	1.1	13.55	13.24	13.32	14.04	13.22	13.47	95.6	93.7	94.2	98.8	93.5	95.0
7.0	1.2	1.2	1.2	-	1.2	1.1	13.44	13.14	13.21	-	13.11	13.37	95.1	93.1	93.5	-	92.9	94.5
8.0	1.2	1.2	1.2	-	1.2	1.2	13.32	13.07	13.03	-	13.04	13.28	94.4	92.7	92.4	-	92.5	94.1
9.0	1.2	1.3	1.3	-	1.3	1.2	13.16	12.97	12.88	-	12.93	13.13	93.3	92.2	91.4	-	91.8	93.1
10.0	1.3	1.3	1.3	-	1.3	1.3	12.92	12.86	12.72	-	12.80	12.96	91.7	91.5	90.5	-	91.0	92.1
11.0	1.3	1.4	1.4	-	1.4	1.3	12.81	12.71	12.57	-	12.60	12.78	90.9	90.5	89.4	-	90.1	90.8
12.0	-	1.4	1.4	-	1.4	-	-	12.55	12.45	-	12.41	-	-	89.5	88.6	-	88.4	-
13.0	-	1.5	1.4	-	1.4	-	-	12.16	12.22	-	12.10	-	-	86.8	87.2	-	86.3	-
14.0	-	1.5	1.5	-	1.5	-	-	11.89	12.02	-	11.78	-	-	84.9	85.8	-	84.2	-
15.0	-	1.6	1.5	-	1.5	-	-	11.67	11.72	-	11.59	-	-	83.6	83.9	-	82.8	-
16.0	-	1.6	1.6	-	1.6	-	-	11.53	11.31	-	11.31	-	-	82.7	81.1	-	81.0	-
17.0	-	1.7	1.6	-	1.6	-	-	11.16	11.07	-	11.06	-	-	80.3	79.5	-	79.3	-
18.0	-	1.7	1.7	-	-	-	-	10.84	10.80	-	-	-	-	78.1	77.6	-	-	-
19.0	-	1.8	1.8	-	-	-	-	10.58	10.67	-	-	-	-	76.3	76.9	-	-	-
20.0	-	1.9	-	-	-	-	-	10.25	-	-	-	-	-	74.1	-	-	-	-
21.0	-	2.0	-	-	-	-	-	9.80	-	-	-	-	-	71.0	-	-	-	-
22.0	-	2.0	-	-	-	-	-	8.20	-	-	-	-	-	59.5	-	-	-	-
23.0	-	2.3	-	-	-	-	-	0.80	-	-	-	-	-	6.1	-	-	-	-

Notes: Total depth at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 9.5, 23.5, 19.7, 6.5, 17.4 and 11.7 m, respectively, at the time of winter sampling. Ice thickness at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 9.5, 23.5, 19.7, 6.5, 17.4 and 11.7 m, respectively, at the time of winter sampling.

Table C.36: In Situ Water Quality Profile Data Collected at Sheardown Lake NW Water Quality Monitoring Stations in Winter, Mary River Project CREMP, April 2020

Depth			pH (pl	l units)					Specific Condu	ıctance (μS/cm)		
(m)	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7
Date Collected	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20
1.0	7.93	8.13	8.04	8.10	7.85	7.81	200.5	196.1	193.3	205.2	196.0	174.5
2.0	7.87	8.01	7.90	7.93	7.86	7.78	196.8	191.2	193.6	204.9	193.0	170.0
3.0	7.82	7.91	7.84	7.81	7.80	7.77	192.2	188.4	190.1	202.8	189.8	189.5
4.0	7.80	7.87	7.81	7.73	7.75	7.77	189.8	186.5	187.4	200.1	188.4	188.5
5.0	7.78	7.80	7.80	7.70	7.74	7.76	188.3	185.6	186.9	199.4	187.4	188.3
6.0	7.77	7.82	7.78	7.67	7.73	7.75	189.3	185.0	186.2	200.3	186.3	187.7
7.0	7.76	7.80	7.77	-	7.72	7.74	188.3	184.3	185.7	-	185.5	187.2
8.0	7.76	7.79	7.77	-	7.71	7.74	187.1	183.8	185.0	-	185.1	186.7
9.0	7.75	7.78	7.76	-	7.70	7.73	187.0	183.2	184.3	-	184.5	185.6
10.0	7.73	7.77	7.75	-	7.70	7.73	186.9	182.4	183.8	-	184.0	184.9
11.0	7.73	7.75	7.74	-	7.68	7.72	187.0	182.1	184.0	-	183.5	184.5
12.0	-	7.74	7.73	-	7.67	-	-	181.6	183.9	-	183.1	-
13.0	-	7.72	7.72	-	7.65	-	-	180.9	183.4	-	182.8	-
14.0	-	7.69	7.70	-	7.63	-	-	180.3	182.9	-	182.6	-
15.0	-	7.67	7.68	-	7.60	-	-	179.7	182.4	-	182.7	-
16.0	-	7.66	7.67	-	7.57	-	-	179.5	181.6	-	183.2	-
17.0	-	7.64	7.64	-	7.54	-	-	179.2	181.5	-	184	-
18.0	-	7.62	7.62	-	-	-	-	179.0	180.9	-	-	-
19.0	-	7.59	7.60	-	-	-	-	178.6	180.3	-	-	-
20.0	-	7.57	-	-	-	-	-	178.4	-	-	-	-
21.0	-	7.54	-	-	-	-	-	178.2	-	-	-	-
22.0	-	7.49	-	-	-	-	-	179.0	-	-	-	-
23.0	-	7.22	-	-	-	-	-	193.2	-	-	-	-

Notes: Total depth at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-7, was 9.5, 23.5, 19.7, 6.5, 17.4 and 11.7 m, respectively, at the time of winter sampling. Ice thickness at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 1.40, 1.58, 1.26, 1.43, 1.77, and 1.54 m, respectively, at the time of winter sampling.

Table C.37: In Situ Water Quality Profile Data Collected at Sheardown Lake NW Water Quality Monitoring Stations in Summer, Mary River Project CREMP, July 2020

Depth			Tempera	ature (°C)			Dissolved Oxygen (mg/L)						Dissolved Oxygen (% Saturation)					
(m)	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7
Date Collected	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20
1.0	15.1	14.4	14.8	15.7	15.0	15.7	10.50	10.62	10.46	10.35	10.36	10.39	104.4	103.9	103.4	104.3	102.7	104.6
2.0	14.3	14.4	14.8	15.7	14.7	15.6	10.91	10.63	10.49	10.36	10.53	10.39	106.6	104.0	103.5	104.4	103.6	104.7
3.0	13.3	14.2	13.6	15.7	12.7	15.5	11.39	10.76	11.07	10.37	11.62	10.39	108.7	104.8	108.6	104.5	109.5	104.1
4.0	11.3	13.8	11.5	12.5	11.0	12.2	12.00	10.91	11.96	11.86	12.14	11.91	109.1	105.4	110.0	110.9	110.1	110.2
5.0	10.0	10.0	10.3	10.1	10.8	9.8	12.09	12.21	12.25	12.23	12.02	12.17	107.2	108.3	109.4	108.4	110.0	107.5
6.0	9.6	9.5	9.7	-	9.8	9.5	12.00	12.15	12.23	-	12.19	12.08	105.5	106.6	107.7	-	107.6	105.9
7.0	9.2	9.1	9.2	-	9.5	9.1	11.91	11.89	12.04	ī	12.11	11.95	103.7	103.2	104.8	-	106.1	103.7
8.0	8.9	8.8	8.9	-	9.1	8.8	11.79	11.79	11.90	-	11.95	11.86	102.0	101.6	102.7	-	103.8	102.8
9.0	-	8.6	8.4	-	8.0	7.8	-	11.75	11.78	-	11.82	11.75	-	100.7	100.4	-	99.9	98.7
10.0	-	8.3	7.9	-	7.5	6.7	-	11.72	11.74	-	11.76	11.75	-	99.7	98.9	-	98.2	96.0
11.0	-	7.8	7.2	-	6.8	6.2	-	11.72	11.77	-	11.75	11.74	-	98.5	97.5	-	96.3	94.7
12.0	-	7.1	6.4	-	6.4	-	-	11.74	11.77	-	11.79	-	-	96.9	95.5	-	95.8	-
13.0	-	6.7	5.9	-	6.2	-	-	11.75	11.85	-	11.77	-	-	96.1	94.9	-	94.7	-
14.0	-	6.4	5.7	-	5.8	-	-	11.78	11.82	-	11.78	-	-	95.7	94.4	-	94.3	-
15.0	-	5.9	5.6	-	5.8	-	-	11.83	11.84	-	11.76	-	-	94.9	94.2	-	93.9	-
16.0	-	5.7	5.6	-	5.5	-	-	11.83	11.83	-	11.76	-	-	94.3	94.0	-	93.3	-
17.0	-	5.6	5.5	-	-	-	-	11.82	11.83	-	-	-	-	94.1	93.9	-	-	-
18.0	-	5.6	5.5	-	-	-	-	11.79	11.81	-	-	-	-	93.8	93.6	-	-	-
19.0	-	5.5	5.5	-	-	-	-	11.78	11.80	-	-	-	-	93.5	93.5	-	-	-
20.0	-	5.5	5.4	-	-	-	-	11.77	11.79	-	-	-	-	93.3	93.4	-	-	-
21.0	-	5.5	5.4	-	-	-	-	11.75	11.78	-	-	-	-	93.1	93.2	-	-	-
22.0	-	5.4	-	-	-	-	-	11.74	-	-	-	-	-	92.9	-	-	-	-
23.0	-	5.4	-	-	-	-	i	11.72	-	i	-	-	-	92.8	-	-	ı	-

Note: Total depth at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 8.8, 22.9, 22.1, 5.8, 15.8, and 11.3 m, respectively, at the time of summer sampling.

Table C.37: In Situ Water Quality Profile Data Collected at Sheardown Lake NW Water Quality Monitoring Stations in Summer, Mary River Project CREMP, July 2020

Depth			рН (рН	l units)				5	Specific Condu	ctance (µS/cm	1)	
(m)	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7
Date Collected	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20
1.0	8.25	8.17	8.14	8.19	8.20	8.19	165.4	163.1	163.8	164.0	163.6	165.2
2.0	8.10	8.14	8.18	8.17	8.16	8.17	173.7	163.1	163.9	163.9	164.2	164.3
3.0	8.08	8.14	8.17	8.17	8.17	8.16	163.5	162.7	161.9	164.0	159.8	163.5
4.0	8.05	8.13	8.17	8.17	8.15	8.15	158.6	162.4	157.2	160.2	157.0	159.0
5.0	7.97	8.08	8.15	8.15	8.14	8.09	157.0	156.3	157.5	158.1	156.9	156.5
6.0	7.87	8.03	8.12	-	8.09	8.05	156.6	156.2	156.4	-	156.5	156.5
7.0	7.81	7.91	8.05	-	8.07	7.99	156.4	155.9	156.4	-	156.7	156.3
8.0	7.75	7.86	7.98	-	7.98	7.94	156.3	155.9	155.9	-	156.2	156.1
9.0	-	7.83	7.92	-	7.91	7.84	-	155.9	156.1	-	156.5	155.5
10.0	-	7.80	7.86	-	7.84	7.74	-	155.7	155.5	-	155.5	155.0
11.0	-	7.77	7.82	-	7.78	7.69	-	155.2	155.5	-	154.3	154.8
12.0	-	7.72	7.77	-	7.73	-	-	155.0	154.9	-	154.8	-
13.0	-	7.67	7.72	-	7.71	-	-	154.8	155.0	-	154.7	-
14.0	-	7.64	7.69	-	7.67	-	-	154.6	154.2	-	154.8	-
15.0	-	7.62	7.66	-	7.66	-	-	154.5	154.5	-	154.6	-
16.0	-	7.60	7.66	-	7.64	-	-	154.5	154.5	-	154.7	-
17.0	-	7.59	7.59	-	-	-	-	154.5	154.5	-	-	-
18.0	-	7.57	7.64	-	-	-	-	154.4	154.5	-	-	-
19.0	-	7.56	7.63	-	-	-	-	154.5	154.5	-	-	-
20.0	-	7.55	7.62	-	-	-	-	154.5	154.5	-	-	-
21.0	-	7.55	7.62	-	-	-	-	154.5	154.5	-	-	-
22.0	-	7.54	-	-	-	-	-	154.5	-	-	-	-
23.0	-	7.54	-	-	-	-	-	154.5	-	-	-	-

Note: Total depth at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 8.8, 22.9, 22.1, 5.8, 15.8, and 11.3 m, respectively, at the time of summer sampling.

Table C.38: In Situ Water Quality Profile Data Collected at Sheardown Lake NW Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth			Te	mperature ((°C)					Dissolv	ed Oxyger	(mg/L)					Dissolved (Oxygen (%	Saturation)	
(m)	DD Hab9	DLO-01-5	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7
Date Collected	26-Aug-20	27-Aug-20	18-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	26-Aug-20	27-Aug-20	18-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	26-Aug-20	27-Aug-20	18-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20
surface	-	-	8.8	-	-	-	-	-	-	11.21	-	-	-	-	-	-	96.7	-	-	-	-
1.0	8.5	8.4	8.8	8.4	8.3	8.4	8.4	11.49	11.42	11.20	11.41	11.40	11.35	11.38	98.3	97.4	96.6	97.4	97.0	96.9	97.1
2.0	8.5	8.4	8.8	8.4	8.3	8.4	8.4	11.48	11.41	11.20	11.40	11.39	11.36	11.36	98.2	97.3	96.5	97.3	96.9	97.0	96.9
3.0	8.5	8.4	8.8	8.4	8.3	8.4	8.4	11.48	11.40	11.19	11.41	11.38	11.36	11.36	98.2	97.2	96.5	97.4	96.8	97.0	96.9
4.0	8.5	8.4	8.8	8.4	8.3	8.4	8.4	11.48	11.39	11.19	11.39	11.37	11.35	11.35	98.1	97.2	96.5	97.2	96.7	96.9	96.9
5.0	8.5	8.4	8.8	8.4	8.3	8.4	8.4	11.47	11.40	11.18	11.38	11.36	11.35	11.34	98.1	97.2	96.4	97.1	96.6	96.9	96.8
6.0	-	8.4	8.8	8.4	-	8.4	8.4	-	11.38	11.18	11.38	-	11.34	11.33	-	97.1	96.4	97.1	-	96.8	96.7
7.0	-	8.4	8.8	8.4	-	8.4	8.4	-	11.38	11.17	11.37	-	11.33	11.32	-	97.0	96.3	97.0	-	96.8	96.6
8.0	-	8.4	8.8	8.4	-	8.4	8.4	-	11.37	11.17	11.37	-	11.33	11.32	-	97.0	96.3	97.0	-	96.7	96.6
9.0	-	8.4	8.8	8.4	-	8.4	8.4	-	11.36	11.16	11.36	-	11.32	11.31	-	96.8	96.2	96.9	-	96.6	96.5
10.0	-	8.4	8.8	8.4	-	8.4	8.4	-	11.35	11.16	11.35	-	11.31	11.30	-	96.8	96.2	96.8	-	96.5	96.5
11.0	-	8.4	8.8	8.4	-	8.4	-	-	11.34	11.15	11.34	-	11.31	-	-	96.7	96.1	96.8	-	96.5	-
12.0	-	8.4	8.8	8.4	-	8.4	-	-	11.34	11.15	11.34	-	11.31	-	-	96.7	96.1	96.8	-	96.5	-
13.0	-	8.4	8.8	8.4	-	8.4	-	-	11.33	11.14	11.34	-	11.30	-	-	96.6	96.0	96.7	-	96.4	-
14.0	-	8.4	8.8	8.4	-	8.4	-	-	11.33	11.14	11.33	-	11.30	-	-	96.5	96.0	96.6	-	96.4	-
15.0	-	8.4	8.8	8.4	-	8.4	-	-	11.32	11.13	11.32	-	11.28	-	-	96.5	95.9	96.5	-	96.2	-
16.0	-	8.4	8.8	8.4	-	8.4	-	-	11.31	11.13	11.31	-	11.23	-	-	96.5	95.9	96.4	-	95.9	-
17.0	-	8.4	8.8	-	-	-	-	-	11.30	11.12	-	-	-	-	-	96.4	95.8	ı	-	-	-
18.0	-	8.4	8.8	-	-	-	-	-	11.30	11.12	-	-	-	-	-	96.4	95.8	•	-	-	-
19.0	-	8.4	8.8	-	-	-	-	-	11.29	11.11	-	-	-	-	-	97.3	95.7	-	-	-	-
20.0	-	8.4	8.8	-	-	-	-	-	11.30	11.11	-	-	-	-	-	96.3	95.7	ı	-	-	-
21.0	-	8.4	8.8	-	-	-	-	-	11.29	11.10	-	-	-	-	-	96.3	95.6	ı	-	-	-
22.0	-	-	8.8	-	-	-	-	-	-	11.10	-	-	-	-	-	-	95.6	-	-	-	-
23.0	-	-	8.8	-	-	-	-	-	-	11.09	-	-	-	-	-	-	95.5	-	-	-	-

Notes: 18-Aug-20 sampling was conducted by Minnow. Sheardown Lake NW water profile sampling on all other dates was conducted by Baffinland. Total depth at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 9.9, 22.2, 17.6, 6.7, 18.2, and 11.4 m, respectively, at the time of fall sampling.

Table C.38: In Situ Water Quality Profile Data Collected at Sheardown Lake NW Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth				pH (pH units)						Specific	Conductance	e (µS/cm)		
(m)	DD Hab9	DLO-01-5	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7	DD Hab9	DLO-01-5	DLO-01-5	DLO-01-1	DLO-01-4	DLO-01-2	DLO-01-7
Date Collected	26-Aug-20	27-Aug-20	18-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	26-Aug-20	27-Aug-20	18-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20
surface	-	-	8.03	-	-	-	-	-	-	162.1	-	-	-	-
1.0	8.08	8.06	8.03	8.06	8.04	8.01	8.00	164.0	163.6	162.0	163.6	164.3	163.5	163.4
2.0	8.07	8.06	8.04	8.06	8.04	8.01	8.02	163.8	163.6	162.1	163.6	164.2	163.5	163.4
3.0	8.07	8.06	8.03	8.06	8.03	8.00	8.02	163.8	163.6	162.1	163.7	164.2	163.5	163.4
4.0	8.07	8.05	8.04	8.06	8.03	8.01	8.02	164.1	163.6	162.1	163.7	164.2	163.6	163.5
5.0	8.07	8.06	8.04	8.06	8.04	8.01	8.02	164.8	163.6	162.1	163.7	164.2	163.5	163.4
6.0	-	8.06	8.03	8.06	-	8.01	8.02	-	163.6	162.1	163.7	-	163.6	163.4
7.0	-	8.06	8.03	8.06	-	8.01	8.02	-	163.6	162.1	163.8	-	163.6	163.4
8.0	-	8.06	8.03	8.06	-	8.01	8.02	-	163.6	162.1	163.8	-	163.5	163.4
9.0	-	8.06	8.03	8.06	-	8.01	8.02	-	163.7	162.1	163.9	-	163.5	163.4
10.0	-	8.05	8.03	8.05	-	8.01	8.02	-	163.7	162.1	163.9	-	163.5	163.4
11.0	-	8.05	8.03	8.06	-	8.01	-	-	163.7	162.1	163.9	-	163.6	-
12.0	-	8.05	8.03	8.06	-	8.01	-	-	163.7	162.1	163.8	-	163.5	-
13.0	-	8.05	8.03	8.06	-	8.01	-	-	163.7	162.0	163.9	-	163.6	-
14.0	-	8.04	8.02	8.05	-	8.01	-	-	163.7	162.1	163.9	-	163.5	-
15.0	-	8.04	8.02	8.05	-	8.01	-	-	163.7	162.0	163.9	-	163.5	-
16.0	-	8.04	8.02	8.05	-	7.99	-	-	163.7	162.0	164.0	-	163.5	-
17.0	-	8.04	8.01	-	-	-	-	-	163.7	162.0	-	-	-	-
18.0	-	8.03	8.01	-	-	-	-	-	163.7	162.0	-	-	-	-
19.0	-	8.03	8.01	-	-	-	-	-	163.7	162.0	-	-	-	-
20.0	-	8.06	8.00	-	-	-	-	-	163.7	162.0	-	-	-	-
21.0	-	8.06	8.00	-	-	-	-	-	163.7	162.0	-	-	-	-
22.0	-	-	8.00	-	-	-	-	-	-	162.0	-	-	-	-
23.0	-	-	8.00	-	-	-	-	-	-	161.9	-	-	-	-

Notes: 18-Aug-20 sampling was conducted by Minnow. Sheardown Lake NW water profile sampling on all other dates was conducted by Baffinland. Total depth at stations DD Hab9, DLO-01-5, DLO-01-1, DLO-01-4, DLO-01-2, and DLO-01-7 was 9.9, 22.2, 17.6, 6.7, 18.2, and 11.4 m, respectively, at the time of fall sampling.

Table C.39: Sampling Depth, Water Clarity Measures, and Surface and Bottom *In Situ* Water Quality Measures Collected at Sheardown Lake NW Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Catego	orization &	Date	Station Depth	Secchi Depth	Depth	Temperature	Dissolve	d Oxygen	рН	Specific Conductance
Rep	licate ID	Sampled	(m)	(m)	sampled	(°C)	(mg/L)	(% sat.)	(units)	(μS/cm)
	DLO-01-9	18-Aug-2020	7.6	4.53	surface	8.5	11.30	96.7	8.02	161.4
v	DEO-01-9	10-Aug-2020	7.0	4.55	bottom	8.6	11.26	96.4	8.00	161.7
tion	DLO-01-4	18-Aug-2020	7.5	4.53	surface	8.5	11.29	96.6	8.00	160.8
Sta	DLO-01-4	10-Aug-2020	7.5	4.55	bottom	8.5	11.25	96.3	7.99	160.7
Littoral (Shallow) Stations	DLO-01-3	18-Aug-2020	8.2	3.88	surface	8.7	11.22	96.5	7.95	161.7
Shal	DEO-01-3	10-Aug-2020	0.2	5.00	bottom	8.7	11.19	96.2	7.93	161.8
al (s	DLO-01-11	18-Aug-2020	8.2	5.28	surface	8.6	11.20	96.2	7.88	161.2
itto	DLO-01-11	10-Aug-2020	0.2	5.20	bottom	8.6	11.10	95.9	7.88	160.9
	DLO-01-10	18-Aug-2020	7.9	4.10	surface	8.6	11.18	95.8	7.81	161.0
	DEO-01-10	10-Aug-2020	1.9	4.10	bottom	8.6	11.15	95.6	7.77	160.9
	DLO-01-5	15-Aug-2020	23.3	4.37	surface	10.4	10.39	95.3	7.87	159.9
v	DEO-01-3	13-Aug-2020	20.0	4.07	bottom	5.5	10.94	89.1	7.31	151.4
tion	DLO-01-14	15-Aug-2020	22.0	5.14	surface	10.4	10.19	93.1	7.86	159.8
Sta	DE0-01-14	10-74ug-2020	22.0	5.14	bottom	5.5	10.82	88.2	7.27	151.3
(dəə	DLO-01-15	15-Aug-2020	21.7	4.91	surface	10.3	10.36	94.7	7.69	159.8
0	DE0-01-10	10-74ug-2020	21.7	4.51	bottom	5.7	10.78	88.2	7.18	151.5
epur	DLO-01-2	18-Aug-2020	17.5		surface	8.8	11.20	96.5	7.98	162.0
Profundal (Deep) Stations	DLO-01-2	10-71ug-2020	17.0	_	bottom	8.7	11.10	95.5	7.96	161.8
	DLO-01-12	15-Aug-2020	14.0	5.41	surface	10.1	10.51	95.8	7.84	159.7
	DLO-01-12	10-Aug-2020	14.0	J. T I	bottom	6.5	11.23	94.0	7.47	152.1

Note: "-" indicates no available data.

Table C.40: Statistical Comparison of Bottom *In Situ* Water Quality Between Sheardown Lake NW Littoral and Profundal Stations, Mary River Project CREMP, August 2020

		Statistical T	est Results				Sur	nmary Statis	stics		
Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Lake Zone	Sample Size	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Secchi Depth	tequal	none	NO	0.183	Littoral	5	4.46	0.54	0.24	3.88	5.28
(m)	tequal	none	NO	0.103	Profundal	4	4.96	0.44	0.22	4.37	5.41
Temperature	M-W	rank	NO	0.110	Littoral	5	8.60	0.07	0.03	8.50	8.70
(°C)	IVI- V V	Idlik	NO	0.110	Profundal	5	6.38	1.36	0.61	5.50	8.70
Dissolved	toqual	none	YES	0.043	Littoral	5	11.2	0.1	0.0	11.1	11.3
Oxygen (mg/L)	tequal	none	160	0.043	Profundal	5	11.0	0.2	0.1	10.8	11.2
Dissolved	tagual	2000	YES	0.012	Littoral	5	96.1	0.3	0.1	95.6	96.4
Oxygen (% saturation)	tequal	none	YES	0.012	Profundal	5	91.0	3.5	1.6	88.2	95.5
рН	to aveal		YES	0.044	Littoral	5	7.91	0.09	0.04	7.77	8.00
(units)	tequal	none	165	0.011	Profundal	5	7.44	0.31	0.14	7.18	7.96
Specific	NA 10/	rouls	NO	0.115	Littoral	5	161.2	0.5	0.2	160.7	161.8
Conductance (umho/cm)	M-W	rank	INU	0.115	Profundal	5	153.6	4.6	2.0	151.3	161.8

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.41: Statistical Comparison of Bottom *In Situ* Water Quality Between Sheardown Lake NW and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical 1	est Results				Summa	ary Statistic	s		
Lake Zone	Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Station Depth	tequal	none	YES	0.004	Reference	4	10.0	1.1	0.5	8.5	11.0
	(m)	tequal	none	ILO	0.004	Sheardown NW	5	7.9	0.3	0.1	7.5	8.2
v	Secchi Depth	tequal	none	YES	0.001	Reference	5	8.12	0.64	0.29	7.38	9.15
Littoral (Shallow) Stations	(m)	toquai	110110	120	0.001	Sheardown NW	5	4.46	0.54	0.24	3.88	5.28
itat	Temperature	tequal	none	YES	0.001	Reference	5	9.32	0.29	0.13	8.90	9.70
8	(°C)		110110	120	0.001	Sheardown NW	5	8.60	0.07	0.03	8.50	8.70
<u> </u>	Dissolved Oxygen	tequal	none	YES	0.002	Reference	5	12.6	0.7	0.3	11.8	13.3
hal	(mg/L)		110110	120	0.002	Sheardown NW	5	11.2	0.1	0.0	11.1	11.3
S)	Dissolved Oxygen	tegual	none	YES	0.001	Reference	5	111.9	5.2	2.3	104.6	116.7
ora	(% saturation)	toquai	110110	120	0.001	Sheardown NW	5	96.1	0.3	0.1	95.6	96.4
l Ħ	pH	tequal	none	YES	0.001	Reference	5	7.19	0.23	0.10	6.94	7.56
	(units)	toquai	110110	120	0.001	Sheardown NW	5	7.91	0.09	0.04	7.77	8.00
	Specific Conductance	M-W	rank	YES	0.012	Reference	5	76.7	3.2	1.4	74.5	82.1
	(umho/cm)					Sheardown NW	5	161.2	0.5	0.2	160.7	161.8
	Station Depth	tequal	none	NO	0.642	Reference	5	20.6	1.6	0.7	19.0	23.0
	(m)					Sheardown NW	5	19.7	3.9	1.7	14.0	23.3
	Secchi Depth	tequal	none	YES	0.001	Reference	5	8.39	0.96	0.43	7.18	9.84
Stations	(m)					Sheardown NW	4	4.96	0.44	0.22	4.37	5.41
tatio	Temperature	M-W	rank	NO	0.916	Reference	5	5.82	0.19	0.09	5.60	6.10
	(°C)			-		Sheardown NW	5	6.38	1.36	0.61	5.50	8.70
eek	Dissolved Oxygen	tequal	log10	YES	0.008	Reference	5	13.6	1.3	0.6	12.8	15.8
	(mg/L)		3 -			Sheardown NW	5	11.0	0.2	0.1	10.8	11.2
nda	Dissolved Oxygen	tegual	log10	YES	0.002	Reference	5	110.6	10.3	4.6	103.5	127.9
Profundal (Deep)	(% saturation)		9			Sheardown NW	5	91.0	3.5	1.6	88.2	95.5
<u> </u>	pH	tequal	none	YES	0.005	Reference	5	6.70	0.30	0.13	6.27	6.95
	(units)					Sheardown NW	5	7.44	0.31	0.14	7.18	7.96
	Specific Conductance	M-W	rank	YES	0.008	Reference	5	75.5	1.6	0.7	74.0	78.1
	(umho/cm)					Sheardown NW	5	153.6	4.6	2.0	151.3	161.8

Highlighted values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.42: Water Chemistry at Sheardown Lake NW (DLO-01) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water							Winter Sam	pling Event					
			Quality	AEMP	DD-HAB9-STN1	DD-HAB9-STN1	DL0-01-5	DL0-01-5	DL0-01-1	DL0-01-1	DL0-01-4	DL0-01-4	DL0-01-2	DL0-01-2	DL0-01-7	DL0-01-7
	Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		17-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	16-Apr-20	17-Apr-20	17-Apr-20	15-Apr-20	15-Apr-20
	Conductivity (lab)	umho/cm	-	-	187	197	179	193	182	196	197	203	182	193	187	194
SIS	pH (lab)	рН	6.5 - 9.0	_	7.69	7.70	7.49	7.71	7.50	7.72	7.67	7.70	7.54	7.70	7.66	7.70
ő	Hardness (as CaCO ₃)	mg/L	-	-	96.3	105	92.4	97.7	91.3	97.5	102	102	90.9	94.9	96.5	102
ij	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
nventionals	Total Dissolved Solids (TDS)	mg/L	-	-	115	118	107	107	112	112	130	124	107	100	139	141
Ö	Turbidity	NTU	-	-	0.18	<0.10	<0.10	<0.10	0.12	0.17	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
_	Alkalinity (as CaCO ₃)	mg/L	-	-	75	78	71	75	70	78	81	83	73	78	71	74
	Total Ammonia	mg/L	-	0.855	0.028	0.031	<0.010	0.029	<0.010	0.028	0.036	0.031	0.012	0.028	0.028	0.032
-	Nitrate	mg/L	3	3	0.196	0.201	0.249	0.196	0.243	0.197	0.202	0.209	0.223	0.194	0.194	0.226
and	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
ni ts	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.19	0.23	<0.15	0.19	<0.15	<0.15	0.17	0.18	0.16	0.20	<0.15	<0.15
ie ga	Dissolved Organic Carbon	mg/L	-	-	2.74	2.83	2.73	2.51	2.46	2.78	2.74	2.75	2.38	3.05	2.89	2.61
Nutri O	Total Organic Carbon	mg/L	-	-	3.61	3.98	3.50	3.40	4.25	4.59	4.42	4.15	4.18	4.30	2.54	2.65
Z	Total Phosphorus	mg/L	0.020 ^a	-	0.0113	<0.0030	0.0112	<0.0030	0.0249	<0.0030	0.0045	0.0079	<0.0030	0.0038	<0.0030	0.0043
	Phenols	mg/L	0.004^{α}	-	<0.0010	<0.0010	<0.0010	<0.0010	0.0029	0.0029	0.0025	0.0020	0.0024	0.0013	<0.0010	<0.0010
JS	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	5.09	5.39	4.86	5.22	4.93	5.29	5.54	5.59	4.98	5.27	5.11	5.39
₹	Sulphate (SO ₄)	mg/L	218 ^β	218	16.8	17.6	15.8	17.1	16.1	17.4	18.0	18.3	16.3	17.3	16.8	17.6
	Aluminum (AI)	mg/L	0.100	0.179, 0.173 ^c	<0.0030	0.0037	<0.0030	0.0035	0.0062	<0.0030	<0.0030	0.0046	<0.0030	0.0162	<0.0030	0.0035
	Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	=	0.00890	0.00939	0.00853	0.00918	0.00865	0.00930	0.00943	0.00958	0.00865	0.00927	0.00955	0.00990
	Beryllium (Be)	mg/L	0.011 ^α	=	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	=	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	0.012	0.012	0.011	0.012	0.011	0.012	0.011	0.012	0.011	0.011	0.011	0.012
	Cadmium (Cd)	mg/L	0.00012	0.00009	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	19.0	19.3	17.7	19.0	17.0	19.6	19.0	20.4	18.1	18.9	18.3	18.3
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00090	0.00093	0.00090	0.00093	0.00088	0.00091	0.00092	0.00096	0.00082	0.00128	0.00099	0.00105
	Iron (Fe)	mg/L	0.30	0.300	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
"	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000096	<0.000050	<0.000050
tals	Lithium (Li)	mg/L	-	-	0.0015	0.0016	0.0015	0.0016	0.0014	0.0016	0.0014	0.0016	0.0016	0.0015	0.0014	0.0015
Metals	Magnesium (Mg)	mg/L	-	-	11.6	12.2	11.1	11.9	11.0	11.6	12.3	12.5	11.1	11.9	12.6	13.1
Total	Manganese (Mn)	mg/L	0.935 ^β	-	0.000548	0.000542	0.00105	0.000428	0.00126	0.000476	0.000632	0.000543	0.000926	0.00119	0.000755	0.000626
۵	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	0.0000059	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.073	-	0.00121	0.00124	0.00109	0.00121	0.00106	0.00123	0.00126	0.00127	0.00109	0.00134	0.00117	0.00123
	Nickel (Ni)	mg/L	0.025	0.025	0.00076	0.00079	0.00073	0.00077	0.00072	0.00080	0.00080	0.00086	0.00071	0.00092	0.00089	0.00090
	Potassium (K)	mg/L	-	-	1.61	1.70	1.51	1.66	1.52	1.66	1.71	1.74	1.51	1.65	1.67	1.73
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.56	0.57	0.81	0.55	0.75	0.56	0.57	0.59	0.65	0.56	0.63	0.60
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	=	2.20	2.32	2.05	2.27	2.08	2.24	2.32	2.38	2.07	2.25	2.39	2.45
	Strontium (Sr)	mg/L	-	-	0.0129	0.0138	0.0121	0.0131	0.0121	0.0133	0.0137	0.0138	0.0124	0.0128	0.0137	0.0142
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	=	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L		-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00139	0.00146	0.00126	0.00146	0.00133	0.00144	0.00149	0.00154	0.00134	0.00143	0.00146	0.00150
	Vanadium (V)	mg/L	0.006 ^α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	<0.0030	< 0.0030	< 0.0030	< 0.0030	0.0088	< 0.0030	< 0.0030

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake.

^c Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively.

Table C.42: Water Chemistry at Sheardown Lake NW (DLO-01) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water							Summer Sai	npling Event					
			Quality	AEMP	DD-HAB9-STN1	DD-HAB9-STN1	DL0-01-5	DL0-01-5	DL0-01-1	DL0-01-1	DL0-01-4	DL0-01-4	DL0-01-2	DL0-01-2	DL0-01-7	DL0-01-7
	Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	28-Jul-20
Con	nductivity (lab)	umho/cm	-	-	160	167	158	166	161	168	161	166	163	167	158	168
Hq as	(lab)	pН	6.5 - 9.0	-	7.95	8.10	7.69	8.14	7.67	8.18	8.14	8.15	7.68	8.17	7.85	8.17
6 Har	rdness (as CaCO ₃)	mg/L	-	-	71.9	73	74.7	77.3	74.3	75.3	75.9	78.6	76	77.3	74	80.3
Tota	tal Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	2.1	<2.0	<2.0	<2.0	8.0	<2.0	<2.0	<2.0
Tota	tal Dissolved Solids (TDS)	mg/L	-	-	80	100	91	93	99	104	87	107	93	93	80	85
	rbidity	NTU	-	-	1.04	0.76	0.87	0.65	0.94	0.78	0.90	0.77	1.01	0.69	0.88	0.77
Alka	talinity (as CaCO ₃)	mg/L	ı	-	57.6	60.0	57.3	60.0	58.5	60.1	57.4	61.1	58.8	59.9	58.6	60.1
Tota	tal Ammonia	mg/L	-	0.855	< 0.0050	<0.0050	0.0063	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
, Nitra	rate	mg/L	3	3	0.204	0.260	0.212	0.221	0.207	0.221	0.199	0.241	0.212	0.222	0.213	0.219
Nitri	rite	mg/L	0.06	0.06	<0.0010	0.0020	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	0.0023	<0.0010	<0.0010	<0.0010	0.0023
<u>2</u> ⊑ Tota	tal Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.122	0.127	0.105	0.116	0.120	0.130	0.127	0.122	0.120	0.148	0.115	0.108
Diss	ssolved Organic Carbon	mg/L	-	-	1.58	1.97	1.52	2.01	1.67	1.90	1.55	1.89	1.92	2.08	1.55	1.64
Tota	tal Organic Carbon	mg/L	-	-	1.55	1.92	1.78	1.76	1.81	1.81	1.65	1.91	1.73	2.06	1.66	1.84
Tota	tal Phosphorus	mg/L	0.020 ^a	-	0.0057	0.0054	0.0026	0.0022	0.0044	0.0042	0.0046	0.0094	0.0028	0.0028	0.0041	0.0060
Phe	enols	mg/L	0.004 ^a	-	0.0025	0.0023	<0.0010	<0.0010	<0.0010	<0.0010	0.0021	0.0033	<0.0010	<0.0010	0.0024	0.0026
g Bro	omide (Br)	mg/L	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Sulp	loride (CI)	mg/L	120	120	4.21	4.37	4.07	4.21	4.08	4.25	4.24	4.40	4.18	4.25	4.21	4.50
₹ Sulp	lphate (SO ₄)	mg/L	218 ^β	218	14.5	15.7	13.4	14.7	13.6	14.9	14.6	15.5	14.5	14.8	14.4	16.0
Alur	ıminum (AI)	mg/L	0.100	0.179, 0.173 ^c	0.0195	0.0162	0.0204	0.0168	0.0159	0.0126	0.0217	0.0045	0.0155	0.0133	0.0199	0.0135
Anti	timony (Sb)	mg/L	0.020 ^a	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Arse	senic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Bari	rium (Ba)	mg/L	-	-	0.00742	0.00752	0.00738	0.00805	0.00742	0.00758	0.00760	0.00743	0.00779	0.00790	0.00735	0.00759
Ber	ryllium (Be)	mg/L	0.011 ^a	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Bisr	smuth (Bi)	mg/L	-	-	< 0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boro	ron (B)	mg/L	1.5	-	0.012	0.014	0.010	0.012	0.010	0.013	0.011	0.013	0.011	0.013	0.011	0.017
Cad	dmium (Cd)	mg/L	0.00012	0.00009	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050
Cald	lcium (Ca)	mg/L	ı	-	14.0	14.7	13.8	14.3	13.4	14.3	14.0	14.5	13.9	14.2	13.6	14.3
Chr	romium (Cr)	mg/L	0.0089	0.0089	0.00015	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	0.00010	<0.00010	0.00011	<0.00010	0.00015	0.00011
Cob	balt (Co)	mg/L	0.0009^{α}	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Cop	pper (Cu)	mg/L	0.002	0.0024	0.00090	0.00093	0.00089	0.00095	0.00090	0.00093	0.00090	0.00085	0.00092	0.00095	0.00099	0.00089
Iron	n (Fe)	mg/L	0.30	0.300	0.028	0.024	0.040	0.022	0.023	0.018	0.030	<0.010	0.023	0.018	0.027	0.020
Lea	ad (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Lithi	nium (Li)	mg/L	ı	-	0.0014	0.0014	0.0013	0.0014	0.0013	0.0014	0.0014	0.0018	0.0014	0.0014	0.0013	0.0015
Metals Mag	ignesium (Mg)	mg/L	ı	-	8.70	9.00	9.23	9.57	9.10	9.94	8.65	9.73	9.41	10.1	8.69	8.51
Mar Mar	inganese (Mn)	mg/L	0.935^{β}	-	0.00334	0.00295	0.00404	0.00258	0.00320	0.00251	0.00351	0.00053	0.00273	0.00247	0.00347	0.00262
Mer Mer	ercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050
Mol	lybdenum (Mo)	mg/L	0.073	-	0.000962	0.00104	0.000898	0.000947	0.000893	0.000981	0.000990	0.00101	0.000966	0.000972	0.00101	0.00103
Nick	ckel (Ni)	mg/L	0.025	0.025	0.00072	0.00069	0.00071	0.00075	0.00073	0.00073	0.00075	0.00069	0.00071	0.00072	0.00076	0.00073
Pota	tassium (K)	mg/L	-	-	1.30	1.35	1.29	1.35	1.30	1.37	1.31	1.37	1.32	1.38	1.30	1.28
	lenium (Se)	mg/L	0.001	-	0.000064	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000060
Silic	icon (Si)	mg/L	ı	-	0.66	0.68	0.67	0.60	0.62	0.59	0.63	0.63	0.60	0.59	0.66	0.61
	ver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sod	dium (Na)	mg/L	-	-	1.72	1.82	1.77	1.91	1.78	1.91	1.77	1.95	1.85	1.93	1.74	1.78
Stro	ontium (Sr)	mg/L	-	_	0.00977	0.0103	0.0102	0.0108	0.00986	0.0107	0.0102	0.0107	0.0104	0.0110	0.0102	0.0102
Tha	allium (TI)	mg/L	0.0008	0.0008	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Tin	ı (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tita	anium (Ti)	mg/L	-	-	0.00108	0.00073	0.00119	0.00070	0.00088	0.00057	0.00117	<0.00030	0.00075	0.00055	0.00099	0.00058
Ura	anium (U)	mg/L	0.015	-	0.00131	0.00146	0.00120	0.00136	0.00128	0.00136	0.00134	0.00143	0.00132	0.00136	0.00132	0.00142
	nadium (V)	mg/L	0.006 ^α	0.006	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	nc (Zn)	mg/L	0.030	0.030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Indicates parameter concentration above applicable Water Quality Guideline. BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake.

 $^{^{\}circ}$ Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively.

Table C.42: Water Chemistry at Sheardown Lake NW (DLO-01) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water							Fall Samp	ling Event					
			Quality	AEMP	DD-HAB9-STN1	DD-HAB9-STN1	DL0-01-5	DL0-01-5	DL0-01-1	DL0-01-1	DL0-01-4	DL0-01-4	DL0-01-2	DL0-01-2	DL0-01-7	DL0-01-7
	Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		26-Aug-20	26-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	26-Aug-20
	Conductivity (lab)	umho/cm	-	-	165	165	166	168	167	167	168	168	166	166	164	164
<u>s</u>	pH (lab)	рН	6.5 - 9.0	_	8.05	8.03	7.98	7.99	8.07	7.99	8.05	8.03	7.97	8.03	8.00	8.03
Conventionals	Hardness (as CaCO ₃)	mg/L	-	-	81.2	79.1	78.5	79.3	79.4	82.2	80.7	81.2	80.3	79.7	79.8	80.1
ntic	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ne	Total Dissolved Solids (TDS)	mg/L	-	-	84	92	87	110	88	83	76	80	98	101	78	127
Son	Turbidity	NTU	-	-	0.58	0.57	0.48	0.51	0.61	0.52	0.49	0.51	0.60	0.62	0.58	0.56
0	Alkalinity (as CaCO ₃)	mg/L	-	-	62	62	68	63	64	63	62	63	190	63	61	61
	Total Ammonia	mg/L	_	0.855	<0.010	<0.010	0.028	<0.010	<0.010	0.017	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
_	Nitrate	mg/L	3	3	0.207	0.202	0.19	0.201	0.244	0.194	0.201	0.255	0.228	0.195	0.208	0.212
and S	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
ts a	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	0.20	0.16	<0.15	0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
ien gal	Dissolved Organic Carbon	mg/L	_	_	2.03	2.08	2.06	2.09	1.95	1.95	2.15	2.05	1.98	2.13	2.04	1.93
rt o	Total Organic Carbon	mg/L	-	-	2.49	2.46	2.76	2.54	2.45	2.61	2.64	2.40	2.54	2.60	2.33	2.42
Z	Total Phosphorus	mg/L	0.020 ^α	-	0.0083	0.0062	0.0102	0.004	0.0061	0.0094	0.0067	0.0079	0.0085	0.0059	0.0059	0.0071
	Phenols	mg/L	0.004°	-	<0.0010	<0.0010	0.0056	<0.0010	<0.0010	0.0031	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	<0.0010
S	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
nions	Chloride (CI)	mg/L	120	120	4.56	4.52	4.44	4.45	4.49	4.45	4.48	4.5	4.45	4.44	4.52	4.56
An	Sulphate (SO ₄)	mg/L	218 ^β	218	15.3	15.3	15.1	15.1	15.2	15.1	15.3	15.3	15.1	15.1	15.2	15.2
	Aluminum (AI)	mg/L	0.100	0.179, 0.173 ^c	0.0087	0.003	0.0097	0.0087	0.0079	0.0083	0.0082	0.0092	0.009	0.0084	0.0102	0.0376
	Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	=	=	0.00813	0.00817	0.00817	0.0081	0.00814	0.00793	0.00838	0.00865	0.00785	0.00813	0.0082	0.00837
	Beryllium (Be)	mg/L	0.011 ^a	=	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	=	=	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	0.014	0.014	0.013	0.013	0.013	0.013	0.015	0.015	0.014	0.013	0.013	0.012
	Cadmium (Cd)	mg/L	0.00012	0.00009	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	15.8	15.7	15.6	15.4	15.4	15.2	15.3	15.8	15.4	15.6	15.3	15.3
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00086	0.00081	0.00083	0.00085	0.00084	0.00083	0.00084	0.00084	0.00088	0.00086	0.00082	0.00086
	Iron (Fe)	mg/L	0.30	0.300	<0.030	< 0.030	<0.030	< 0.030	< 0.030	<0.030	0.041	<0.030	<0.030	<0.030	<0.030	0.051
	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	-	-	0.0016	0.0017	0.0014	0.0014	0.0014	0.0014	0.0016	0.0016	0.0016	0.0016	0.0016	0.0014
Vlet	Magnesium (Mg)	mg/L	-	-	10.1	10.0	10.1	9.96	9.92	10.1	10.2	10.3	10.1	10.2	10.1	10.0
otal	Manganese (Mn)	mg/L	0.935^{β}	-	0.00136	0.000124	0.00134	0.00134	0.00141	0.00129	0.00138	0.00137	0.00127	0.00131	0.00141	0.00228
Tot	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.073	-	0.000999	0.00103	0.00102	0.00102	0.00101	0.001	0.000998	0.00101	0.00103	0.000986	0.00101	0.000973
	Nickel (Ni)	mg/L	0.025	0.025	0.00068	0.00065	0.0007	0.00072	0.00067	0.00069	0.00068	0.0007	0.0007	0.00068	0.00068	0.00071
	Potassium (K)	mg/L	-	-	1.39	1.36	1.36	1.37	1.37	1.36	1.41	1.40	1.38	1.36	1.36	1.39
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.56	0.55	0.54	0.56	0.54	0.55	0.57	0.57	0.55	0.56	0.56	0.59
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	-	1.96	1.94	1.95	1.96	1.94	1.96	1.98	1.95	1.98	1.98	1.93	1.97
	Strontium (Sr)	mg/L	-	-	0.0109	0.0109	0.0109	0.0108	0.0108	0.0108	0.011	0.011	0.0108	0.0107	0.0108	0.0107
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00155	0.00156	0.00153	0.00152	0.00155	0.00153	0.00153	0.00151	0.00148	0.00151	0.00152	0.00155
	Vanadium (V)	mg/L	0.006^{α}	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake.

 $^{^{\}rm c}$ Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively.

Table C.43: Summary of the Magnitude of Elevation in Seasonal Average Parameter Concentrations (Total Metal Concentration Data Provided) Between the Sheardown Lake Basins and Reference Lake 3 in 2020, and at the Sheardown Lake Basins Between 2020 and the Baseline Period

		Shea	rdown Lak	e NW			Shea	ardown Lal	ke SE	
Variable	2020 vs Ro Lake		20	20 vs Baseli	пе	2020 vs R Lak		20	20 vs Baseli	ne
	Summer	Fall	Winter	Summer	Fall	Summer	Fall	Winter	Summer	Fall
Conductivity (lab)	2.1	2.1	1.3	1.4	1.4	1.6	1.8	1.2	1.3	1.3
Hardness (as CaCO ₃)	2.2	2.1	1.5	1.3	1.3	1.7	1.8	1.3	1.3	1.3
Total Suspended Solids (TSS)	1.3	1.0	1.0	0.6	0.8	1.0	1.1	0.9	0.8	0.9
Total Dissolved Solids (TDS)	2.3	1.8	1.3	1.2	1.2	1.7	1.5	1.3	1.1	1.1
Turbidity	5.7	3.8	0.5	1.1	1.0	6.3	16	0.5	0.6	1.3
Alkalinity (as CaCO ₃)	1.3	2.1	1.1	1.0	1.3	1.1	1.6	1.0	1.0	1.1
Total Ammonia	0.5	0.9	0.2	0.1	0.3	0.7	0.9	0.2	0.3	0.4
Nitrate	11	11	2.1	2.2	2.1	4.8	4.5	2.3	1.0	0.9
Nitrite	0.3	1.0	1.3	0.0	1.1	0.3	1.0	1.4	0.1	1.1
Total Kjeldahl Nitrogen (TKN)	0.8	1.0	0.8	0.8	1.0	0.8	1.0	0.7	0.9	0.7
Dissolved Organic Carbon	0.5	0.6	1.5	1.0	1.2	0.6	0.6	1.4	1.3	1.4
Total Organic Carbon	0.4	0.7	2.1	1.0	1.4	0.4	0.6	1.4	1.1	1.5
Total Phosphorus	1.1	2.3	1.9	0.7	1.4	1.6	2.9	0.8	0.9	1.7
Phenols	1.8	1.5	1.7	1.8	1.6	2.6	1.0	1.0	2.6	1.0
Bromide (Br)	0.5	1.0	0.6	0.2	0.4	0.5	1.0	0.7	0.2	0.4
Chloride (CI)	3.1	3.3	1.6	1.7	1.6	2.4	2.8	1.6	1.4	1.3
Sulphate (SO ₄)	4.1	4.2	5.2	5.4	5.0	2.6	2.6	4.3	4.2	3.9
Aluminum (AI)	5.2	3.4	1.6	1.1	0.5	8.6	2.0	1.0	0.3	0.9
, ,										
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Barium (Ba)	1.2	1.2	1.5	1.5	1.6	1.0	1.1	1.6	1.2	1.3
Beryllium (Be)	0.2	1.0	2.0	0.3	1.5	0.2	1.0	1.5	0.2	1.3
Bismuth (Bi)	0.1	1.0	1.0	0.1	1.0	0.1	1.0	1.0	0.1	1.0
Boron (B)	1.2	1.4	1.1	1.2	1.4	1.0	1.1	1.1	1.0	1.1
Cadmium (Cd)	0.5	1.0	0.8	0.4	0.9	0.5	1.0	0.8	0.4	0.8
Calcium (Ca)	2.0	2.1	1.3	1.2	1.3	1.6	1.8	1.2	1.2	1.2
Chromium (Cr)	0.2	1.0	-	0.9	-	0.3	1.0	-	1.1	-
Cobalt (Co)	1.0	1.0	1.0	1.0	0.9	1.0	1.0	1.0	0.9	0.9
Copper (Cu)	1.3	1.1	1.0	0.9	0.6	1.1	1.2	1.0	0.6	0.9
Iron (Fe)	0.8	1.1	1.2	8.0	0.9	1.1	2.1	0.6	0.3	8.0
Lead (Pb)	1.0	1.0	1.0	0.9	0.1	1.1	1.2	0.5	0.5	0.7
Lithium (Li)	1.4	1.5	0.6	0.4	0.0	1.1	1.3	0.4	0.3	0.3
Magnesium (Mg)	2.2	2.2	1.4	1.3	1.4	1.6	1.8	1.4	1.3	1.3
Manganese (Mn)	3.5	1.9	1.2	1.6	0.6	6.6	5.3	0.2	0.9	1.1
Mercury (Hg)	1.0	1.0	0.5	0.4	0.1	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	7.4	6.6	1.5	1.5	1.5	4.8	4.2	1.6	1.8	1.5
Nickel (Ni)	1.4	1.4	1.0	1.1	1.0	1.2	1.2	1.1	0.9	1.0
Potassium (K)	1.5	1.5	1.6	1.7	1.6	1.2	1.3	1.6	1.6	1.5
Selenium (Se)	0.1	1.0	-	0.6	-	0.1	1.0	-	-	-
Silicon (Si)	1.3	1.1	0.8	1.0	0.9	1.1	1.0	0.8	8.0	0.7
Silver (Ag)	1.0	1.0	2.5	1.0	1.3	1.0	1.0	1.6	1.4	1.4
Sodium (Na)	2.1	2.0	1.5	1.7	1.7	1.5	1.8	1.9	2.1	1.9
Strontium (Sr)	1.2	1.3	1.4	1.4	1.4	1.0	1.2	1.3	1.1	1.1
Thallium (TI)	0.1	1.0	2.3	0.2	0.4	0.1	1.0	1.6	0.1	1.3
Tin (Sn)	1.0	1.0	0.2	0.2	0.2	1.0	1.0	0.1	0.1	0.1
Titanium (Ti)	0.1	1.0	1.0	0.1	1.0	0.1	1.0	1.0	0.1	0.9
Uranium (U)	4.3	4.6	1.5	1.8	1.8	2.8	3.6	1.6	1.6	1.6
Vanadium (V)	0.5	1.0	1.0	0.5	1.0	0.5	1.0	1.0	0.5	1.0
Zinc (Zn)	1.0	1.0	1.4	1.5	1.2	1.0	1.0	1.2	1.8	1.9

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference or baseline period value).

Table C.44: Dissolved Metal Concentrations at Sheardown Lake NW Water Quality Monitoring Stations, Mary River Project CREMP, 2020

								Winter Sam	pling Event							Sur	nmer Sampli	ng Event		
	D	11-4-	DD-HAB9-STN1	DD-HAB9-STN1	DL0-01-5	DL0-01-5	DL0-01-1	DL0-01-1	DL0-01-4	DL0-01-4	DL0-01-2	DL0-01-2	DL0-01-7	DL0-01-7	DD-HAB9-STN1	DD-HAB9-STN1	DL0-01-5	DL0-01-5	DL0-01-1	DL0-01-1
	Parameters	Units	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			17-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	16-Apr-20	17-Apr-20	17-Apr-20	15-Apr-20	15-Apr-20	28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20
	Aluminum (AI)	mg/L	<0.0030	<0.0030	<0.0030	0.0032	0.0406	<0.0030	<0.0030	0.0052	0.0037	<0.0030	0.0065	<0.0030	0.0025	0.0035	0.0031	0.0036	0.0030	0.0226
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00880	0.0102	0.00861	0.00899	0.00877	0.00891	0.00936	0.00960	0.00847	0.00873	0.00951	0.0102	0.00663	0.00693	0.00755	0.00752	0.00736	0.00775
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	0.012	0.012	0.011	0.012	0.011	0.012	0.012	0.012	0.010	0.011	0.012	0.012	0.011	0.012	0.010	0.012	0.011	0.012
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.000050
	Calcium (Ca)	mg/L	19.4	20.6	19.0	19.8	18.1	19.4	20.6	20.3	18.0	18.7	18.1	19.3	13.8	14.2	14.7	15.0	14.6	14.3
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	0.00012	<0.00010	<0.00010	<0.00010
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00095	0.00101	0.00095	0.00096	0.00096	0.00096	0.00093	0.00095	0.00089	0.00093	0.00110	0.00101	0.00070	0.00079	0.00081	0.00085	0.00080	0.00081
	Iron (Fe)	mg/L	< 0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
<u>s</u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	0.0017	0.0017	0.0016	0.0016	0.0016	0.0017	0.0016	0.0017	0.0014	0.0015	0.0014	0.0017	0.0013	0.0013	0.0013	0.0014	0.0014	0.0015
<u>></u>	Magnesium (Mg)	mg/L	11.6	12.9	10.9	11.7	11.2	11.9	12.2	12.4	11.2	11.7	12.5	13.2	9.09	9.10	9.21	9.69	9.19	9.65
) OKe	Manganese (Mn)	mg/L	0.000171	0.000173	0.000174	0.000137	0.000296	0.000123	0.000133	0.000208	0.000200	0.000153	0.000215	0.000148	<0.00010	0.00038	0.00015	0.00041	<0.00010	0.00043
Dissolved	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.00119	0.00124	0.00108	0.00128	0.00109	0.00124	0.00133	0.00129	0.00113	0.00120	0.00115	0.00127	0.000906	0.000980	0.000920	0.00101	0.000927	0.000940
	Nickel (Ni)	mg/L	0.00076	0.00084	0.00072	0.00079	0.00075	0.00080	0.00077	0.00081	0.00081	0.00078	0.00087	0.00087	0.00060	0.00064	0.00066	0.00069	0.00067	0.00072
	Potassium (K)	mg/L	1.62	1.73	1.51	1.65	1.54	1.67	1.69	1.74	1.54	1.60	1.65	1.73	1.30	1.27	1.33	1.36	1.33	1.42
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)	mg/L	0.55	0.56	0.79	0.55	0.74	0.55	0.58	0.59	0.66	0.53	0.61	0.62	0.561	0.527	0.634	0.559	0.604	0.542
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	2.21	2.43	2.11	2.24	2.15	2.31	2.32	2.41	2.13	2.21	2.35	2.44	1.77	1.81	1.82	1.93	1.84	2.10
	Strontium (Sr)	mg/L	0.0127	0.0136	0.0122	0.0135	0.0123	0.0136	0.0143	0.0136	0.0121	0.0130	0.0133	0.0146	0.00945	0.0101	0.0103	0.0108	0.0101	0.0108
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Uranium (U)	mg/L	0.00142	0.00151	0.00128	0.00146	0.00136	0.00148	0.00159	0.00159	0.00136	0.00147	0.00148	0.00156	0.00127	0.00142	0.00121	0.00137	0.00127	0.00142
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0116	<0.0030	< 0.0030	<0.0030	< 0.0030	<0.0030	0.0050	< 0.0030	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

Table C.44: Dissolved Metal Concentrations at Sheardown Lake NW Water Quality Monitoring Stations, Mary River Project CREMP, 2020

					Summer San	npling Event							F	all Sampling E	vent					
	Davamatava	Unita	DL0-01-04	DL0-01-04	DL0-01-2	DL0-01-2	DL0-01-7	DL0-01-7	DD-HAB9-STN1	DD-HAB9-STN1	DL0-01-1	DL0-01-1	DL0-01-5	DL0-01-5	DL0-01-4	DL0-01-4	DL0-01-2	DL0-01-2	DL0-01-7	DL0-01-7
	Parameters	Units	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			28-Jul-20	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	28-Jul-20	26-Aug-20	26-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	26-Aug-20
	Aluminum (AI)	mg/L	0.0028	0.0149	0.0241	0.0038	0.0038	0.0039	<0.0030	0.0088	<0.0030	<0.0030	0.0032	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00760	0.00792	0.00769	0.00788	0.00745	0.00786	0.0082	0.00799	0.00786	0.00774	0.00786	0.00808	0.00812	0.00797	0.00786	0.00795	0.00791	0.00802
	Beryllium (Be)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	0.012	0.013	0.011	0.013	0.011	0.019	0.014	0.014	0.013	0.013	0.014	0.014	0.015	0.015	0.014	0.013	0.013	0.013
	Cadmium (Cd)	mg/L	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	15.2	14.9	14.7	15.0	13.6	15.2	15.8	15.3	15.2	15.4	15.1	15.9	15.4	15.9	15.5	15.3	15.5	15.5
	Chromium (Cr)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00078	0.00087	0.00080	0.00086	0.00081	0.00085	0.00082	0.00082	0.00079	0.00079	0.00082	0.0008	0.00079	0.0008	0.00081	0.00082	0.0008	0.00082
	Iron (Fe)	mg/L	<0.010	0.019	<0.010	<0.010	<0.010	<0.010	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
<u> </u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	0.0015	0.0013	0.0014	0.0015	0.0012	0.0015	0.0017	0.0016	0.0014	0.0015	0.0017	0.0018	0.0017	0.0018	0.0015	0.0016	0.0015	0.0016
≥	Magnesium (Mg)	mg/L	9.24	10.1	9.58	9.67	9.70	10.3	10.1	9.92	9.85	9.95	10.1	10.3	10.3	10.1	10.1	10.1	9.98	10
١	Manganese (Mn)	mg/L	0.00018	0.00267	0.00024	0.00043	<0.00010	0.00059	0.000158	0.00136	0.000092	0.000095	0.000108	0.000113	0.000138	0.000114	0.000104	0.000128	0.000091	0.0001
Dissolved	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)	mg/L	0.000977	0.000989	0.000972	0.000988	0.000856	0.000946	0.00106	0.001	0.00103	0.00099	0.00101	0.00102	0.00101	0.00101	0.00101	0.00101	0.00102	0.00105
	Nickel (Ni)	mg/L	0.00064	0.00067	0.00068	0.00068	0.00062	0.00066	0.00068	0.0007	0.00064	0.00065	0.00075	0.00066	0.00066	0.00069	0.00066	0.00069	0.00067	0.00063
	Potassium (K)	mg/L	1.41	1.32	1.38	1.39	1.31	1.35	1.38	1.36	1.33	1.35	1.37	1.39	1.4	1.39	1.37	1.38	1.36	1.36
	Selenium (Se)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.583	0.572	0.570	0.561	0.532	0.560	0.57	0.55	0.53	0.55	0.55	0.58	0.55	0.55	0.55	0.57	0.54	0.55
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	1.81	1.96	2.03	1.92	1.86	1.95	1.96	1.95	1.93	1.94	1.97	2.02	2.05	1.95	2	2	1.91	1.92
	Strontium (Sr)	mg/L	0.0103	0.0104	0.0108	0.0110	0.00987	0.0109	0.011	0.0108	0.011	0.0105	0.0109	0.0108	0.0109	0.0109	0.0109	0.0108	0.0107	0.0109
	Thallium (TI)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.00030	0.00057	<0.00030	<0.00030	<0.00030	<0.00030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00135	0.00139	0.00130	0.00134	0.00123	0.00136	0.00178	0.00157	0.00153	0.00152	0.00152	0.00154	0.00149	0.00152	0.00149	0.0015	0.00151	0.00152
	Vanadium (V)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	0.0012	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0032	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.45: Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations Between Sheardown Lake Northwest and Reference Lake 3 in 2020, and at Sheardown Lake Northwest Between 2020 and the Baseline Period

			Sheardown Lake N	N	
Dissolved Metal	2020 vs R Lak			2020 vs Baseline	
	Summer	Fall	Winter	Summer	Fall
Aluminum (AI)	0.6	0.8	0.0	1.6	1.2
Antimony (Sb)	1.0	1.0	0.0	0.0	1.0
Arsenic (As)	1.0	1.0	1.0	0.8	1.0
Barium (Ba)	1.2	1.2	0.0	1.4	1.4
Beryllium (Be)	0.2	1.0	1.2	0.2	2.1
Bismuth (Bi)	0.1	1.0	1.0	0.0	1.0
Boron (B)	1.2	1.4	1.2	1.3	1.4
Cadmium (Cd)	0.5	1.0	0.4	0.0	0.8
Calcium (Ca)	2.1	2.1	1.5	1.3	1.3
Chromium (Cr)	0.2	1.0	-	0.9	-
Cobalt (Co)	1.0	1.0	1.0	1.0	0.9
Copper (Cu)	1.2	1.1	0.8	0.5	1.0
Iron (Fe)	0.4	1.0	1.2	0.4	1.7
Lead (Pb)	1.0	1.0	0.6	1.0	1.0
Lithium (Li)	1.4	1.6	0.4	0.0	0.7
Magnesium (Mg)	2.2	2.1	1.5	1.4	1.4
Manganese (Mn)	2.2	1.6	0.3	0.0	0.3
Mercury (Hg)	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	7.3	6.6	5.3	0.0	5.1
Nickel (Ni)	1.3	1.3	1.1	0.7	1.2
Potassium (K)	1.6	1.5	1.0	1.2	1.1
Selenium (Se)	0.1	1.0	-	0.5	-
Silicon (Si)	1.2	1.1	1.3	1.4	1.4
Silver (Ag)	1.0	1.0	1.2	1.8	2.7
Sodium (Na)	2.1	1.9	1.4	1.5	1.5
Strontium (Sr)	1.3	1.3	1.7	1.5	1.4
Thallium (TI)	0.1	1.0	1.2	0.1	2.6
Tin (Sn)	1.0	1.0	0.1	0.2	0.1
Titanium (Ti)	0.0	1.0	1.0	0.0	1.0
Uranium (U)	4.4	4.7	3.0	2.9	3.1
Vanadium (V)	0.5	1.0	1.0	0.5	1.0
Zinc (Zn)	0.3	1.0	2.0	0.3	1.9

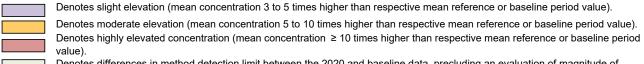


Table C.46: In Situ Water Quality Profile Data Collected at Sheardown Lake SE Water Quality Monitoring Stations in Winter, Mary River Project CREMP, April 2020

Depth		Ter	nperature	(°C)			Dissolv	ed Oxyge	n (mg/L)			Dissolved (Oxygen (%	Saturation)		ŗ	H (pH unit	s)			Specific C	onductand	ce (µS/cm)	
(m)	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3
Date Collected	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20
1.0	0.0	-0.1	0.1	0.0	0.6	13.10	13.71	14.17	14.03	13.39	89.6	93.6	97.3	96.3	93.4	7.70	7.70	8.19	7.85	7.84	160.9	170.6	200.7	176.4	199.8
2.0	0.0	0.0	0.3	0.1	0.2	12.82	13.33	13.63	13.63	13.28	88.0	91.2	94.0	93.9	91.6	7.56	7.64	7.94	7.76	7.69	157.6	168.4	190.1	179.6	191.2
3.0	0.2	0.1	0.5	0.6	0.5	12.67	12.54	13.39	13.24	12.92	87.4	86.1	93.2	92.1	90.0	7.52	7.57	7.81	7.73	7.59	159.6	173.7	187.7	177.5	187.9
4.0	0.5	-	0.7	0.7	0.7	12.31	-	13.20	13.09	12.74	85.6	-	92.4	91.4	89.2	7.49	-	7.71	7.70	7.54	169.2	-	186.3	179.5	186.3
5.0	0.8	-	0.8	0.8	0.8	12.00	-	13.11	12.93	12.61	84.0	-	91.8	90.5	88.4	7.46	-	7.69	7.69	7.49	182.7	-	186.0	181.2	185.5
6.0	1.0	-	0.9	0.8	0.9	11.28	-	12.96	12.77	12.42	79.5	-	90.9	89.6	87.2	7.40	-	7.65	7.66	7.45	194.6	-	185.7	183.4	184.2
7.0	-	-	0.9	0.9	0.9	-	-	12.64	12.57	12.25	-	-	88.8	88.3	86.1	-	-	7.62	7.64	7.41	-	-	186.0	183.3	183.3
8.0	-	-	0.9	1.0	1.0	-	-	12.06	12.23	11.98	-	-	85.0	86.3	84.3	-	-	7.59	7.62	7.38	-	-	187.7	182.0	182.4
9.0	-	-	-	1.1	1.1	-	-	-	11.85	11.78	-	-	-	83.8	83.3	-	-	-	7.59	7.37	-	-	-	181.0	181.8
10.0	-	-	-	1.2	1.2	-	-	-	10.97	10.46	-	-	-	77.7	74.1	-	-	-	7.50	7.35	-	-	-	180.1	180.7
11.0	-	-	-	1.3	1.3	-	-	-	8.72	9.00	-	-	-	62.0	64.1	-	-	-	7.48	7.28	-	-	-	180.4	182.6
12.0	-	-	-	1.4	1.5	-	-	-	6.74	7.31	-	-	-	48.2	52.3	-	-	-	7.40	7.23	-	-	-	181.2	183.6
13.0	-	-	-	-	1.7	-	-	-	-	3.66	-	-	-	-	26.2	-	-	-	-	7.13	-	-	-	-	191.0

Notes: Total depth at stations DLO-02-6, DLO-02-7, DLO-02-4, DLO-02-8, and DLO-02-3 was 6.8, 4.2, 8.7, 12.9, and 14.1 m, respectively, at the time of winter sampling. Ice thickness at stations DLO-02-6, DLO-02-8, and DLO-02-3 was 1.40, 1.62, 1.86, 1.96, and 1.62 m, respectively, at the time of winter sampling.

Table C.47: In Situ Water Quality Profile Data Collected at Sheardown Lake SE Water Quality Monitoring Stations in Summer, Mary River Project CREMP, July 2020

Depth		Ter	nperature (°	°C)			Dissolv	ed Oxyger	n (mg/L)			Dissolved	Oxygen (%	Saturation	1)		р	H (pH unit	s)			Specific (Conductan	ce (µS/cm)	
(m)	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3
Date Collected	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20
1.0	15.6	15.6	16.0	16.0	15.8	10.56	10.62	10.35	10.41	10.47	106.2	106.6	105.0	105.5	105.7	8.32	8.33	8.29	8.32	8.27	132.4	130.4	129.2	129.2	129.7
2.0	15.0	14.5	16.0	16.0	15.8	11.16	11.31	10.35	10.43	10.49	110.3	110.8	105.0	105.5	105.7	8.37	8.39	8.26	8.33	8.34	130.7	128.6	129.5	129.4	129.9
3.0	14.1	13.6	15.6	15.5	14.0	11.70	11.64	10.73	10.49	11.55	113.6	112.0	107.2	105.1	112.0	8.47	8.38	8.26	8.30	8.39	128.6	126.3	130.6	131.9	128.1
4.0	12.9	-	12.7	12.7	12.3	12.03	-	11.64	11.82	11.83	113.8	-	109.3	111.1	110.5	8.48	-	8.31	8.34	8.36	126.6	-	122.8	122.4	121.7
5.0	11.3	-	11.5	11.7	11.4	12.15	-	11.75	11.74	11.77	110.8	-	108.0	108.2	107.8	8.36	-	8.26	8.28	8.27	129.2	-	121.2	121.1	120.6
6.0	10.1	-	10.7	11.0	10.8	11.78	-	11.52	11.58	11.53	104.8	-	103.8	105.1	104.2	8.17	-	8.02	8.07	8.12	129.0	-	120.4	120.1	120.0
7.0	-	-	9.8	9.5	10.0	-	-	11.28	11.12	11.26	-	-	99.6	97.4	91.8	-	-	7.93	7.93	7.98	-	-	119.6	118.4	119.2
8.0	-	-	8.4	8.3	8.2	-	-	10.94	10.97	11.16	-	-	93.4	93.3	95.0	-	-	7.81	7.80	7.86	-	-	117.5	116.5	116.6
9.0	-	-	-	7.4	7.4	-	-	-	10.89	10.98	-	-	-	90.6	91.3	-	-	-	7.71	7.73	-	-	-	115.4	115.2
10.0	-	-	-	6.1	6.8	-	-	-	10.70	10.86	-	-	-	86.5	89.1	-	-	-	7.65	7.66	-	-	-	114.8	115.1
11.0	-	-	-	5.9	6.3	-	-	-	10.31	10.68	-	-	-	83.1	86.4	-	-	-	7.56	7.60	-	-	-	115.2	115.0
12.0	-	-	-	5.7	6.0	-	-	-	10.03	10.33	-	-	-	80.1	82.9	-	-	-	7.48	7.55	-	-	-	115.5	115.3
13.0	-	-	-	-	5.8	-	-	-	-	10.06	-	-	-	-	80.7	-	-	-	-	7.51	-	-	-	-	115.6
14.0	-	-	-	-	5.6	-	-	-	-	9.05	-	-	-	-	71.9	-	-	-	-	7.48	-	-	-	-	116.5

Note: Total depth at stations DLO-02-6, DLO-02-7, DLO-02-4, DLO-02-8, and DLO-02-3 was 6.5, 3.8, 8.4, 12.6, and 13.3 m, respectively, at the time of summer sampling.

Table C.48: In Situ Water Quality Profile Data Collected at Sheardown Lake SE Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth			Tempera	iture (°C)				I	Dissolved O	xygen (mg/L)			Diss	olved Oxyge	en (% Satura	ition)	
(m)	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-3
Date Collected	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	13-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	13-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	13-Aug-20
surface	-	-	-	-	-	10.5	-	-	-	-	-	10.67	-	-	-	-	-	98.2
1.0	8.6	8.6	8.7	8.7	8.7	10.6	11.42	11.34	11.17	11.26	11.30	10.69	97.9	97.3	96.0	96.8	97.0	98.2
2.0	8.6	8.6	8.7	8.7	8.7	10.5	11.41	11.34	11.17	11.25	11.28	10.50	97.8	97.2	96.0	96.7	97.0	96.8
3.0	8.6	8.6	8.7	8.7	8.7	10.5	11.41	11.34	11.17	11.24	11.27	10.54	97.8	97.1	96.0	96.6	96.9	96.9
4.0	8.6	8.6	8.7	8.7	8.7	10.5	11.39	11.36	11.18	11.23	11.27	10.51	97.6	97.2	96.1	96.6	96.9	96.5
5.0	8.6	-	8.7	8.7	8.7	10.5	11.39	-	11.17	11.23	11.27	10.50	97.6	-	96.0	96.5	96.9	96.6
6.0	-	-	8.7	8.7	8.7	10.5	-	-	11.16	11.23	11.26	10.51	-	-	95.9	96.5	96.8	96.6
7.0	-	-	8.7	8.7	8.7	10.5	-	-	11.16	11.22	11.26	10.30	-	-	95.9	96.5	96.7	94.8
8.0	-	-	-	8.7	8.7	10.5	-	-	-	11.22	11.25	10.62	-	-	-	96.4	96.7	97.5
9.0	-	-	-	8.7	8.7	10.5	-	-	-	11.21	11.25	10.47	-	-	-	96.4	96.7	96.0
10.0	-	-	-	8.7	8.7	10.1	-	-	-	11.21	11.24	10.23	-	-	-	96.3	96.6	92.9
11.0	-	-	-	8.7	8.7	7.5	-	-	-	11.20	11.23	10.03	-	-	-	96.3	96.5	85.9
12.0	-	-	-	-	8.6	5.9	-	-	-	-	11.22	8.53	-	-	-	-	96.5	70.1
13.0	-	-	-	-	-	5.9	-	-	-	-	-	8.07	-	-	-	-	-	66.1
14.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: 13-Aug-20 sampling was conducted by Minnow. Sheardown Lake SE water profile sampling on all other dates was conducted by Baffinland. Total depth at stations DLO-02-6, DLO-02-7, DLO-02-8, and DLO-02-3 was 6.5, 3.7, 8.2, 12.6, and 14.1 m, respectively, at the time of fall sampling.

Table C.48: In Situ Water Quality Profile Data Collected at Sheardown Lake SE Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth			pH (pH	l units)					Specific Condu	ıctance (μS/cm)	
(m)	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-3	DLO-02-6	DLO-02-7	DLO-02-4	DLO-02-8	DLO-02-3	DLO-02-3
Date Collected	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	13-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	13-Aug-20
surface	-	-	-	-	-	7.97	-	-	-	-	-	126.7
1.0	8.08	8.05	7.99	8.04	8.04	8.01	139.1	138.3	136.9	137.3	137.5	126.7
2.0	8.08	8.06	7.99	8.03	8.04	8.02	139.2	138.9	137.0	137.4	137.6	126.7
3.0	8.08	8.05	7.99	8.03	8.04	8.02	139.3	139.0	137.0	137.4	137.6	126.7
4.0	8.08	8.07	7.99	8.03	8.04	8.03	139.4	139.2	137.0	137.4	137.6	126.7
5.0	8.08	-	8.00	8.03	8.04	8.04	139.5	-	137.1	137.5	137.7	126.7
6.0	-	-	8.00	8.03	8.04	8.03	-	-	137.1	137.5	137.6	126.7
7.0	-	-	7.99	8.03	8.04	8.03	-	-	137.1	137.5	137.7	126.7
8.0	-	-	-	8.03	8.04	8.02	-	-	-	137.5	137.6	126.8
9.0	-	-	-	8.03	8.04	8.00	-	-	-	137.5	137.6	126.8
10.0	-	-	-	8.03	8.04	7.85	-	-	-	137.5	137.6	124.9
11.0	-	-	-	8.02	8.03	7.50	-	-	-	137.5	137.6	117.0
12.0	-	-	-	-	8.03	7.10	-	-	-	-	137.1	114.7
13.0	-	-	-	-	-	6.83	-	-	-	-	-	115.2
14.0	-	-	-	-	-	-	-	-	-	-	-	-

Notes: 13-Aug-20 sampling was conducted by Minnow. Sheardown Lake SE water profile sampling on all other dates was conducted by Baffinland. Total depth at stations DLO-02-6, DLO-02-7, DLO-02-4, DLO-02-8, and DLO-02-3 was 6.5, 3.7, 8.2, 12.6, and 14.1 m, respectively, at the time of fall sampling.

Table C.49: Sampling Depth, Water Clarity Measures, and Surface and Bottom *In Situ* Water Quality Measures Collected at Sheardown Lake SE Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Catego	orization &	Date	Station Depth	Secchi Depth	Depth	Temperature	Dissolve	d Oxygen	pН	Specific Conductance
Repl	licate ID	Sampled	(m)	(m)	sampled	(°C)	(mg/L)	(% sat.)	(units)	(μS/cm)
	DLO-02-1	13-Aug-20	12.1	5.53	surface	10.5	10.69	98.1	7.92	126.8
1	DLO-02-1	13-Aug-20	12.1	5.55	bottom	10.4	10.45	96.0	7.90	128.1
tions	DLO-02-11	18-Aug-20	7.0	1.00	surface	9.4	9.88	88.7	7.97	135.7
Sta	DLO-02-11	10-Aug-20	7.0	1.00	bottom	9.4	9.73	87.2	7.98	135.7
low)	DLO-02-10	18-Aug-20	7.0	1.07	surface	9.4	9.79	87.7	7.93	135.6
Shal	DLO-02-10	10-Aug-20	7.0	1.07	bottom	9.4	9.80	87.6	7.95	135.8
Littoral (Shallow) Stations	DLO-02-4	18-Aug-20	8.0	1.26	surface	9.4	9.86	88.4	7.87	135.5
itto	DLO-02-4	10-Aug-20	0.0	1.20	bottom	9.4	9.17	82.2	7.75	134.7
	DLO-02-9	19-Aug-20	8.5	1.19	surface	9.1	10.16	90.1	7.62	136.5
	DLO-02-9	19-Aug-20	6.5	1.19	bottom	9.1	10.03	89.3	7.55	136.5
	DLO-02-12	18-Aug-20	11.0	1.66	surface	9.3	11.06	96.5	8.11	132.8
	DLO-02-12	16-Aug-20	11.0	1.00	bottom	9.3	10.99	95.8	8.10	132.9
tions	DLO-02-8	19-Aug-20	13.0	1.10	surface	9.1	10.60	94.4	7.51	136.4
Stat	DLO-02-0	19-Aug-20	13.0	1.10	bottom	9.0	10.75	95.6	7.41	136.9
(dee	DLO-02-13	19-Aug-20	11.0	1.28	surface	9.1	10.66	94.6	7.55	136.1
Q =	DLO-02-13	19-Aug-20	11.0	1.20	bottom	9.1	10.47	93.3	7.36	136.2
Profundal (Deep) Stations	DLO-02-2	19-Aug-20	15.0	1.40	surface	9.1	10.65	94.6	7.61	136.4
Profi	DLO-02-2	13-Aug-20	13.0	1.40	bottom	9.0	10.56	93.8	7.61	136.8
	DLO-02-3	12 Aug 20	13.2	5.36	surface	10.5	10.56	97.9	7.89	126.6
	DLO-02-3	13-Aug-20	13.2	0.30	bottom	6.0	8.43	69.6	7.12	115.0

Table C.50: Statistical Comparison of Bottom *In Situ* Water Quality Between Sheardown Lake SE Littoral and Profundal Stations, Mary River Project CREMP, August 2020

		Statistical 1	Test Results				Su	mmary Statis	stics		
Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Lake Zone	Sample Size	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Secchi Depth	M-W	rank	NO	0.310	Littoral	5	2.01	1.97	0.88	1.00	5.53
(m)	IVI-VV	Tank	140	0.010	Profundal	5	2.16	1.80	0.80	1.10	5.36
Temperature	M-W	rank	YES	0.025	Littoral	5	9.54	0.50	0.22	9.10	10.40
(°C)	IVI-VV	Tank	TES	0.025	Profundal	5	8.48	1.39	0.62	6.00	9.30
Dissolved	M-W	rank	NO	0.151	Littoral	5	9.8	0.5	0.2	9.2	10.5
Oxygen (mg/L)	IVI-VV	Tank	INO	0.151	Profundal	5	10.2	1.0	0.5	8.4	11.0
Dissolved	M-W	rank	NO	0.548	Littoral	5	88.5	5.0	2.2	82.2	96.0
Oxygen (% saturation)	IVI-VV	rank	NO	0.546	Profundal	5	89.6	11.2	5.0	69.6	95.8
рН	togual	200	NO	0.422	Littoral	5	7.83	0.18	0.08	7.55	7.98
(units)	tequal	none	NO	0.133	Profundal	5	7.52	0.37	0.16	7.12	8.10
Specific	NA 107	rank	NO	0.600	Littoral	5	134.2	3.4	1.5	128.1	136.5
Conductance (umho/cm)	M-W	rank	NU	0.690	Profundal	5	131.6	9.4	4.2	115.0	136.9

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.51: Statistical Comparison of Bottom *In Situ* Water Quality Between Sheardown Lake SE Lake and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

		St	atistical Tes	st Results				S	ummary Statis	tics		
Lake Zone	Habitat Variable	Significant Difference Between Areas?	P-value	Statistical Analysis	Transforma tion	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Station Depth	NO	0.246	tequal	none	Reference	4	10.0	1.08	0.540	8.50	11.0
	(m)	NO	0.240	tequal	Hone	Mary Lake	5	8.52	2.10	0.941	7.00	12.1
w	Secchi Depth	YES	0.008	M-W	rank	Reference	5	8.12	0.645	0.288	7.38	9.15
o n	(m)	TEO	0.000	101-00	Tank	Mary Lake	5	2.01	1.97	0.882	1.00	5.53
Littoral (Shallow) Stations	Temperature	NO	0.420	tequal	none	Reference	5	9.32	0.295	0.132	8.90	9.70
S	(°C)	140	0.420	toquai	Horic	Mary Lake	5	9.54	0.498	0.223	9.10	10.4
<u>8</u>	Dissolved Oxygen	YES	0.001	tequal	none	Reference	5	112	5.23	2.34	105	117
hal	(mg/L)	120	0.001	toquai	Hono	Mary Lake	5	88.5	4.98	2.23	82.2	96.0
S)	Dissolved Oxygen	YES	0.001	tequal	none	Reference	5	112	5.23	2.34	105	117
ora	(% saturation)	120	0.001	toquai	Hono	Mary Lake	5	88.5	4.98	2.23	82.2	96.0
≛	pH	YES	0.001	tequal	none	Reference	5	7.19	0.228	0.102	6.94	7.56
-	(units)	120	0.001	toquai	Hono	Mary Lake	5	7.83	0.178	0.0795	7.55	7.98
	Specific Conductance	YES	0.001	tegual	none	Reference	5	76.7	3.16	1.41	74.5	82.1
	(umho/cm)	0		to qua.		Mary Lake	5	134	3.45	1.54	128	137
	Station Depth	YES	0.001	tequal	none	Reference	5	20.6	1.56	0.696	19.0	23.0
	(m)		0.00.	to qua.		Mary Lake	5	12.6	1.69	0.755	11.0	15.0
	Secchi Depth	YES	0.008	M-W	rank	Reference	5	8.39	0.962	0.430	7.18	9.84
suo	(m)		0.000		14	Mary Lake	5	2.16	1.80	0.805	1.10	5.36
tati	Temperature	YES	0.021	M-W	rank	Reference	5	5.82	0.192	0.0860	5.60	6.10
8	(°C)	0	0.02.			Mary Lake	5	8.48	1.39	0.622	6.00	9.30
ee de	Dissolved Oxygen	YES	0.015	tequal	none	Reference	5	111	10.3	4.59	104	128
0	(mg/L)	0		to qua.		Mary Lake	5	89.6	11.2	5.03	69.6	95.8
nda	Dissolved Oxygen	YES	0.015	tequal	none	Reference	5	111	10.3	4.59	104	128
Profundal (Deep) Stations	(% saturation)	.20	0.010	10494		Mary Lake	5	89.6	11.2	5.03	69.6	95.8
<u>r</u>	pH	YES	0.005	tequal	none	Reference	5	6.70	0.295	0.132	6.27	6.95
	(units)	. = -		10 4 227		Mary Lake	5	7.52	0.368	0.165	7.12	8.10
	Specific Conductance	YES	0.008	M-W	rank	Reference	5	75.5	1.64	0.734	74.0	78.1
	(umho/cm)					Mary Lake	5	132	9.40	4.20	115	137

Highlighted values indicate significant difference between study areas based on ANOVA p-value less than 0.10.

Notes: Analysis was completed on samples collected at the bottom of the water column. M-W = Mann-Whitney U-Test, tequal = T-test with equal variance, tunequal = T-test with unequal variance.

Table C.52: Water Chemistry at Sheardown Lake SE (DLO-02) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

		Water						Winter San	npling Event				
Davamatava	Unito	Quality	AEMP	DL0-02-6	DL0-02-6	DL0-02-7	DL0-02-7	DL0-02-4	DL0-02-4	DL0-02-8	DL0-02-8	DL0-02-3	DL0-02-3
Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
		(WQG) ^a		15-Apr-20	15-Apr-20	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	15-Apr-2
Conductivity (lab)	umho/cm	-	-	204	208	196	200	188	192	183	191	186	192
pH (lab)	рН	6.5 - 9.0	-	7.37	7.42	7.47	7.45	7.48	7.50	7.37	7.51	7.28	7.50
Hardness (as CaCO ₃)	mg/L	-	-	108	108	105	105	96.7	98.5	94.6	99.5	97.6	101
Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Total Dissolved Solids (TDS) Turbidity	mg/L	-	-	155	147	134	148	117	118	131	117	114	105
Turbidity	NTU	-	-	0.18	0.14	0.14	0.80	0.17	0.13	0.18	0.20	0.22	0.11
Alkalinity (as CaCO ₃)	mg/L	-	-	85	85	81	81	76	78	73	77	76	79
Total Ammonia	mg/L	-	0.855	<0.010	<0.010	0.020	0.018	0.026	0.030	<0.010	0.024	<0.010	0.024
Nitrate	mg/L	3	3	0.256	0.283	0.223	0.229	0.211	0.208	0.230	0.206	0.239	0.212
Total Ammonia Nitrate Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.005
Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	0.16	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Dissolved Organic Carbon	mg/L	-	-	3.69	2.64	2.57	2.52	2.46	2.95	2.31	2.46	2.45	2.64
Total Organic Carbon	mg/L	-	-	2.71	2.80	2.73	2.72	2.51	2.70	2.53	2.63	2.48	2.75
Total Phosphorus	mg/L	0.020 ^α	-	0.0032	0.0052	0.0036	0.0039	<0.0030	0.0032	0.0035	0.0042	0.0046	0.003
Total Phosphorus Phenols	mg/L	0.004 ^a	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.001
Bromide (Br)	mg/L	-	- 1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chloride (CI)	mg/L	120	120	5.70	5.78	5.53	5.52	5.25	5.28	4.88	5.22	5.03	5.32
Sulphate (SO ₄)	mg/L	218 ^β	218	13.5	13.8	12.9	12.9	12.0	12.3	11.2	12.1	11.0	12.4
Aluminum (AI)	mg/L	0.100	0.179, 0.173 ^c	0.0039	0.0046	0.0048	0.0034	0.0042	0.0047	0.0037	0.0089	0.0075	0.0148
Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000
Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	<0.000
Barium (Ba)	mg/L	-	-	0.0119	0.0123	0.0117	0.0114	0.0105	0.0104	0.0104	0.0108	0.0105	0.010
Beryllium (Be)	mg/L	0.011 ^α	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000
Bismuth (Bi)	mg/L	-	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000
Boron (B)	mg/L	1.5	_	0.013	0.014	0.012	0.012	0.011	0.011	0.010	0.011	0.011	0.011
Cadmium (Cd)	mg/L	0.00012	0.00009	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000
Calcium (Ca)	mg/L	-	-	20.6	20.8	19.8	20.1	18.2	18.3	18.0	19.2	18.5	17.7
Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000
Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000
Copper (Cu)	mg/L	0.0003	0.0024	0.00105	0.00103	0.00100	0.00099	0.00090	0.00104	0.00096	0.00113	0.00103	0.0011
Iron (Fe)	mg/L	0.30	0.300	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
Lead (Pb)	mg/L	0.001	0.001	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0000
. ,	mg/L	-	- 0.001	0.0015	0.0015	0.0014	0.0014	0.0012	0.0013	0.0011	0.0012	0.0014	0.0012
Lithium (Li) Magnesium (Mg)	mg/L	-	 	13.8	14.2	13.5	13.2	12.5	12.6	12.1	12.7	12.5	11.7
	mg/L	0.935 ^β		0.00382	0.00287	0.00162	0.00176	0.00165	0.00159	0.00286	0.00160	0.00397	0.0015
. ,		0.000026	-	<0.00382	<0.00287	<0.00102	<0.00176	<0.000050	<0.000050	<0.00280	<0.000000	<0.0000050	<0.0000
Mercury (Hg) Molybdenum (Mo)	mg/L mg/L	0.000020	- +	0.000882	0.000924	0.000862	0.000860	0.000780	0.000789	0.000752	0.000822	0.000718	0.00000
		0.073	0.025			0.00087							0.00090
Nickel (Ni)	mg/L		+	0.00088	0.00092		0.00085	0.00078	0.00081	0.00077	0.00085	0.00076	
Potassium (K)	mg/L	0.001	-	1.82	1.95	1.78	1.75	1.58	1.64	1.55	1.65	1.60	1.55 <0.001
Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Silicon (Si)	mg/L	- 0.0007	- 0.0004	0.83	0.82	0.71	0.73	0.61	0.62	0.81	0.65	1.02	0.61
Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000
Sodium (Na)	mg/L	-	-	2.65	2.71	2.55	2.48	2.35	2.42	2.31	2.43	2.40	2.31
Strontium (Sr)	mg/L	- 0.0000	-	0.0170	0.0169	0.0165	0.0160	0.0150	0.0150	0.0148	0.0156	0.0148	0.014
Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000
Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000
Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (U)	mg/L	0.015	-	0.00148	0.00148	0.00138	0.00142	0.00131	0.00137	0.00125	0.00137	0.00122	0.0012
Vanadium (V)	mg/L	0.006 ^a	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.001
Zinc (Zn)	mg/L	0.030	0.030	<0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	<0.0030	C

Indicates parameter concentration above applicable Water Quality Guideline. Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake.

^c Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively.

Table C.52: Water Chemistry at Sheardown Lake SE (DLO-02) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

Parameters Conductivity (lab) pH (lab) Hardness (as CaCO ₃) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃) Total Ammonia Nitrate Nitrite	umho/cm pH mg/L mg/L mg/L	Water Quality Guideline (WQG) ^a	AEMP Benchmark ^b	DL0-02-6 bottom 28-Jul-20	DL0-02-6 surface 28-Jul-20	DL0-02-7 bottom	DL0-02-7 surface	DL0-02-4 bottom	DL0-02-4 surface	DL0-02-8 bottom	DL0-02-8 surface	DL0-02-3 bottom	DL0-02-
Conductivity (lab) pH (lab) Hardness (as CaCO ₃) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)	umho/cm pH mg/L mg/L	(WQG) ^a	Benchmark ^b	28-Jul-20		bottom	surface	hottom	surface	hottom	surface	bottom	afaa
pH (lab) Hardness (as CaCO ₃) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)	pH mg/L mg/L mg/L	-	-		28-Jul-20			DOLLOIN	Surface	Dottom	Juliucc	#*************************************	surface
pH (lab) Hardness (as CaCO ₃) Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)	pH mg/L mg/L mg/L	- 6.5 - 9.0 -	-	124		28-Jul-20	28-Jul-2						
Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)	mg/L mg/L mg/L	6.5 - 9.0	_	131	133	129	133	122	131	118	130	118	131
Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)	mg/L mg/L	-	_	8.13	8.25	8.30	8.25	7.83	8.13	7.41	8.24	7.43	8.24
Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)	mg/L		-	61.7	63	62.9	66.4	53.4	58.4	53	61	56.3	63.1
Total Dissolved Solids (TDS) Turbidity Alkalinity (as CaCO ₃)		-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Alkalinity (as CaCO ₃)		-	-	68	70	74	74	70	67	55	77	64	69
	NTU	-	-	0.89	0.75	0.82	0.75	0.90	0.73	1.59	0.69	1.51	0.7
Total Ammonia	mg/L	-	-	49.6	51.3	50.3	51.3	46.5	50.4	45.8	50.4	45.8	50.
	mg/L	-	0.855	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0153	<0.0050	0.0132	<0.00
Nitrate	mg/L	3	3	0.0974	0.0809	0.0900	0.0791	0.101	0.0884	0.127	0.0818	0.129	0.07
Nitrite	mg/L	0.06	0.06	0.0013	0.0017	0.0016	0.0025	0.0013	0.0017	0.0019	0.0016	0.0016	0.00
Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	0.121	0.121	0.121	0.115	0.113	0.183	0.114	0.121	0.119	0.12
Dissolved Organic Carbon	mg/L	-	-	1.80	1.58	6.23	1.41	1.52	1.69	1.12	1.37	1.30	1.5
Total Organic Carbon	mg/L	-	-	1.65	1.71	1.71	1.89	1.58	1.76	1.53	1.66	1.63	1.7
Total Phosphorus	mg/L	0.020°	-	0.0072	0.0060	0.0059	0.0044	0.0065	0.0066	0.0083	0.0052	0.0058	0.00
Phenols	mg/L	0.001 ^a	-	0.0022	0.0025	0.0047	0.0029	0.0018	<0.0010	0.0027	0.0023	0.0035	0.00
Bromide (Br)	mg/L	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.0
Chloride (CI)	mg/L	120	120	3.43	3.40	3.30	3.36	3.11	3.31	3.08	3.32	3.07	3.3
Sulphate (SO ₄)	mg/L	218 ^β	218	10.0	9.86	9.44	9.70	8.55	9.51	8.06	9.55	8.08	9.6
Aluminum (AI)	mg/L	0.100	0.179, 0.173°	0.0234	0.0174	0.0211	0.0199	0.0294	0.0202	0.0434	0.0186	0.0503	0.01
Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Barium (Ba)	mg/L	-	-	0.00668	0.00649	0.00628	0.00649	0.00632	0.00640	0.00623	0.00634	0.00634	0.00
Beryllium (Be)	mg/L	0.011 ^a	_	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Bismuth (Bi)	mg/L	-	_	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00
Boron (B)	mg/L	1.5	_	0.010	0.010	<0.010	<0.010	<0.010	0.010	<0.010	<0.010	<0.010	<0.0
Cadmium (Cd)	mg/L	0.00012	0.00009	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000
Calcium (Ca)	mg/L	-	-	11.4	11.8	11.3	11.7	10.6	11.7	10.3	11.4	10.9	11
Chromium (Cr)	mg/L	0.0089	0.0089	0.00010	<0.00010	0.00017	0.00021	0.00014	<0.00010	0.00015	0.00010	0.00011	0.00
Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Copper (Cu)	mg/L	0.0003	0.0024	0.00078	0.00078	0.00077	0.00080	0.00084	0.00077	0.00076	0.00079	0.00072	0.000
Iron (Fe)	mg/L	0.30	0.300	0.031	0.024	0.027	0.026	0.036	0.025	0.062	0.023	0.064	0.0
Lead (Pb)	mg/L	0.001	0.001	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000069	<0.000050	0.000061	<0.00
Lithium (Li)	mg/L	-	-	0.0011	0.0011	0.0011	0.0011	<0.0010	0.0011	0.0010	0.0011	0.0014	0.00
Magnesium (Mg)	mg/L	_	_	6.87	7.31	6.87	6.98	6.74	6.90	6.22	6.88	7.08	7.0
Manganese (Mn)	mg/L	0.935 ^β		0.00389	0.00349	0.00343	0.00352	0.00427	0.00325	0.0118	0.00321	0.0124	0.003
Mercury (Hg)	mg/L	0.000026	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000
Molybdenum (Mo)	mg/L	0.000020	-	0.000683	0.000672	0.000655	0.000645	0.000576	0.000637	0.000545	0.000644	0.000537	0.000
Nickel (Ni)	mg/L	0.075	0.025	0.00058	0.00060	0.00057	0.00062	0.000576	0.00062	0.00054	0.00062	0.00055	0.00
Potassium (K)			1	1.05	1.05	1.03	1.05	1.01	1.06	0.969	1.03	1.04	1.0
Selenium (Se)	mg/L	0.001	-	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050	<0.00050	<0.00
Silicon (Si)	mg/L	0.001	-	0.52	0.49	0.49	0.48	0.51	0.51	0.75	0.50	0.79	0.00
` '	mg/L	0.00025	0.0001	<0.00010			<0.00010				<0.00010		
Silver (Ag)	mg/L	0.00025	0.0001		<0.000010	<0.000010		<0.000010	<0.000010	<0.000010		<0.000010	<0.000
Sodium (Na)	mg/L	-	- +	1.38	1.44	1.38	1.41	1.34	1.41	1.28	1.36	1.34	1.4
Strontium (Sr)	mg/L	- 0.000	- 0.0008	0.00892	0.00887	0.00876	0.00884	0.00816	0.00876	0.00799	0.00866	0.00806	0.00
Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.000010	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	<0.000010	<0.00010	<0.00
Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Titanium (Ti)	mg/L	- 0.045	-	0.00137	0.00083	0.00105	0.00102	0.00163	0.00090	0.00267	0.00098	0.00276	0.000
Uranium (U)	mg/L	0.015	-	0.000947	0.000964	0.000924	0.000948	0.000812	0.000925	0.000751	0.000935	0.000726	0.000
Vanadium (V) Zinc (Zn)	mg/L mg/L	0.006 ^α 0.030	0.006 0.030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	<0.00

Indicates parameter concentration above applicable Water Quality Guideline. Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake.

^c Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively.

Table C.52: Water Chemistry at Sheardown Lake SE (DLO-02) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

		Water						Fall Sam	pling Event				
Barametera	Units	Quality	AEMP	DL0-02-6	DL0-02-6	DL0-02-7	DL0-02-7	DL0-02-4	DL0-02-4	DL0-02-8	DL0-02-8	DL0-02-3	DL0-02-
Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
		(WQG) ^a		26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-
Conductivity (lab)	umho/cm	-	-	142	146	141	140	145	145	139	139	139	139
pH (lab)	pН	6.5 - 9.0	-	8.03	8.04	8	8.05	7.98	7.95	8.02	7.98	7.97	8.03
pH (lab) Hardness (as CaCO ₃) Total Suspended Solids (TSS)	mg/L	-	-	68.7	67.3	67.6	68.2	67.2	66.3	67.3	67.2	67.8	67.8
Total Suspended Solids (TSS)	mg/L	-	-	2.6	2.5	<2.0	<2.0	<2.0	<2.0	2.6	<2.0	<2.0	<2.0
Total Dissolved Solids (TDS) Turbidity	mg/L	-	-	75	83	71	89	74	89	81	72	60	76
Turbidity	NTU	-	-	2.16	2.22	2.23	2.28	2.53	2.43	2.40	2.39	2.16	2.40
Alkalinity (as CaCO ₃)	mg/L	-	-	56	57	57	57	56	55	56	56	56	57
Total Ammonia Nitrate Nitrite	mg/L	-	0.855	0.011	0.012	0.013	0.013	0.013	0.014	0.012	0.013	0.012	0.012
Nitrate	mg/L	3	3	0.079	0.094	0.083	0.085	0.086	0.077	0.108	0.099	0.102	0.079
Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.00
Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	<0.15	0.16	<0.15	<0.15	<0.15	<0.1
Dissolved Organic Carbon	mg/L	-	-	2.53	1.98	2.07	1.92	2.18	1.89	2.11	1.93	2.05	1.89
Total Organic Carbon	mg/L	-	-	2.41	2.41	2.43	2.33	2.54	2.41	2.35	2.37	2.36	2.49
Total Phosphorus	mg/L	0.020 ^α	-	0.0079	0.0068	0.014	0.0095	0.0101	0.009	0.0117	0.0088	0.0053	0.006
Phenols	mg/L	0.001 ^a	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00
Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.1
Chloride (CI)	mg/L	120	120	3.92	4.00	3.97	3.90	3.85	3.87	3.87	3.90	3.88	3.86
Sulphate (SO ₄)	mg/L	218 ^β	218	9.76	9.78	9.88	9.65	9.33	9.35	9.44	9.52	9.44	9.43
Aluminum (AI)	mg/L	0.100	0.179, 0.173°	0.0585	0.0696	0.0615	0.0665	0.055	0.0467	0.0704	0.076	0.0671	0.065
Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Barium (Ba)	mg/L	-	-	0.00767	0.00782	0.00767	0.00823	0.00769	0.00754	0.00767	0.00818	0.00756	0.007
Beryllium (Be)	mg/L	0.011 ^α	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00
Bismuth (Bi)	mg/L	-	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00
Boron (B)	mg/L	1.5	_	0.012	0.012	0.012	0.012	0.011	0.011	0.011	0.011	0.011	0.01
Cadmium (Cd)	mg/L	0.00012	0.00009	<0.000010	<0.00010	<0.00010	<0.000010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000
Calcium (Ca)	mg/L	-	-	13.5	13.4	13.9	13.9	12.6	13.3	13.3	13.1	13.4	13.4
Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00
Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Copper (Cu)	mg/L	0.0009	0.0024	0.00082	0.0008	0.00082	0.00084	0.00091	0.00010	0.0008	0.0008	0.00083	0.001
Iron (Fe)	mg/L	0.30	0.300	0.061	0.064	0.060	0.066	0.062	0.059	0.068	0.069	0.064	0.06
Lead (Pb)	mg/L	0.001	0.001	0.000055	0.00052	0.000055	0.00061	0.0002	0.00053	0.00071	0.00058	0.000059	0.000
Lithium (Li)	mg/L	-	0.001	0.0014	0.00032	0.0013	0.0015	<0.0010	0.00033	0.0012	0.0013	0.0012	0.000
Magnesium (Mg)	mg/L	-		8.35	8.33	8.47	8.42	8.18	8.13	8.31	8.46	8.48	8.3
Manganese (Mn)	mg/L	0.935 ^β	_	0.00345	0.00361	0.00355	0.00354	0.00373	0.00376	0.00369	0.00353	0.00363	0.00
Mercury (Hg)	mg/L	0.000026	-	<0.000050	<0.000000	<0.000050	<0.000050	<0.000050	<0.00070	<0.0000050	<0.000050	<0.000050	<0.000
			-										
Molybdenum (Mo) Nickel (Ni)	mg/L mg/L	0.073 0.025	0.025	0.000645	0.000647	0.000666 0.00061	0.000632 0.00065	0.000658 0.0006	0.000627 0.00059	0.000629 0.00063	0.000635 0.00062	0.000622 0.00061	0.000
Potassium (K)	+	0.023	0.023	1.15	1.16	1.15	1.15	1.13	1.12	1.17	1.16	1.15	1.1
Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00
` '	mg/L			0.49	0.52			0.48	0.45	0.53	0.52		0.50
Silicon (Si)	mg/L	0.00025	0.0001			0.48	0.51					0.50	
Silver (Ag)	mg/L			<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000
Sodium (Na)	mg/L	-	-	1.75	1.70	1.70	1.70	1.69	1.68	1.74	1.76	1.69	1.72
Strontium (Sr)	mg/L	- 0.000	-	0.0101	0.0102	0.0104	0.0102	0.0102	0.0102	0.0102	0.0103	0.0101	0.01
Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00
Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0
Uranium (U)	mg/L	0.015	-	0.00121	0.00120	0.00119	0.00119	0.00114	0.00117	0.00119	0.00118	0.00117	0.001
Vanadium (V)	mg/L	0.006 ^α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00
Zinc (Zn)	mg/L	0.030	0.030	< 0.0030	< 0.0030	<0.0030	<0.0030	<0.0030	<0.0030	< 0.0030	< 0.0030	< 0.0030	<0.00

Indicates parameter concentration above applicable Water Quality Guideline.

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Sheardown Lake.

^c Benchmark is 0.179 mg/L and 0.173 mg/L for shallow and deep stations, respectively.

Table C.53: Dissolved Metal Concentrations at Sheardown Lake SE Water Quality Monitoring Stations, Mary River Project CREMP, 2020

							Winter Sam	pling Event							Summer San	npling Event		
			DL0-02-6	DL0-02-6	DL0-02-7	DL0-02-7	DL0-02-4	DL0-02-4	DL0-02-8	DL0-02-8	DL0-02-3	DL0-02-3	DL0-02-6	DL0-02-6	DL0-02-7	DL0-02-7	DL0-02-4	DL0-02-4
	Parameters	Units	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			15-Apr-20	15-Apr-20	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	15-Apr-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20
	Aluminum (Al)	mg/L	0.0046	<0.0030	0.0044	<0.0030	0.0044	<0.0030	0.0041	<0.0030	0.0047	<0.0030	0.0039	0.0089	0.0255	0.0066	0.0060	0.0053
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.0119	0.0119	0.0115	0.0113	0.0105	0.0106	0.0102	0.0108	0.0110	0.0109	0.00673	0.00678	0.00675	0.00702	0.00611	0.00633
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.00025	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	0.013	0.013	0.013	0.012	0.011	0.011	0.011	0.011	0.011	0.012	0.011	<0.050	0.010	0.011	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000050	<0.000025	<0.000050	<0.0000050	<0.0000050	<0.0000050
	Calcium (Ca)	mg/L	20.6	20.3	20.4	20.1	18.5	18.7	17.8	19.1	18.6	19.3	11.9	12.6	11.9	12.5	10.2	11.4
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00119	0.00098	0.00104	0.00106	0.00097	0.00103	0.00098	0.00103	0.00090	0.00095	0.00067	<0.0010	0.00075	0.00081	0.00058	0.00062
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.010	<0.050	0.020	<0.010	<0.010	<0.010
s	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00025	<0.000050	<0.000050	<0.000050	<0.000050
Dissolved Metals	Lithium (Li)	mg/L	0.0015	0.0015	0.0015	0.0016	0.0013	0.0012	0.0011	0.0011	0.0014	0.0014	0.0010	<0.0050	0.0010	0.0011	<0.0010	0.0010
Мþ	Magnesium (Mg)	mg/L	13.8	13.9	13.1	13.3	12.2	12.6	12.2	12.6	12.4	12.9	7.77	7.69	8.04	8.54	6.75	7.27
olve	Manganese (Mn)	mg/L	0.000497	0.000294	0.000263	0.000303	0.000189	0.000275	0.000296	0.000242	0.000312	0.000218	0.00016	0.00067	0.00064	0.00053	0.00012	0.00033
iss	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.000911	0.000883	0.000853	0.000864	0.000788	0.000807	0.000710	0.000816	0.000680	0.000856	0.000612	0.00061	0.000576	0.000625	0.000519	0.000588
	Nickel (Ni)	mg/L	0.00092	0.00088	0.00084	0.00093	0.00078	0.00081	0.00077	0.00083	0.00071	0.00080	<0.00050	<0.0025	0.00052	0.00054	<0.00050	0.00052
	Potassium (K)	mg/L	1.90	1.91	1.75	1.75	1.56	1.65	1.57	1.66	1.60	1.67	1.07	1.15	1.08	1.11	0.975	1.01
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.00025	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)	mg/L	0.81	0.82	0.72	0.74	0.62	0.62	0.80	0.63	0.98	0.65	0.411	0.42	0.417	0.407	0.435	0.422
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	2.71	2.65	2.53	2.53	2.32	2.40	2.29	2.40	2.35	2.44	1.50	1.57	1.55	1.61	1.32	1.41
	Strontium (Sr)	mg/L	0.0176	0.0171	0.0169	0.0168	0.0154	0.0160	0.0152	0.0158	0.0148	0.0160	0.00872	0.0094	0.00849	0.00892	0.00771	0.00826
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.00030	<0.0015	0.00126	<0.00030	<0.00030	<0.00030
	Uranium (U)	mg/L	0.00144	0.00147	0.00143	0.00146	0.00133	0.00139	0.00126	0.00137	0.00124	0.00139	0.000930	0.000939	0.000863	0.000934	0.000789	0.000920
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.0025	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0010	<0.0050	0.0019	<0.0010	<0.0010	<0.0010

Table C.53: Dissolved Metal Concentrations at Sheardown Lake SE Water Quality Monitoring Stations, Mary River Project CREMP, 2020

				Summer San	npling Event						Fall Samp	ling Event				
	-		DL0-02-8	DL0-02-8	DL0-02-3	DL0-02-3	DL0-02-6	DL0-02-6	DL0-02-7	DL0-02-7	DL0-02-4	DL0-02-4	DL0-02-8	DL0-02-8	DL0-02-3	DL0-02-3
	Parameters	Units	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20
	Aluminum (AI)	mg/L	0.0110	0.0067	0.0154	0.0091	0.0132	0.0125	0.012	0.0079	0.0106	0.0108	0.0091	0.0137	0.009	0.0089
	Antimony (Sb)	mg/L	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00616	0.00671	0.00632	0.00677	0.00727	0.00736	0.00769	0.00735	0.0074	0.00735	0.00722	0.00719	0.00722	0.00724
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00025	<0.00025	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.050	<0.050	<0.010	0.010	0.012	0.012	0.012	0.011	0.011	0.010	0.011	0.011	0.011	0.011
	Cadmium (Cd)	mg/L	<0.000025	<0.000025	<0.0000050	<0.0000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	10.6	12.1	10.9	12.0	13.5	13.1	13.5	13.6	13.1	13.0	13.4	13.2	13.3	13.6
	Chromium (Cr)	mg/L	<0.00050	<0.00050	0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	<0.0010	<0.0010	0.00082	0.00072	0.00075	0.00071	0.00072	0.00072	0.00076	0.00072	0.0007	0.00072	0.0007	0.00072
	Iron (Fe)	mg/L	<0.050	<0.050	0.011	<0.010	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
S	Lead (Pb)	mg/L	<0.00025	<0.00025	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Dissolved Metals	Lithium (Li)	mg/L	<0.0050	<0.0050	<0.0010	0.0010	0.0013	0.0012	0.0012	0.0013	0.0014	0.0012	0.0012	0.0012	0.0011	0.0013
Σp	Magnesium (Mg)	mg/L	6.44	7.50	7.08	8.06	8.48	8.43	8.23	8.32	8.39	8.22	8.20	8.31	8.39	8.22
olve	Manganese (Mn)	mg/L	0.00226	<0.00050	0.00158	0.00056	0.000525	0.00058	0.000598	0.000451	0.000323	0.000353	0.000427	0.000399	0.000418	0.000437
isse	Mercury (Hg)	mg/L	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.00050	0.00065	0.000501	0.000593	0.000626	0.000665	0.000628	0.000624	0.000633	0.00062	0.000631	0.000646	0.000611	0.000651
	Nickel (Ni)	mg/L	<0.0025	<0.0025	<0.00050	0.00051	0.00052	0.00056	0.00054	0.00053	0.00052	0.00053	0.00054	0.00077	0.00053	0.00052
	Potassium (K)	mg/L	1.03	1.14	0.986	1.07	1.15	1.14	1.13	1.12	1.13	1.11	1.13	1.13	1.10	1.11
	Selenium (Se)	mg/L	<0.00025	<0.00025	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.64	0.40	0.592	0.407	0.41	0.40	0.40	0.40	0.41	0.41	0.39	0.40	0.40	0.40
	Silver (Ag)	mg/L	<0.000050	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	1.37	1.50	1.40	1.55	1.76	1.7	1.72	1.75	1.75	1.71	1.68	1.72	1.72	1.68
	Strontium (Sr)	mg/L	0.0082	0.0093	0.00767	0.00850	0.0101	0.0101	0.01	0.00997	0.0102	0.01	0.0101	0.0101	0.01	0.00987
	Thallium (TI)	mg/L	<0.000050	<0.000050	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.0015	<0.0015	0.00038	<0.00030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.000721	0.000923	0.000709	0.000904	0.00117	0.00118	0.00117	0.00116	0.00114	0.00115	0.00115	0.00114	0.00116	0.00116
	Vanadium (V)	mg/L	<0.0025	<0.0025	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0050	<0.0050	<0.0010	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.54: Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations Between Sheardown Lake Southeast and Reference Lake 3 in 2020, and at Sheardown Lake Southeast Between 2020 and the Baseline Period

			Sheardown Lake SE		
Dissolved Metal	2020 vs Ro Lake			2020 vs Baseline	
	Summer	Fall	Winter	Summer	Fall
Aluminum (AI)	0.8	2.5	0.0	2.1	3.6
Antimony (Sb)	2.2	1.0	0.0	0.0	1.0
Arsenic (As)	2.2	1.0	1.0	1.9	1.0
Barium (Ba)	1.1	1.1	0.0	1.3	1.3
Beryllium (Be)	0.4	1.0	1.2	0.5	2.1
Bismuth (Bi)	0.2	1.0	1.0	0.1	1.0
Boron (B)	2.2	1.1	1.2	2.3	1.1
Cadmium (Cd)	1.1	1.0	0.4	0.0	0.8
Calcium (Ca)	1.7	1.8	1.5	1.0	1.1
Chromium (Cr)	0.4	1.0	-	2.0	-
Cobalt (Co)	2.2	1.0	1.0	2.2	0.9
Copper (Cu)	1.1	1.0	0.8	0.5	0.9
Iron (Fe)	0.8	1.0	1.2	1.0	1.7
Lead (Pb)	2.2	1.0	0.6	2.2	1.0
Lithium (Li)	2.2	1.2	0.3	0.1	0.5
Magnesium (Mg)	1.8	1.7	1.6	1.1	1.2
Manganese (Mn)	3.3	3.3	0.5	0.0	0.7
Mercury (Hg)	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	4.4	4.1	3.6	0.0	3.1
Nickel (Ni)	2.2	1.1	1.2	1.2	1.0
Potassium (K)	1.2	1.2	1.1	1.0	0.9
Selenium (Se)	0.1	1.0	-	1.1	-
Silicon (Si)	1.0	0.8	1.5	1.1	1.0
Silver (Ag)	2.2	1.0	1.2	-	2.7
Sodium (Na)	1.6	1.7	1.5	1.2	1.3
Strontium (Sr)	1.0	1.2	2.1	1.2	1.3
Thallium (TI)	0.2	1.0	1.2	0.3	2.6
Tin (Sn)	2.2	1.0	0.1	0.4	0.1
Titanium (Ti)	0.1	1.0	1.0	0.1	1.0
Uranium (U)	2.8	3.5	2.8	1.9	2.3
Vanadium (V)	1.1	1.0	1.0	1.1	1.0
Zinc (Zn)	0.8	1.0	1.5	0.8	1.9

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration ≥ 10 times higher than respective mean reference or baseline period value).

Table C.55: In Situ Water Quality Measurements Collected at Mary River Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Study Area	Station	Date Sampled	Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (% Saturation)	pH (pH units)	Specific Conductance (µS/cm)
	GO-09 B1	10-Aug-20	10.5	10.09	95.6	8.25	208.9
	GO-09 B2	10-Aug-20	10.0	10.28	96.3	8.24	195.1
Mary River Upstream (GO-09)	GO-09 B3	10-Aug-20	9.5	10.43	96.7	8.20	194.1
opstream (GG-00)	GO-09 B4	10-Aug-20	9.3	10.72	100.4	8.25	194.7
	GO-09 B5	10-Aug-20	9.0	10.73	98.1	8.07	180.5
	GO-03 B1	10-Aug-20	11.6	9.41	90.9	8.15	191.0
M	GO-03 B2	10-Aug-20	11.0	9.55	91.4	8.13	191.0
Mary River Upstream (GO-03)	GO-03 B3	10-Aug-20	11.2	9.75	93.0	7.99	191.7
opstream (00-00)	GO-03 B4	10-Aug-20	11.1	10.01	95.3	7.99	192.0
	GO-03 B5	10-Aug-20	10.8	10.05	95.2	8.17	192.1
	EO-01 B1	13-Aug-20	5.1	12.49	98.0	8.25	225.3
Mary River	EO-01 B2	13-Aug-20	5.1	12.53	98.4	8.26	225.4
Downstream	EO-01 B3	13-Aug-20	5.0	12.57	98.4	8.24	225.3
(EO-01)	EO-01 B4	11-Aug-20	9.5	11.14	97.6	8.26	216.0
	EO-01 B5	11-Aug-20	9.4	11.16	97.4	8.27	216.2
	EO-20 B1	11-Aug-20	9.6	11.49	100.6	8.36	218.7
Mary River	EO-20 B2	11-Aug-20	9.3	11.52	100.4	8.28	219.4
Downstream	EO-20 B3	11-Aug-20	9.1	11.52	99.9	8.24	219.1
(EO-20)	EO-20 B4	11-Aug-20	8.9	11.58	100.1	8.71	219.1
	EO-20 B5	11-Aug-20	8.6	11.69	99.8	8.27	218.9
	CO-05 B1	11-Aug-20	8.9	11.68	100.7	8.12	208.7
Mary River	CO-05 B2	11-Aug-20	8.5	11.68	100.1	8.19	209.3
Downstream	CO-05 B3	11-Aug-20	8.2	11.68	99.2	8.16	209.8
(CO-05)	CO-05 B4	11-Aug-20	7.9	11.66	98.0	8.14	209.9
	CO-05 B5	11-Aug-20	8.1	11.61	93.3	8.06	209.9

Table C.56: In Situ Water Quality Summary for Mary River Benthic Invertebrate Community Study Areas, Mary River Project CREMP, August 2020

Matria	Station	Sample	Maan	Standard	Standard	95% Confide	ence Interval	Minimo	Marsimorm
Metric	Station	Size	Mean	Deviation	Error	Lower Bound	Upper Bound	Minimum	Maximum
	GO-09	5	9.66	0.59	0.27	9.22	10.10	9.00	10.50
	GO-03	5	11.14	0.30	0.13	10.92	11.36	10.80	11.60
Temperature (°C)	EO-01	5	6.82	2.40	1.07	5.05	8.59	5.00	9.50
(0)	EO-20	5	9.10	0.38	0.17	8.82	9.38	8.60	9.60
	CO-05	5	8.32	0.39	0.17	8.03	8.61	7.90	8.90
	GO-09	5	10.5	0.3	0.1	10.2	10.7	10.1	10.7
	GO-03	5	9.8	0.3	0.1	9.5	10.0	9.4	10.1
Dissolved Oxygen (mg/L)	EO-01	5	12.0	0.8	0.3	11.4	12.5	11.1	12.6
(mg/L)	EO-20	5	11.6	0.1	0.0	11.5	11.6	11.5	11.7
	CO-05	5	11.7	0.0	0.0	11.6	11.7	11.6	11.7
	GO-09	5	97.4	1.9	0.8	96.0	98.8	95.6	100.4
	GO-03	5	93.2	2.1	0.9	91.6	94.7	90.9	95.3
Dissolved Oxygen (% saturation)	EO-01	5	98.0	0.5	0.2	97.6	98.3	97.4	98.4
(70 Saturation)	EO-20	5	100.2	0.3	0.2	99.9	100.4	99.8	100.6
	CO-05	5	98.3	3.0	1.3	96.1	100.4	93.3	100.7
	GO-09	5	8.20	0.08	0.03	8.15	8.26	8.07	8.25
	GO-03	5	8.09	0.09	0.04	8.02	8.15	7.99	8.17
pH (pH units)	EO-01	5	8.26	0.01	0.01	8.25	8.26	8.24	8.27
(pri dilita)	EO-20	5	8.37	0.19	0.09	8.23	8.51	8.24	8.71
	CO-05	5	8.13	0.05	0.02	8.10	8.17	8.06	8.19
	GO-09	5	194.7	10.0	4.5	187.3	202.1	180.5	208.9
Specific	GO-03	5	191.6	0.5	0.2	191.2	192.0	191.0	192.1
Conductance	EO-01	5	221.6	5.1	2.3	217.9	225.4	216.0	225.4
(μS/cm)	EO-20	5	219.0	0.3	0.1	218.8	219.2	218.7	219.4
	CO-05	5	209.5	0.5	0.2	209.1	209.9	208.7	209.9

Table C.57: Statistical Comparison of *In Situ* Water Quality Variables Among Mary River Benthic Invertebrate Community Study Areas, Mary River Project CREMP, August 2020

		Overall 5-grou	p Comparison		P	air-wise, post l	noc comparison	s ^a
<i>In Situ</i> Variable			Significant			,,	Significant	
	Statistical Test ^a	Transform-ation	Difference Between Areas?	P-value	(I) Area	(J) Area	Difference Between Areas?	P-value
					GO-09	GO-03	NO	0.132
					GO-09	EO-01	YES	0.068
					GO-09	EO-20	NO	0.414
					GO-09	CO-05	YES	0.037
Temperature (°C)	K-W	rank	YES	0.00200	GO-03	EO-01	YES	<0.001
romporataro (o)		raint	120	0.00200	GO-03	EO-20	YES	0.02
					GO-03	CO-05	YES	<0.001
					EO-01	EO-20	NO	0.312
					EO-01	CO-05	NO	0.796
					EO-20	CO-05	NO	0.205
					GO-09	GO-03	YES	0.064
					GO-09	EO-01	YES	<0.001
					GO-09	EO-20	YES	0.002
					GO-09	CO-05	YES	<0.001
Dissolved Oxygen	ANOVA	nono	YES	0.00100	GO-03	EO-01	YES	<0.001
(mg/L)	ANOVA	none	TES	0.00100	GO-03	EO-20	YES	<0.001
					GO-03	CO-05	YES	<0.001
					EO-01	EO-20	NO	0.443
					EO-01	CO-05	NO	0.693
					EO-20	CO-05	NO	0.993
					GO-09	GO-03	YES	0.012
					GO-09	EO-01	NO	0.99
					GO-09	EO-20	NO	0.168
					GO-09	CO-05	NO	0.949
Dissolved Oxygen					GO-03	EO-01	YES	0.004
(% Saturation)	ANOVA	none	YES	0.001	GO-03	EO-20	YES	<0.001
					GO-03	CO-05	YES	0.002
					EO-01	EO-20	NO	0.353
					EO-01	CO-05	NO	0.999
					EO-20	CO-05	NO	0.494
					GO-09	GO-03	NO	0.111
					GO-09	EO-01	NO	0.236
					GO-09	EO-20	YES	0.061
					GO-09	CO-05	NO	0.212
nU					GO-03	EO-01	YES	0.005
pH (pH units)	K-W	rank	YES	0.001	GO-03	EO-20	YES	<0.001
					GO-03	CO-05	NO	0.73
					EO-01	EO-20	NO	0.491
					EO-01	CO-05	YES	0.491
					EO-01	CO-05	YES	0.015
	1				GO-09	GO-03	NO NO	0.002
					GO-09 GO-09	EO-01 EO-20	YES	0.003
							YES	0.006
					GO-09	CO-05	NO	0.229
Specific Conductance (uS/cm)	K-W	rank	YES	0.001	GO-03	EO-01	YES	<0.001
(4-7-5111)					GO-03	EO-20	YES	<0.001
					GO-03	CO-05	YES	0.058
					EO-01	EO-20	NO	0.83
					EO-01	CO-05	YES	0.078
					EO-20	CO-05	NO	0.122

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table C.58: Water Chemistry at Mary River Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water							Spr	ing Sampling Ev	vent .					
Parar	meters	Units	Quality Guideline	AEMP Benchmark ^b	G0-09-A	G0-09	G0-09-B	G0-03	G0-01	F0-01	E0-10	E0-03	E0-21	E0-20	C0-10	C0-05	C0-01
			(WQG) ^a	Denominark	04-Jul-20	04-Jul-20	04-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20
	Conductivity (lab)	umho/cm	-	-	72.0	67.2	44.4	47.7	43.2	108	78.5	45.4	42.7	43.4	46.8	70.9	54.7
<u>8</u>	pH (lab)	pН	6.5 - 9.0	-	7.83	7.83	7.55	7.64	7.63	7.89	7.83	7.66	7.65	7.54	7.65	7.73	7.61
Conventionals	Hardness (as CaCO ₃)	mg/L	-	-	32.5	31.7	19	20.7	19.3	49.9	35.3	20.8	19.7	20.2	19.3	32.2	23.6
î	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	18.5	10.6	9.8	9.0	8.3	8.8	7.7	6.3	7.4	9.4
μ	Total Dissolved Solids (TDS)	mg/L	-	-	60	69	70	79	53	90	88	69	72	67	65	77	77
ပိ	Turbidity	NTU	-	-	1.17	2.60	9.05	7.76	6.81	2.19	4.37	6.91	7.11	6.79	7.72	7.43	10.2
	Alkalinity (as CaCO ₃)	mg/L	-	-	35	32	21	22	20	39	47	21	20	21	19	29	24
cs	Total Ammonia	mg/L	-	0.855	<0.010	<0.010	0.011	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Organics	Nitrate	mg/L	3	3	<0.020	<0.020	0.022	0.040	<0.020	0.187	0.099	0.031	0.023	0.020	0.163	0.061	0.042
Ç	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
and	Dissolved Organic Carbon	mg/L	-	-	1.84	1.56	1.50	2.19	2.34	2.12	2.55	2.11	2.14	2.15	2.15	2.27	2.12
Nutrients	Total Organic Carbon	mg/L	-	-	2.55	2.12	2.03	2.71	2.77	2.94	2.68	3.00	2.95	3.15	3.16	3.44	3.18
trie	Total Phosphorus	mg/L	0.030^{α}	-	0.0205	0.0036	0.0122	0.0609	0.0504	0.0377	0.0681	0.0266	0.0676	0.0295	0.0189	0.0665	0.0240
Ž	Phenols	mg/L	0.004 ^a	-	0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	0.0012	<0.0010	0.0013	<0.0010	<0.0010
2	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (Cl)	mg/L	120	120	1.05	0.94	1.11	2.07	1.04	1.34	1.26	1.01	0.98	0.95	0.99	1.77	1.30
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	0.67	0.73	0.65	0.63	0.53	11.8	6.67	2.00	1.58	1.36	2.36	3.44	1.97
	Aluminum (AI)	mg/L	0.100	0.966	0.0551	0.112	0.197	0.241	0.219	0.170	0.234	0.196	0.221	0.213	0.212	0.155	0.244
	Antimony (Sb)	mg/L	0.020 ^a	_	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	0.00012	<0.00010	0.00013	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	_	0.00462	0.00530	0.00474	0.00567	0.00467	0.00544	0.00529	0.00465	0.00467	0.00458	0.00447	0.00556	0.00532
	Boron (B)	mg/L	1.5	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00006	<0.000010	0.000064	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000011	<0.000010
	Calcium (Ca)	mg/L	-	-	6.95	7.30	4.21	5.47	4.10	9.35	6.90	4.24	3.94	3.98	3.94	6.62	4.90
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	0.00064	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	0.00022	0.00011	0.00016	0.00013	0.00011	0.00010	<0.00010	<0.00010	0.00011	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00056	0.00670	0.00092	0.00109	0.00079	0.00051	0.00065	0.00075	0.00073	0.00074	0.00072	0.00106	0.00065
	Iron (Fe)	mg/L	0.30	0.874	<0.030	0.102	0.181	0.363	0.199	0.202	0.232	0.192	0.180	0.198	0.181	0.179	0.184
	Lead (Pb)	mg/L	0.001	0.001	<0.000050	0.000387	0.000260	0.000447	0.000236	0.000212	0.000184	0.000219	0.000214	0.000216	0.000214	0.000235	0.000159
2	Magnesium (Mg)	mg/L	-	-	4.06	3.66	2.43	2.75	2.42	6.67	4.68	2.75	2.50	2.60	2.48	4.00	3.26
Metals	Manganese (Mn)	mg/L	0.935 ^β	_	0.000824	0.00299	0.00376	0.00922	0.00514	0.00905	0.00669	0.00477	0.00405	0.00410	0.00401	0.00686	0.00415
	Mercury (Hg)	mg/L	0.000026	_	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050
Total	Molybdenum (Mo)	mg/L	0.073	_	0.000068	0.000087	0.000060	<0.000050	0.000053	0.000099	0.000088	0.000053	0.000070	0.000074	0.000076	0.000176	0.000091
_	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	0.00338	<0.00050	0.00063	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00061	0.00057
	Potassium (K)	mg/L	-	-	0.53	0.76	0.53	0.52	0.50	0.65	0.58	0.49	0.49	0.49	0.49	0.66	0.62
	Selenium (Se)	mg/L	0.001	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.67	0.66	0.73	0.74	0.78	0.64	0.81	0.69	0.79	0.78	0.74	0.64	0.87
	Sodium (Na)	mg/L	_	-	0.783	1.02	0.818	0.601	0.657	0.439	0.543	0.580	0.569	0.580	0.597	0.902	0.789
	Strontium (Sr)	mg/L	_	-	0.763	0.00584	0.00465	0.00505	0.00419	0.00994	0.00745	0.00456	0.00426	0.00409	0.00403	0.00565	0.00475
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00403	<0.00010	<0.00419	<0.00994	<0.00143	<0.00430	<0.00420	<0.00409	<0.00403	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	0.00101	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	-	<0.00010	<0.00101	0.010	0.007	0.012	0.00010	0.014	0.010	0.00010	0.0011	0.010	<0.00010	<0.00010
	Uranium (U)	mg/L	0.015	-	0.000441	0.000389	0.000304	0.000358	0.00274	0.000349	0.00328	0.010	0.0011	0.000241	0.010	0.000462	0.000210
	Vanadium (V)			0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	` '	mg/L	0.006 ^α						<0.0010								
	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	0.0320	0.0033	< 0.0030	~ U.UU3U	<0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030	0.0041	<0.0030

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Mary River system.

Table C.58: Water Chemistry at Mary River Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water							Sum	mer Sampling E	vent					
Paraı	meters	Units	Quality Guideline	AEMP Benchmark ^b	G0-09-A	G0-09	G0-09-B	G0-03	G0-01	F0-01	E0-10	E0-03	E0-21	E0-20	C0-10	C0-05	C0-01
			(WQG) ^a	Bonomiun	03-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	31-Jul-20	31-Jul-20	31-Jul-20
	Conductivity (lab)	umho/cm	-	-	189	190	180	169	173	345	177	179	179	178	178	174	176
als	pH (lab)	рН	6.5 - 9.0	-	8.22	8.23	8.22	8.09	8.18	8.30	8.18	8.16	8.17	8.17	8.25	8.21	8.19
ntionals	Hardness (as CaCO ₃)	mg/L	-	-	84.4	83.2	75.7	73	75.5	166	78.3	76.9	77.2	76.4	75	75.1	75.7
ınti	Total Suspended Solids (TSS)	mg/L	-	-	6.8	21.2	9.8	13.6	6.9	<2.0	8.2	11.5	16.1	14.1	9.1	17.9	18.3
Conve	Total Dissolved Solids (TDS)	mg/L	-	-	114	93	83	95	110	190	116	113	121	112	106	107	107
ပိ	Turbidity	NTU	-	-	16.3	37.2	25.5	45.6	23.3	0.41	30.4	40.6	43.2	40.0	21.8	33.2	33.5
	Alkalinity (as CaCO ₃)	mg/L	-	-	84	80	76	72	84	122	86	87	82	78	84	81	82
ics	Total Ammonia	mg/L	-	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.011	<0.010	<0.010	<0.010
Organics	Nitrate	mg/L	3	3	0.139	0.156	0.145	0.124	0.078	0.714	0.106	0.129	0.133	0.165	0.164	0.173	0.175
Org	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
) pui	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	0.16	<0.15	<0.15	<0.15	0.32	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
sal	Dissolved Organic Carbon	mg/L	-	-	3.68	4.53	3.81	4.31	3.70	1.69	4.04	3.95	1.87	2.23	2.20	2.53	2.94
ent	Total Organic Carbon	mg/L	-	-	2.9	2.5	3.4	<2.5	3.02	2.74	3.12	3.35	3.17	3.32	3.06	3.32	3.41
Nutrie	Total Phosphorus	mg/L	0.020^{α}	-	0.0220	0.0243	0.0182	0.0316	0.0133	<0.0030	0.0180	0.0253	0.0275	0.0251	0.0203	0.0241	0.0246
ž	Phenols	mg/L	0.004^{α}	-	<0.0010	0.0013	0.0012	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0010
ns	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	9.45	8.36	8.94	8.08	7.48	13.7	7.68	7.78	7.77	7.31	7.43	7.57	7.54
₹	Sulphate (SO ₄)	mg/L	218 ^β	218	5.69	5.19	5.63	4.76	4.95	36.0	5.95	6.45	6.97	6.38	6.28	6.14	5.93
	Aluminum (AI)	mg/L	0.100	0.966	0.868	1.27	1.00	1.77	0.889	0.0337	1.19	1.51	1.56	0.0243	0.846	1.21	1.55
	Antimony (Sb)	mg/L	0.020^{α}	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	0.00018	0.00025	0.00020	0.00030	0.00019	<0.00010	0.00022	0.00028	0.00027	<0.00010	0.00019	0.00026	0.00024
	Barium (Ba)	mg/L	-	-	0.0155	0.0171	0.0152	0.0204	0.0151	0.0165	0.0161	0.0185	0.0191	0.0102	0.0145	0.0173	0.0151
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00006	0.0000063	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	0.0000121	0.0000096	<0.0000050	0.0000056	<0.0000050	0.0000060
	Calcium (Ca)	mg/L	-	-	16.4	16.7	15.0	14.9	14.1	29.4	15.0	15.4	15.6	15.5	14.4	15.7	15.5
	Chromium (Cr)	mg/L	0.0089	0.0089	0.00167	0.00256	0.00171	0.00356	0.00163	<0.00050	0.00218	0.00306	0.00325	<0.00050	0.00142	0.00270	0.00142
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	0.00034	0.00056	0.00036	0.00074	0.00034	<0.00010	0.00044	0.00064	0.00069	<0.00010	0.00031	0.00058	0.00034
	Copper (Cu)	mg/L	0.002	0.0024	0.0019	0.0024	0.0019	0.0030	0.0019	<0.0010	0.0022	0.0029	0.0031	<0.0010	0.0018	0.0025	0.0021
	Iron (Fe)	mg/L	0.30	0.874	0.748	1.22	0.855	1.71	0.719	0.028	1.01	1.44	1.38	0.013	0.660	1.34	0.759
	Lead (Pb)	mg/L	0.001	0.001	0.000587	0.000934	0.000661	0.00125	0.000532	<0.000050	0.000745	0.00105	0.00117	<0.000050	0.000497	0.000936	0.000798
tals	Magnesium (Mg)	mg/L	-	-	9.03	9.37	8.63	8.68	8.92	21.4	8.81	9.32	9.44	8.90	9.12	9.19	8.91
Metals	Manganese (Mn)	mg/L	0.935^{β}	-	0.00948	0.0160	0.0101	0.0201	0.00919	0.00103	0.0119	0.0180	0.0188	<0.00050	0.00914	0.0173	0.0132
Fotal	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	0.0000051	<0.0000050	0.0000051	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.0000050
1º	Molybdenum (Mo)	mg/L	0.073	-	0.000458	0.000399	0.000434	0.000398	0.000360	0.000491	0.000382	0.000574	0.000597	0.000647	0.000453	0.000484	0.000263
	Nickel (Ni)	mg/L	0.025	0.025	0.00121	0.00180	0.00130	0.00253	0.00154	0.00057	0.00166	0.00234	0.00279	0.00051	0.00134	0.00220	0.00147
	Potassium (K)	mg/L	-	-	1.62	1.69	1.63	1.84	1.58	1.81	1.61	1.78	1.83	1.26	1.50	1.69	1.48
	Selenium (Se)	mg/L	0.001	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000070	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Silicon (Si)	mg/L	-	-	1.93	2.72	2.11	3.56	1.85	1.00	2.35	3.09	3.00	0.74	1.86	3.51	1.73
	Sodium (Na)	mg/L	-	-	4.94	4.29	4.58	3.98	4.02	3.23	3.75	3.94	3.88	3.66	3.82	3.89	4.01
	Strontium (Sr)	mg/L	-	-	0.0225	0.0211	0.0207	0.0202	0.0173	0.0414	0.0189	0.0200	0.0206	0.0181	0.0178	0.0204	0.0193
	Thallium (TI)	mg/L	0.0008	0.0008	0.000021	0.000030	0.000021	0.000041	0.000021	<0.000010	0.000025	0.000032	0.000037	<0.000010	0.000019	0.000034	0.000024
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	-	0.0518	0.0837	0.0593	0.112	0.0526	0.00167	0.0694	0.0932	0.0970	0.00070	0.0534	0.0756	0.0944
	Uranium (U)	mg/L	0.015	-	0.00584	0.00522	0.00509	0.00420	0.00389	0.00369	0.00400	0.00407	0.00414	0.00336	0.00334	0.00374	0.00382
	Vanadium (V)	mg/L	0.006 ^a	0.006	0.00161	0.00240	0.00176	0.00327	0.00167	<0.00050	0.00202	0.00276	0.00294	<0.00050	0.00142	0.00242	0.00150
	Zinc (Zn)	mg/L	0.030	0.030	0.0197	0.0032	< 0.0030	0.0044	< 0.0030	< 0.0030	< 0.0030	0.0061	0.0043	< 0.0030	< 0.0030	0.0032	< 0.0030

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Mary River system.

Table C.58: Water Chemistry at Mary River Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water							Fa	II Sampling Eve	ent					
Paran	neters	Units	Quality Guideline	AEMP Benchmark ^b	G0-09-A	G0-09	G0-09-B	G0-03	GO-01	F0-01	E0-10	EO-03	EO-21	EO-20	C0-10	C0-05	CO-01
			(WQG) ^a		28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20
	Conductivity (lab)	umho/cm	-	-	252	250	243	226	229	403	259	240	240	240	239	232	232
als	pH (lab)	рН	6.5 - 9.0	-	8.34	8.37	8.29	8.75	8.20	8.32	8.22	8.13	8.20	8.20	8.21	8.14	8.16
Conventionals	Hardness (as CaCO ₃)	mg/L	-	-	126	123	110	104	108	211	127	114	114	114	112	113	110
nti	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	2.4	3.6	2.0	<2.0	<2.0	3.2	<2.0	2.8	2.0	<2.0	2.0
nve	Total Dissolved Solids (TDS)	mg/L	-	-	134	127	127	113	124	224	126	123	131	132	124	122	134
တ	Turbidity	NTU	-	-	0.36	3.06	4.96	4.16	5.21	0.61	4.61	6.18	6.97	6.89	4.26	3.05	2.70
	Alkalinity (as CaCO ₃)	mg/L	-	-	111	105	94	89	92	132	100	95	93	93	95	94	93
cs	Total Ammonia	mg/L	-	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.012	<0.010
Organics	Nitrate	mg/L	3	3	0.026	0.103	0.180	0.161	0.164	1.09	0.324	0.230	0.228	0.252	0.240	0.216	0.230
rg	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	<0.15	0.16	0.15	<0.15	0.22	<0.15	<0.15	<0.15	<0.15
and	Dissolved Organic Carbon	mg/L	-	-	2.55	2.62	2.59	2.42	2.23	1.96	2.35	2.26	1.84	2.16	2.15	2.50	2.11
nts	Total Organic Carbon	mg/L	-	-	2.55	2.30	2.31	2.22	2.28	2.27	2.11	2.38	2.44	2.27	2.41	2.83	2.45
Nutrients	Total Phosphorus	mg/L	0.020 ^a	_	<0.0030	0.0035	0.0036	<0.0030	0.0046	<0.0030	<0.0030	0.0035	0.0057	0.0063	0.0074	0.0045	0.0101
Nut	Phenois	mg/L	0.004 ^a	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	9.45	11.6	14.4	13.5	12.9	11.7	12.7	13.0	13.0	12.1	11.9	11.6	11.5
An	Sulphate (SO ₄)	mg/L	218 ^β	218	4.96	7.03	7.99	6.90	7.08	60.7	16.4	10.7	10.7	10.5	10.3	10.1	10.7
	Aluminum (AI)	mg/L	0.100	0.966	0.0116	0.107	0.143	0.154	0.141	0.0407	0.148	0.181	0.196	0.166	0.144	0.113	0.107
	Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.020	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.003	0.005	0.0134	0.0140	0.0145	0.0144	0.0151	0.0179	0.0159	0.0155	0.0159	0.0157	0.0152	0.0143	0.0149
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0179	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0143	<0.0149
	Cadmium (Cd)	mg/L	0.00012	0.00006	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Calcium (Ca)	mg/L	0.00012	-	24.8	24.7	22.2	21.1	21.6	36.7	24.7	22.7	22.6	22.5	22.6	21.6	21.4
	` '		0.0089	0.0089	<0.00050	<0.00050				<0.00050	<0.00050		<0.00050	<0.00050			
	Chromium (Cr)	mg/L					<0.00050	<0.00050	<0.00050			<0.00050			<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^α	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00017	<0.00010	<0.00010	<0.00010	0.00011	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00085	0.00102	0.00123	0.00115 0.118	0.00121	0.00086	0.00117	0.00124 0.178	0.00130	0.00130	0.00112	0.00107	0.00107
	Iron (Fe)	mg/L	0.30	0.874	<0.030	0.084	0.127		0.132	0.050	0.133		0.200	0.191	0.132	0.104	0.097
s	Lead (Pb)	mg/L	0.001	0.001	<0.000050	0.000084	0.000130	0.000121	0.000147	<0.000050	0.000130	0.000172	0.000195	0.000190	0.000120	0.000087	0.000077
Metals	Magnesium (Mg)	mg/L	- B	-	13.9	13.4	12.5	12.4	12.4	27.8	15.2	13.1	13.5	13.4	13.2	13.2	13.0
	Manganese (Mn)	mg/L	0.935^{β}	-	0.000498	0.00133	0.00202	0.00169	0.00180	0.00182	0.00197	0.00232	0.00266	0.00275	0.00204	0.00266	0.00246
Total	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
ĭ	Molybdenum (Mo)	mg/L	0.073	-	0.000313	0.000447	0.000544	0.000508	0.000470	0.000408	0.000485	0.000625	0.000636	0.000607	0.000595	0.000581	0.000584
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	<0.00050	<0.00050	<0.00050	0.00052	<0.00050	0.00051	0.00060	0.00063	0.00075	0.00068	0.00074	0.00072
	Potassium (K)	mg/L	-	-	1.30	1.44	1.61	1.51	1.49	1.69	1.53	1.53	1.59	1.53	1.51	1.45	1.46
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.88	0.94	1.03	0.98	0.98	1.09	1.07	1.22	1.08	1.07	1.03	0.96	0.91
	Sodium (Na)	mg/L	-	-	4.77	5.77	6.95	5.87	5.74	3.39	5.46	5.63	5.77	5.41	5.38	5.15	5.10
	Strontium (Sr)	mg/L	-	-	0.0228	0.0259	0.0270	0.0246	0.0241	0.0373	0.0261	0.0259	0.0263	0.0244	0.0248	0.0228	0.0234
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.012	0.011	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00673	0.00720	0.00776	0.00654	0.00645	0.00483	0.00614	0.00631	0.00615	0.00576	0.00562	0.00532	0.00511
	Vanadium (V)	mg/L	0.006 ^a	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	< 0.0030	< 0.0030	< 0.0030	<0.0030	< 0.0030	< 0.0030	< 0.0030	0.0494	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0030

Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to the Mary River system.

Table C.59: Summary of the Magnitude of Elevation in Seasonal Average Parameter Concentrations (Total Metal Concentration Data Provided) Between Mary River Mine-Exposed and Reference (GO-09) Stations in 2020

					Spr	ring									Sun	nmer				
Variable	G0-03	G0-01	FO-01	E0-10	E0-03	E0-21	E0-20	C0-10	CO-05	CO-01	G0-03	G0-01	FO-01	E0-10	E0-03	E0-21	E0-20	C0-10	CO-05	CO-01
Conductivity (lab)	8.0	0.7	1.8	1.3	0.7	0.7	0.7	0.8	1.2	0.9	0.9	0.9	1.9	0.9	1.0	1.0	1.0	1.0	0.9	0.9
Hardness (as CaCO ₃)	0.7	0.7	1.8	1.3	0.8	0.7	0.7	0.7	1.2	0.9	0.9	0.9	2.0	1.0	0.9	1.0	0.9	0.9	0.9	0.9
Total Suspended Solids (TSS)	9.3	5.3	4.9	4.5	4.2	4.4	3.9	3.2	3.7	4.7	1.1	0.5	0.2	0.7	0.9	1.3	1.1	0.7	1.4	1.5
Total Dissolved Solids (TDS)	1.2	0.8	1.4	1.3	1.0	1.1	1.0	1.0	1.2	1.2	1.0	1.1	2.0	1.2	1.2	1.3	1.2	1.1	1.1	1.1
Turbidity	1.8	1.6	0.5	1.0	1.6	1.7	1.6	1.8	1.7	2.4	1.7	0.9	0.0	1.2	1.5	1.6	1.5	0.8	1.3	1.3
Alkalinity (as CaCO ₃)	8.0	0.7	1.3	1.6	0.7	0.7	0.7	0.6	1.0	8.0	0.9	1.1	1.5	1.1	1.1	1.0	1.0	1.1	1.0	1.0
Total Ammonia	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0
Nitrate	1.9	1.0	9.0	4.8	1.5	1.1	1.0	7.9	3.0	2.0	0.8	0.5	4.9	0.7	0.9	0.9	1.1	1.1	1.2	1.2
Nitrite	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total Kjeldahl Nitrogen (TKN)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Dissolved Organic Carbon	1.3	1.4	1.3	1.6	1.3	1.3	1.3	1.3	1.4	1.3	1.1	0.9	0.4	1.0	1.0	0.5	0.6	0.5	0.6	0.7
Total Organic Carbon	1.2	1.2	1.3	1.2	1.3	1.3	1.4	1.4	1.5	1.4	0.9	1.0	0.9	1.1	1.1	1.1	1.1	1.0	1.1	1.2
Total Phosphorus	5.0	4.2	3.1	5.6	2.2	5.6	2.4	1.6	5.5	2.0	1.5	0.6	0.1	0.8	1.2	1.3	1.2	0.9	1.1	1.1
Phenols	0.7	0.7	0.7	0.7	1.1	0.8	0.7	0.9	0.7	0.7	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Bromide (Br)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Chloride (CI)	2.0	1.0	1.3	1.2	1.0	0.9	0.9	1.0	1.7	1.3	0.9	8.0	1.5	0.9	0.9	0.9	8.0	8.0	8.0	8.0
Sulphate (SO ₄)	0.9	0.8	17	9.8	2.9	2.3	2.0	3.5	5.0	2.9	0.9	0.9	6.5	1.1	1.2	1.3	1.2	1.1	1.1	1.1
Aluminum (AI)	2.0	1.8	1.4	1.9	1.6	1.8	1.8	1.7	1.3	2.0	1.7	0.8	0.0	1.1	1.4	1.5	0.0	0.8	1.2	1.5
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.4	0.9	0.5	1.0	1.3	1.3	0.5	0.9	1.2	1.1
Barium (Ba)	1.2	1.0	1.1	1.1	1.0	1.0	0.9	0.9	1.1	1.1	1.3	0.9	1.0	1.0	1.2	1.2	0.6	0.9	1.1	0.9
Boron (B)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cadmium (Cd)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.9	0.9	0.9	0.9	2.2	1.8	0.9	1.0	0.9	1.1
Calcium (Ca)	0.9	0.7	1.5	1.1	0.7	0.6	0.6	0.6	1.1	8.0	0.9	0.9	1.8	0.9	1.0	1.0	1.0	0.9	1.0	1.0
Chromium (Cr)	1.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.8	8.0	0.3	1.1	1.5	1.6	0.3	0.7	1.4	0.7
Cobalt (Co)	2.2	1.1	1.6	1.3	1.1	1.0	1.0	1.0	1.1	1.0	1.8	8.0	0.2	1.0	1.5	1.6	0.2	0.7	1.4	0.8
Copper (Cu)	0.4	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.2	1.5	0.9	0.5	1.1	1.4	1.5	0.5	0.9	1.2	1.0
Iron (Fe)	3.5	1.9	1.9	2.2	1.8	1.7	1.9	1.7	1.7	1.8	1.8	8.0	0.0	1.1	1.5	1.5	0.0	0.7	1.4	0.8
Lead (Pb)	1.9	1.0	0.9	8.0	0.9	0.9	0.9	0.9	1.0	0.7	1.7	0.7	0.1	1.0	1.4	1.6	0.1	0.7	1.3	1.1
Lithium (Li)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.6	8.0	1.3	1.0	1.4	1.4	0.5	0.8	1.4	0.9
Magnesium (Mg)	8.0	0.7	2.0	1.4	0.8	0.7	8.0	0.7	1.2	1.0	1.0	1.0	2.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Manganese (Mn)	3.7	2.0	3.6	2.6	1.9	1.6	1.6	1.6	2.7	1.6	1.7	8.0	0.1	1.0	1.5	1.6	0.0	8.0	1.5	1.1
Mercury (Hg)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Molybdenum (Mo)	0.7	0.7	1.4	1.2	0.7	1.0	1.0	1.1	2.5	1.3	0.9	8.0	1.1	0.9	1.3	1.4	1.5	1.1	1.1	0.6
Nickel (Ni)	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	1.8	1.1	0.4	1.2	1.6	1.9	0.4	0.9	1.5	1.0
Potassium (K)	0.9	8.0	1.1	1.0	0.8	0.8	0.8	0.8	1.1	1.0	1.1	1.0	1.1	1.0	1.1	1.1	0.8	0.9	1.0	0.9
Selenium (Se)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Silicon (Si)	1.1	1.1	0.9	1.2	1.0	1.2	1.1	1.1	0.9	1.3	1.6	0.8	0.4	1.0	1.4	1.3	0.3	0.8	1.6	0.8
Silver (Ag)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sodium (Na)	0.7	8.0	0.5	0.6	0.7	0.7	0.7	0.7	1.0	0.9	0.9	0.9	0.7	8.0	0.9	0.8	0.8	0.8	0.8	0.9
Strontium (Sr)	0.9	8.0	1.8	1.4	0.8	0.8	0.8	0.7	1.0	0.9	0.9	0.8	1.9	0.9	0.9	1.0	0.8	8.0	1.0	0.9
Thallium (TI)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.7	0.9	0.4	1.0	1.3	1.5	0.4	0.8	1.4	1.0
Tin (Sn)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Titanium (Ti)	1.7	1.2	1.1	1.4	1.0	1.1	1.1	1.0	1.0	1.0	1.7	0.8	0.0	1.1	1.4	1.5	0.0	0.8	1.2	1.5
Uranium (U)	0.9	0.7	0.9	0.9	0.7	0.6	0.6	0.6	1.2	0.6	0.8	0.7	0.7	0.7	8.0	0.8	0.6	0.6	0.7	0.7
Vanadium (V)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.7	0.9	0.3	1.1	1.4	1.5	0.3	0.7	1.3	0.8
Zinc (Zn)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.5	0.3	0.3	0.3	0.7	0.5	0.3	0.3	0.4	0.3

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration ≥ 10 times higher than respective mean reference or baseline period value).

Table C.59: Summary of the Magnitude of Elevation in Seasonal Average Parameter Concentrations (Total Metal Concentration Data Provided) Between Mary River Mine-Exposed and Reference (GO-09) Stations in 2020

					F	all				
Variable	G0-03	G0-01	FO-01	E0-10	E0-03	E0-21	E0-20	C0-10	CO-05	CO-01
Conductivity (lab)	0.9	0.9	1.6	1.0	1.0	1.0	1.0	1.0	0.9	0.9
Hardness (as CaCO ₃)	0.9	0.9	1.8	1.1	1.0	1.0	1.0	0.9	0.9	0.9
Total Suspended Solids (TSS)	1.7	0.9	0.9	0.9	1.5	0.9	1.3	0.9	0.9	0.9
Total Dissolved Solids (TDS)	0.9	1.0	1.7	1.0	1.0	1.0	1.0	1.0	0.9	1.0
Turbidity	1.5	1.9	0.2	1.7	2.2	2.5	2.5	1.5	1.1	1.0
Alkalinity (as CaCO ₃)	0.9	0.9	1.3	1.0	0.9	0.9	0.9	0.9	0.9	0.9
Total Ammonia	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.0
Nitrate	1.6	1.6	11	3.1	2.2	2.2	2.4	2.3	2.1	2.2
Nitrite	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total Kjeldahl Nitrogen (TKN)	1.0	1.0	1.1	1.0	1.0	1.5	1.0	1.0	1.0	1.0
Dissolved Organic Carbon	0.9	0.9	0.8	0.9	0.9	0.7	0.8	0.8	1.0	0.8
Total Organic Carbon	0.9	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.2	1.0
Total Phosphorus	0.9	1.4	0.9	0.9	1.0	1.7	1.9	2.2	1.3	3.0
Phenols	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Bromide (Br)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Chloride (CI)	1.1	1.1	1.0	1.1	1.1	1.1	1.0	1.0	1.0	1.0
Sulphate (SO ₄)	1.0	1.1	9.1	2.5	1.6	1.6	1.6	1.5	1.5	1.6
Aluminum (AI)	1.8	1.6	0.5	1.7	2.1	2.2	1.9	1.7	1.3	1.2
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Barium (Ba)	1.0	1.1	1.3	1.1	1.1	1.1	1.1	1.1	1.0	1.1
Boron (B)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cadmium (Cd)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Calcium (Ca)	0.9	0.9	1.5	1.0	0.9	0.9	0.9	0.9	0.9	0.9
Chromium (Cr)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cobalt (Co)	1.0	1.0	1.7	1.0	1.0	1.0	1.1	1.0	1.0	1.0
Copper (Cu)	1.1	1.2	0.8	1.1	1.2	1.3	1.3	1.1	1.0	1.0
Iron (Fe)	1.5	1.6	0.6	1.7	2.2	2.5	2.4	1.6	1.3	1.2
Lead (Pb)	1.4	1.7	0.6	1.5	2.0	2.2	2.2	1.4	1.0	0.9
Lithium (Li)	1.0	1.0	1.8	1.2	1.1	1.1	1.1	1.0	1.0	1.0
Magnesium (Mg)	0.9	0.9	2.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0
Manganese (Mn)	1.3	1.4	1.4	1.5	1.8	2.1	2.1	1.6	2.1	1.9
Mercury (Hg)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Molybdenum (Mo)	1.2	1.1	0.9	1.1	1.4	1.5	1.4	1.4	1.3	1.3
Nickel (Ni)	1.0	1.0	1.0	1.0	1.2	1.3	1.5	1.4	1.5	1.4
Potassium (K)	1.0	1.0	1.2	1.1	1.1	1.1	1.1	1.0	1.0	1.0
Selenium (Se)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Silicon (Si)	1.0	1.0	1.1	1.1	1.3	1.1	1.1	1.1	1.0	1.0
Silver (Ag)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sodium (Na)	1.0	1.0	0.6	0.9	1.0	1.0	0.9	0.9	0.9	0.9
Strontium (Sr)	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	0.9	0.9
Thallium (TI)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Tin (Sn)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Titanium (Ti)	1.0	1.0	1.0	1.0	1.0	1.2	1.1	1.0	1.0	1.0
Uranium (U)	0.9	0.9	0.7	0.8	0.9	0.9	0.8	0.8	0.7	0.7
Vanadium (V)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Zinc (Zn)	1.0	1.0	1.0	1.0	16	1.0	1.0	1.0	1.0	1.0

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration ≥ 10 times higher than respective mean reference or baseline period value).

Table C.60: Dissolved Metal Concentrations at Mary River Water Quality Monitoring Stations, Mary River Project CREMP, 2020

								Sprin	g Sampling	Event								Summer Sar	npling Event		
	Parameters	Units	G0-09-A	G0-09	G0-09-B	G0-03	G0-01	F0-01	E0-10	E0-03	E0-21	E0-20	C0-10	C0-05	C0-01	G0-09-A	G0-09	G0-09-B	G0-03	G0-01	F0-01
			04-Jul-20	04-Jul-20	04-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Jul-20	03-Aug-20	02-Aug-20	02-Aug-20	02-Aug-20	01-Aug-20	01-Aug-20
	Aluminum (AI)	mg/L	0.0112	0.0172	0.0825	0.0512	0.0517	0.0099	0.0273	0.0440	0.0528	0.0456	0.0426	0.0282	0.0412	0.0291	0.0305	0.0271	0.0592	0.0325	0.0067
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00416	0.00366	0.00320	0.00334	0.00325	0.00405	0.00378	0.00314	0.00311	0.00316	0.00315	0.00418	0.00358	0.0117	0.0108	0.0105	0.0107	0.0105	0.0168
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050
	Calcium (Ca)	mg/L	6.75	6.76	3.86	4.26	3.98	9.23	6.55	4.11	3.92	3.98	3.90	6.22	4.69	17.3	17.6	15.6	15.2	15.6	30.8
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	<0.00050	<0.00050	0.00051	0.00053	0.00058	<0.00050	<0.00050	<0.00050	0.00051	0.00054	<0.00050	0.00057	0.00063	0.00110	0.00099	0.00093	0.00090	0.00097	0.00100
	Iron (Fe)	mg/L	<0.030	<0.030	0.039	0.030	0.031	<0.030	<0.030	<0.030	<0.030	0.032	0.031	<0.030	0.031	0.015	0.013	0.011	0.034	0.013	<0.010
ø	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000056	<0.000050	0.000055	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0017	0.0016	0.0017	0.0016	0.0016	0.0032
	Magnesium (Mg)	mg/L	3.80	3.59	2.29	2.45	2.27	6.51	4.60	2.56	2.41	2.49	2.32	4.05	2.89	9.99	9.54	8.94	8.51	8.86	21.6
lve olve	Manganese (Mn)	mg/L	0.000352	0.000291	0.000908	0.000994	0.00121	0.00240	0.00169	0.000980	0.000957	0.00123	0.00135	0.00315	0.00227	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Dissolved	Mercury (Hg)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)	mg/L	0.000078	0.000074	0.000092	0.000077	0.000077	0.000111	0.000102	0.000089	0.000103	0.000101	0.000104	0.000265	0.000161	0.000562	0.000503	0.000563	0.000487	0.000467	0.000561
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00054
	Potassium (K)	mg/L	0.49	0.46	0.44	0.44	0.46	0.57	0.52	0.43	0.43	0.43	0.40	0.63	0.50	1.43	1.32	1.39	1.28	1.36	1.83
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000082
	Silicon (Si)	mg/L	0.57	0.52	0.57	0.52	0.49	0.42	0.45	0.47	0.48	0.45	0.46	0.45	0.43	0.820	0.906	0.747	0.741	0.809	1.10
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Sodium (Na)	mg/L	0.735	0.688	0.698	0.587	0.679	0.433	0.555	0.573	0.570	0.576	0.577	0.874	0.712	5.40	4.70	5.12	4.24	4.22	3.32
	Strontium (Sr)	mg/L	0.00571	0.00518	0.00433	0.00425	0.00402	0.00971	0.00717	0.00437	0.00419	0.00401	0.00384	0.00528	0.00444	0.0220	0.0209	0.0216	0.0194	0.0183	0.0430
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.00092	0.00087	0.00073	0.00227	0.00086	<0.00030
	Uranium (U)	mg/L	0.000441	0.000345	0.000234	0.000224	0.000193	0.000309	0.000268	0.000193	0.000184	0.000184	0.000179	0.000381	0.000237	0.00533	0.00485	0.00491	0.00367	0.00381	0.00373
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0035	0.0021	<0.0010	0.0098	<0.0010	0.0018	<0.0010

Table C.60: Dissolved Metal Concentrations at Mary River Water Quality Monitoring Stations, Mary River Project CREMP, 2020

					Summ	er Sampling	j Event								Fall	Sampling E	vent					
	Parameters	Units	E0-10	E0-03	E0-21	E0-20	C0-10	C0-05	C0-01	G0-09-A	G0-09	G0-09-B	G0-03	GO-01	FO-01	EO-10	EO-03	EO-21	EO-20	C0-10	C0-05	CO-01
	. urumotoro	5 6	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	31-Jul-20	31-Jul-20	31-Jul-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20						
	Aluminum (AI)	mg/L	0.0276	0.0265	0.0247	0.720	0.0199	0.106	0.0308	0.0064	0.0112	0.0194	0.0199	0.0154	0.0055	0.0141	0.0223	0.0198	0.0091	0.0137	0.0650	0.0519
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	0.00024	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.0105	0.0107	0.0109	0.0164	0.0106	0.0107	0.0106	0.0135	0.0137	0.0141	0.0137	0.0140	0.0176	0.0148	0.0146	0.0147	0.0145	0.0140	0.0145	0.0140
	Beryllium (Be)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000050	<0.0000050	<0.0000050	0.0000081	<0.0000050	<0.0000050	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	16.6	15.8	16.1	15.5	15.4	15.4	15.9	26.4	25.8	22.2	21.0	22.2	37.3	24.5	22.8	22.8	22.6	22.5	22.2	21.8
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	0.00173	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	0.00045	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00015	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00094	0.00090	0.00089	0.00231	0.00098	0.00115	0.00100	0.00102	0.00096	0.00108	0.00137	0.00106	0.00136	0.00099	0.00101	0.00105	0.00098	0.00098	0.00106	0.00100
	Iron (Fe)	mg/L	0.013	0.013	0.012	1.03	0.011	0.084	0.020	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
<u>0</u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	0.000921	<0.000050	0.000108	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	0.0015	0.0012	0.0012	0.0023	0.0010	0.0014	<0.0010	0.0010	0.0011	0.0011	<0.0010	0.0011	0.0022	0.0012	0.0010	0.0011	0.0011	0.0010	<0.0010	<0.0010
Σ	Magnesium (Mg)	mg/L	8.97	9.09	8.99	9.16	8.86	8.92	8.72	14.6	14.1	13.4	12.6	12.7	28.5	15.9	13.9	13.8	13.9	13.5	14.1	13.6
olved	Manganese (Mn)	mg/L	<0.00050	<0.00050	<0.00050	0.0127	<0.00050	0.00201	0.00230	0.000404	0.000268	0.000309	0.000265	0.000222	0.000634	0.000307	0.000356	0.000374	0.000477	0.000580	0.00189	0.00104
Disso	Mercury (Hg)	mg/L	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.000050
	Molybdenum (Mo)	mg/L	0.000486	0.000720	0.000781	0.000421	0.000617	0.000583	0.000585	0.000313	0.000481	0.000570	0.000504	0.000532	0.000415	0.000520	0.000664	0.000689	0.000673	0.000648	0.000616	0.000595
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	0.00177	<0.00050	0.00088	0.00056	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00054	0.00052	0.00067	0.00065
	Potassium (K)	mg/L	1.28	1.30	1.28	1.56	1.26	1.29	1.26	1.36	1.49	1.61	1.48	1.49	1.69	1.53	1.54	1.55	1.50	1.48	1.52	1.44
	Selenium (Se)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.797	0.834	0.756	2.02	0.941	1.17	0.912	0.92	0.79	0.85	0.79	0.79	1.07	0.84	0.79	0.81	0.81	0.80	0.80	0.76
	Silver (Ag)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	4.05	3.94	3.89	3.77	3.93	4.00	3.96	5.27	6.22	7.28	6.06	5.99	3.59	5.65	6.02	5.93	5.66	5.64	5.76	5.45
	Strontium (Sr)	mg/L	0.0198	0.0198	0.0202	0.0197	0.0194	0.0188	0.0193	0.0241	0.0251	0.0275	0.0240	0.0240	0.0363	0.0275	0.0257	0.0261	0.0247	0.0247	0.0229	0.0236
	Thallium (TI)	mg/L	<0.000010	<0.000010	<0.000010	0.000029	<0.000010	0.000011	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	0.00076	0.00076	0.00081	0.0571	0.00058	0.00463	0.00107	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00390	0.00373	0.00368	0.00370	0.00336	0.00331	0.00342	0.00662	0.00712	0.00761	0.00649	0.00625	0.00469	0.00590	0.00615	0.00604	0.00563	0.00558	0.00539	0.00514
	Vanadium (V)	mg/L	<0.00050	<0.00050	<0.00050	0.00192	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0010	<0.0010	<0.0010	0.0030	<0.0010	0.0036	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.61: Summary of the Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations Between Mary River Mine-Exposed and Reference (GO-09) Stations in 2020

					Sp	ring									Sum	mer									Fa	all				
Variable	G0-03	G0-01	FO-01	E0-10	E0-03	E0-21	E0-20	C0-10	CO-05	CO-01	G0-03	G0-01	FO-01	E0-10	E0-03	E0-21	E0-20	C0-10	CO-05	CO-01	G0-03	G0-01	FO-01	E0-10	E0-03	E0-21	E0-20	C0-10	CO-05	CO-01
Aluminum (Al)	1.4	1.4	0.3	0.7	1.2	1.4	1.2	1.2	0.8	1.1	2.0	1.1	0.2	1.0	0.9	0.9	25	0.7	3.7	1.1	1.6	1.2	0.4	1.1	1.8	1.6	0.7	1.1	5.3	4.2
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Barium (Ba)	0.9	0.9	1.1	1.0	0.9	8.0	0.9	0.9	1.1	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.3	1.1	1.1	1.1	1.1	1.0	1.1	1.0
Beryllium (Be)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Bismuth (Bi)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Boron (B)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cadmium (Cd)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Calcium (Ca)	0.7	0.7	1.6	1.1	0.7	0.7	0.7	0.7	1.1	0.8	0.9	0.9	1.8	1.0	0.9	1.0	0.9	0.9	0.9	0.9	0.8	0.9	1.5	1.0	0.9	0.9	0.9	0.9	0.9	0.9
Chromium (Cr)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cobalt (Co)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	4.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Copper (Cu)	1.1	1.2	1.0	1.0	1.0	1.0	1.1	1.0	1.1	1.3	0.9	1.0	1.0	0.9	0.9	0.9	2.3	1.0	1.1	1.0	1.3	1.0	1.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Iron (Fe)	0.9	0.9	0.9	0.9	0.9	0.9	1.0	0.9	0.9	0.9	2.6	1.0	0.8	1.0	1.0	0.9	79	0.8	6.5	1.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lead (Pb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	18	1.0	2.2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lithium (Li)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.9	0.9	0.7	0.7	1.4	0.6	0.8	0.6	0.9	1.0	2.1	1.1	0.9	1.0	1.0	0.9	0.9	0.9
Magnesium (Mg)	0.8	0.7	2.0	1.4	0.8	0.7	0.8	0.7	1.3	0.9	0.9	0.9	2.3	0.9	1.0	0.9	1.0	0.9	0.9	0.9	0.9	0.9	2.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0
Manganese (Mn)	1.9	2.3	4.6	3.3	1.9	1.9	2.4	2.6	6.1	4.4	1.0	1.0	1.0	1.0	1.0	1.0	25	1.0	4.0	4.6	0.8	0.7	1.9	0.9	1.1	1.1	1.5	1.8	5.8	3.2
Mercury (Hg)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Molybdenum (Mo)	0.9	0.9	1.4	1.3	1.1	1.3	1.2	1.3	3.3	2.0	0.9	0.9	1.0	0.9	1.3	1.4	0.8	1.1	1.1	1.1	1.1	1.2	0.9	1.1	1.5	1.5	1.5	1.4	1.4	1.3
Nickel (Ni)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	3.5	1.0	1.8	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.3	1.3
Potassium (K)	0.9	1.0	1.2	1.1	0.9	0.9	0.9	0.9	1.4	1.1	0.9	1.0	1.3	0.9	0.9	0.9	1.1	0.9	0.9	0.9	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Selenium (Se)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Silicon (Si)	0.9	0.9	0.8	0.8	0.8	0.9	8.0	0.8	0.8	0.8	0.9	1.0	1.3	1.0	1.0	0.9	2.5	1.1	1.4	1.1	0.9	0.9	1.3	1.0	0.9	0.9	0.9	0.9	0.9	0.9
Silver (Ag)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sodium (Na)	0.8	1.0	0.6	0.8	0.8	0.8	8.0	0.8	1.2	1.0	0.8	0.8	0.7	0.8	0.8	0.8	0.7	0.8	0.8	0.8	1.0	1.0	0.6	0.9	1.0	0.9	0.9	0.9	0.9	0.9
Strontium (Sr)	0.8	0.8	1.9	1.4	0.9	0.8	0.8	0.8	1.0	0.9	0.9	0.9	2.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.4	1.1	1.0	1.0	1.0	1.0	0.9	0.9
Thallium (TI)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.9	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Tin (Sn)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Titanium (Ti)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.7	1.0	0.4	0.9	0.9	1.0	-	0.7	5.5	1.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Uranium (U)	0.7	0.6	0.9	0.8	0.6	0.5	0.5	0.5	1.1	0.7	0.7	0.8	0.7	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.9	0.9	0.7	0.8	0.9	8.0	0.8	0.8	8.0	0.7
Vanadium (V)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	3.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Zinc (Zn)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	0.2	0.4	0.2	0.2	0.2	0.2	0.7	0.2	0.8	0.2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration≥ 10 times higher than respective mean reference or baseline period value).

Table C.62: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Winter, Mary River Project CREMP, April 2020

Depth					Tempera	ature (°C)								Di	issolved Ox	kygen (mg/l	L)					Dissolved (Oxygen (%	Saturation))
(m)	BLO-01-A	BLO-01	BLO-01-B B	LO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05
Date Collected	19-Apr-20	19-Apr-20	19-Apr-20 2	1-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	21-Apr-20	21-Apr-20
1.0	0.3	0.9	0.1	0.0	0.3	0.3	0.0	0.3	0.2	0.1	13.11	12.93	13.52	14.67	14.40	14.77	14.57	14.63	14.78	14.95	90.0	90.6	98.7	100.2	99.2
2.0	0.1	0.1	0.0	0.2	0.2	0.1	0.0	0.2	0.0	0.1	13.09	13.32	13.44	14.58	14.66	14.93	15.09	14.55	14.87	15.02	90.0	91.6	92.3	100.3	100.6
3.0	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.3	0.2	0.2	13.03	13.24	13.32	14.58	14.55	14.86	14.82	14.40	14.66	14.81	90.1	91.2	91.7	100.4	100.3
4.0	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.4	0.3	0.3	12.89	13.20	13.23	14.48	14.38	14.82	14.74	14.25	14.57	14.68	89.6	91.4	91.7	100.0	99.4
5.0	0.5	0.5	-	0.4	0.4	0.3	0.3	0.4	0.3	0.3	12.79	13.15	-	14.36	14.21	14.78	14.65	14.21	14.53	14.56	89.0	91.3	-	99.3	98.3
6.0	0.7	0.5	-	0.4	0.4	0.3	0.4	0.4	0.4	0.4	12.62	13.11	-	14.17	14.18	15.23	14.53	14.14	14.39	14.42	88.1	91.3	-	98.1	98.2
7.0	0.7	0.7	-	0.4	0.4	-	0.5	0.4	0.4	0.4	12.48	13.01	-	14.15	14.14	-	14.37	14.08	14.32	14.37	87.4	90.9	-	98.0	98.0
8.0	0.8	0.7	-	0.4	0.4	-	0.6	0.4	0.4	0.4	12.19	12.86	-	14.10	14.08	-	14.22	14.02	14.28	14.42	85.8	90.1	-	97.7	97.6
9.0	0.9	0.8	-	0.5	0.5	-	0.7	0.4	0.4	-	11.79	12.62	-	14.01	14.02	-	14.08	13.99	14.20	-	83.3	88.7	-	97.2	97.2
10.0	1.0	-	-	0.5	0.5	-	0.8	0.5	0.4	-	11.33	-	-	13.94	13.94	-	13.86	13.96	14.15	-	80.4	-	-	96.8	96.8
11.0	1.1	-	-	0.5	0.5	-	8.0	0.5	0.5	-	10.81	-	-	13.87	13.89	-	13.78	13.95	14.08	-	77.3	-	-	96.3	96.4
12.0	1.3	-	-	-	0.5	-	0.9	0.5	0.5	-	6.90	-	-	-	13.90	-	13.70	13.92	13.99	-	49.3	-	-	-	96.5
13.0	1.5	-	-	-	0.5	-	0.9	0.5	0.5	-	5.58	-	-	-	13.92	-	13.55	13.89	13.88	-	40.6	-	-	-	96.6
14.0	1.5	-	-	-	0.5	-	1.0	0.5	0.5	-	2.30	-	-	-	13.93	-	13.42	13.82	13.74	-	16.6	-	-	-	96.8
15.0	1.7	-	-	-	0.5	-	1.0	0.6	0.6	-	0.93	-	-	-	13.88	-	13.34	13.70	13.61	-	6.7	-	-	-	96.5
16.0	-	-	-	-	0.6	-	1.1	0.6	0.6	-	-	-	-	-	13.73	-	13.20	13.59	13.50	-	-	-	-	-	95.7
17.0	-	-	-	-	0.6	-	-	0.6	0.6	-	-	-	-	-	13.54	-	-	13.50	13.39	-	-	-	-	-	94.4
18.0	-	-	-	-	0.6	-		0.6	0.6	-	-	-	-	-	13.42	-	-	13.52	13.29	-	-	-	-	-	93.6
19.0	-	-	-	-	0.6	-		0.7	0.7	-	-	-	-	-	13.35	-	-	13.48	13.20	-	-	-	-	-	93.0
20.0	-	-	-	-	0.7	-		0.7	0.7	-	-	-	-	-	13.25	-	-	13.43	13.07	-	-	-	-	-	92.1
21.0	-	-	-	-	-	-		-	0.7	-	-	-	-	-	-	-	-	-	13.00	-	-	-	-	-	-
22.0	-	-	-	-	-	-		-	8.0	-	-	-	-	-	-	-	-	-	12.66	-	-	-	-	-	-
23.0	-	-	-	-	-	-		-	8.0	-	-	-	-	-	-	-	-	-	12.52	-	-	-	-	-	
24.0	-	-	-	-	-	-	-	-	0.9	-	-	-	-	-	-	-	-	-	12.40	-	-	-	-	-	-
25.0	-	-	-	-	-	-	-	-	1.0	-	-	-	-	-	-	-	-	-	12.14	-	-	-	-	-	-
26.0	-	-	-	-	-	-	-	-	1.0	-	-	-	-	-	-	-	-	-	11.94	-	-	-	-	-	-
27.0	-	-	-	-	-	-	-	-	1.1	-	-	-	-	-	-	-	-	-	11.35	-	-	-	-	-	-
28.0	-	-	-	-	-	-	-	-	1.2	-	-	-	-	-	-	-	-	-	11.18	-	-	-	-	-	-

Notes: Total depth at stations BLO-01-A, BLO-01, BLO-01-B, BLO-05-A, BLO-05-B, BLO-05-

Table C.62: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Winter, Mary River Project CREMP, April 2020

Depth		Dissolved (Oxygen (%	Saturation))					pH (pF	l units)								Spec	cific Condu	ıctance (μS/	/cm)			
(m)	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06
Date Collected	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
1.0	102.6	98.5	101.1	101.4	102.5	7.86	7.78	7.77	7.72	7.49	7.73	8.19	8.14	7.96	7.94	309.7	327.7	316.5	131.7	131.5	134.4	139.6	132.1	131.1	134.6
2.0	102.5	103.3	100.2	101.9	103.2	7.77	7.73	7.76	7.61	7.48	7.68	8.06	7.97	7.91	7.89	304.7	311.2	311.4	128.6	129.3	131.2	136.0	128.2	130.0	131.8
3.0	102.3	102.1	99.3	100.9	102.2	7.75	7.71	7.76	7.61	7.49	7.64	7.99	7.82	7.84	7.84	302.3	308.5	309.3	127.7	127.4	131.0	132.8	127.0	128.2	129.6
4.0	102.3	101.7	98.6	100.4	101.4	7.74	7.70	7.76	7.61	7.49	7.62	7.94	7.80	7.84	7.82	300.5	306.4	306.7	126.6	128.3	130.5	131.8	126.2	128.3	128.7
5.0	102.0	101.2	98.3	100.4	100.7	7.73	7.71	-	7.60	7.50	7.60	7.91	7.78	7.83	7.86	299.3	305.5	-	125.9	125.6	130.9	130.4	125.9	128.1	127.9
6.0	105.2	100.7	97.8	99.6	99.8	7.73	7.71	-	7.59	7.50	7.57	7.89	7.76	7.81	7.79	298.4	304.3	-	125.3	125.4	135.9	129.2	125.4	127.0	127.0
7.0	-	99.9	97.5	99.1	99.4	7.72	7.71	-	7.59	7.49	-	7.87	7.76	7.81	7.78	297.8	303.6	-	125.0	124.9	-	127.7	120.0	126.6	127.9
8.0	-	99.0	97.1	98.9	99.7	7.71	7.70	-	7.26	7.49	-	7.85	7.75	7.80	7.77	296.3	302.6	-	124.7	124.6	-	126.5	124.6	126.6	131.1
9.0	-	98.5	96.9	98.5	-	7.69	7.69	-	7.58	7.49	-	7.84	7.74	7.79	-	294.3	301.8	-	124.4	125.2	-	125.3	124.7	126.3	-
10.0	-	97.0	96.8	98.1	-	7.67	-	-	7.58	7.49	-	7.83	7.72	7.78	-	293.1	-	-	123.9	124.4	-	124.4	125.0	126.0	-
11.0	-	96.6	96.8	97.7	-	7.64	-	-	7.57	7.49	-	7.82	7.72	7.77	-	292.7	-	-	123.9	124.7	-	123.7	125.6	125.3	-
12.0	-	96.1	96.6	97.1	-	7.58	-	-	-	7.49	-	7.82	7.70	7.76	-	291.8	-	-	-	125.3	-	123.0	125.7	124.6	-
13.0	-	95.3	96.5	96.4	-	7.42	-	-	-	7.49	-	7.81	7.69	7.76		292.7	-	-	-	125.9	-	122.2	125.3	123.6	-
14.0	-	94.5	96.0	95.5	-	7.38	-	-	-	7.49	-	7.80	7.68	7.75	-	298.1	-	-	-	125.8	-	121.7	124.7	122.7	-
15.0	-	94.0	95.3	94.7	-	7.25	-	-	-	7.49	-	7.80	7.67	7.74	-	305.1	-	-	-	124.9	-	121.1	123.8	122.3	-
16.0	-	93.2	94.6	94.0	-	-	-	-	-	7.49	-	7.78	7.66	7.74	-	-	-	-	-	123.4	-	120.7	123.3	122.3	-
17.0	-	-	94.0	93.3	-	-	-	-	-	7.48	-	-	7.65	7.72	-	-	-	-	-	122.9	-	-	123.3	122.1	-
18.0	-	-	94.2	92.7	-	-	-	-	-	7.47	-	-	7.63	7.71	-	-	-	-	-	123.5	-	-	123.7	121.9	-
19.0	-	-	94.0	92.0	-	-	-	-	-	7.46	-	-	7.62	7.70	-	-	-	-	-	125.2	-	-	123.7	121.8	-
20.0	-	-	93.8	91.2	-	-	-	-	-	7.44	-	-	7.61	7.69		-	-	-	-	126.4	-	-	123.9	121.6	-
21.0	-	-	-	90.9	-	-	-	-	-	-	-	-	-	7.68	-	-	-	-	-	-	-	-	-	121.4	-
22.0	-	-	-	88.8	-	-	-	-	-	-	-	-	-	7.65	-	-	-	-	-	-	-	-	-	121.6	-
23.0	-	-	-	87.8	-	-	-	-	-	-	-	-	-	7.63	-	-	-	-	-	-	-	-	-	121.5	-
24.0	-	-	-	87.0	-	-	-	-	-	-	-	-	-	7.61	-	-	-	-	-	-	-	-	-	122.9	-
25.0	-	-	-	85.3	-	-	-	-	-	-	-	-	-	7.59	-	-	-	-	-	-	-	-	-	122.8	-
26.0	-	-	-	84.2	-	-	-	-	-	-	-	-	-	7.57	1	-	-	-	-	-	-	-	-	122.9	-
27.0	-	-	-	82.2	-	-	-	-	-	-	-	-	-	7.54	-	-	-	-	-	-	-	-	-	122.6	-
28.0	-	-	-	79.1	-	-	-	-	-	-	-	-	-	7.51	-	-	-	-	-	-	-	-	-	122.4	-

Notes: Total depth at stations BLO-01-A, BLO-01, BLO-01-B, BLO-05-A, BLO-05-B, BLO-05-

Table C.63: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Summer, Mary River Project CREMP, July 2020

Depth					Tempera	ture (°C)								Diss	solved Ox	ygen (mg/l	L)				ı	Dissolved (Oxygen (%	Saturation	1)
(m)	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05
Date Collected	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20
1.0	15.1	14.6	14.6	10.1	9.9	9.8	11.7	11.4	10.1	10.2	10.05	10.25	10.19	11.30	11.36	11.24	10.81	10.94	11.20	11.19	99.9	100.8	100.1	100.4	100.3
2.0	15.1	14.6	14.6	10.0	9.1	9.2	11.7	10.4	9.9	9.7	10.06	10.28	10.20	11.35	11.46	11.36	10.83	11.10	11.23	11.28	100.2	100.9	100.3	100.5	98.2
3.0	15.1	14.5	14.6	9.7	8.4	8.6	11.7	8.5	9.8	9.4	10.06	10.34	10.20	11.42	11.59	11.42	10.83	11.48	11.24	11.33	100.0	101.3	100.2	100.3	98.8
4.0	15.1	14.4	14.4	8.1	8.0	8.3	11.7	8.1	9.4	8.8	10.06	10.35	10.26	11.63	11.65	11.47	10.83	11.53	11.31	11.43	100.0	101.3	100.3	98.2	98.2
5.0	15.0	14.1	-	7.7	7.3	8.0	11.6	7.8	9.0	8.0	10.05	10.40	-	11.63	11.68	11.50	10.83	11.57	11.34	11.55	99.7	100.9	-	97.3	97.0
6.0	13.3	13.7	-	7.6	7.2	7.5	11.4	7.8	7.9	7.4	10.16	10.55	-	11.60	11.69	11.60	10.96	11.58	11.55	11.74	97.2	101.1	-	96.9	96.8
7.0	11.6	13.1	-	7.4	7.1	7.0	9.9	7.7	7.5	7.0	10.40	10.85	-	11.60	11.69	11.63	11.20	11.58	11.62	11.83	95.6	100.9	-	96.5	96.4
8.0	9.3	11.7	-	7.1	7.0	-	9.9	7.5	7.4	6.8	10.20	10.70	-	11.59	11.68	-	11.22	11.63	11.64	11.81	88.8	97.2	-	95.8	96.3
9.0	9.0	9.0	-	7.1	7.0	-	9.3	7.4	7.3	-	10.08	10.57	-	11.59	11.67	-	11.35	11.63	11.63	-	87.0	91.5	-	95.7	96.1
10.0	8.0	-	-	6.8	6.7	-	8.4	7.2	7.0	-	9.88	-	-	11.57	11.71	-	11.50	11.63	11.69	-	83.4	-	-	94.6	95.7
11.0	7.5	-	-	6.4	6.5	-	7.4	7.0	6.8	-	9.37	-	-	11.57	11.74	-	11.61	11.65	11.69	-	78.1	-	-	93.8	95.4
12.0	7.4	-	-	-	6.4	-	6.9	7.0	6.4	-	9.27	-	-	-	11.74	-	11.68	11.60	11.71	-	77.2	-	-	-	95.2
13.0	6.9	-	-	-	6.3	-	6.3	6.8	6.4	-	8.90	-	-	-	11.74	-	11.70	11.59	11.70	-	73.3	-	-	-	95.1
14.0	6.8	-	-	-	6.2	-	5.5	6.6	6.4	-	8.75	-	-	-	11.74	-	11.75	11.60	11.70	-	71.9	-	-	-	94.8
15.0	6.8	-	-	-	6.2	-	5.2	6.0	6.3	-	8.65	-	-	-	11.74	-	11.72	11.58	11.71	-	70.9	-	-	-	94.8
16.0	-	-	-	-	6.2	-	4.9	5.9	6.1	-	-	-	-	-	11.73	-	11.72	11.57	11.71	-	-	-	-	-	94.6
17.0	-	-	-	-	6.1	-	4.8	5.6	5.9	-	-	-	-	-	11.71	-	11.71	11.56	11.67	-	-	-	-	-	94.4
18.0	-	-	-	-	6.1	-	-	5.6	5.6	-	-	-	-	-	11.70	-	-	11.56	11.70	-	-	-	-	-	94.2
19.0	-	-	-	-	6.1	-	-	5.5	5.5	-	-	-	-	-	11.66	-	-	11.55	11.69	-	-	-	-	-	93.9
20.0	-	-	-	-	6.0	-	-	5.4	5.4	-	-	-	-	-	11.64	-	-	11.53	11.67	-	-	-	-	-	93.6
21.0	-	-	-	-	5.7	-	-	5.3	5.0	-	-	-	-	-	11.50	-	-	11.52	11.72	-	-	-	-	-	91.8
22.0	-	-	-	-	-	-	-	-	4.8	-	-	-	-	-	-	-	-	-	11.76	-	-	-	-	-	-
23.0	-	-	-	-	-	-	-	-	4.7	-	-	-	-	-	-	-	-	-	11.74	-	-	-	-	-	-
24.0	-	-	-	-	-	-	-	-	4.7	-	-	-	-	-	-	-	-	-	11.74	-	-	-	-	-	-
25.0	-	-	-	-	-	-	-	-	4.7	-	-	-	-	-	-	-	-	-	11.74	-	-	-	-	-	-
26.0	-	-	-	-	-	-	-	-	4.6	-		-	-	-	-	-		-	11.73	-	-	-	-	-	
27.0	-	-	-	-	-	-	-	-	4.5	-	-	-	-	-	-	-	-	-	11.68	-	-	-	-	-	-
28.0	-	-	-	-		-	-	-	4.4	-	-	-	-	-		-	-	-	11.64	-	-	-	-	-	-
29.0	-	-	-	-	-	-	-	-	4.4	-	-	-	-	-		-	-	-	11.58	-	-	-	-	-	-

Notes: Total depth at stations BLO-01-A, BLO-01, BLO-01-B, BLO-05-A, BLO-05-B, BLO-05-B, BLO-03, BLO-04, BLO-09, and BLO-06 was 15.0, 10.3, 4.5, 11.7, 20.9, 7.5, 17.6, 21.2, 30.3, and 8.8 m, respectively, at the time of summer sampling.

Table C.63: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Summer, Mary River Project CREMP, July 2020

Depth	Di	ssolved O	xygen (%	Saturatio	n)					рН (рН	units)								Specif	fic Conduc	ctance (µS/	cm)			
(m)	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-06
Date Collected	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20
1.0	99.2	99.5	100.2	99.6	99.5	8.38	8.37	8.35	7.73	7.85	7.92	8.26	8.34	7.84	7.55	151.8	150.3	150.1	74.5	74.9	79.3	74.4	76.1	75.4	75.9
2.0	98.6	99.8	99.0	99.2	99.0	8.33	8.36	8.34	7.72	7.81	7.77	8.08	8.10	7.81	7.69	152.0	149.8	150.1	74.8	74.0	82.2	74.4	75.3	75.1	74.9
3.0	97.7	99.7	97.8	98.9	98.9	8.33	8.35	8.35	7.73	7.76	7.86	7.95	7.99	7.79	7.67	152.0	149.5	150.1	75.1	74.0	89.8	74.4	74.4	75.0	74.4
4.0	97.3	99.7	97.6	98.5	98.4	8.32	8.35	8.35	7.72	7.73	7.80	7.94	7.88	7.77	7.69	152.1	149.9	149.8	74.9	74.7	86.3	74.4	74.8	74.5	72.8
5.0	96.9	99.6	97.3	98.0	97.2	8.31	8.34	-	7.66	7.71	7.80	7.92	7.75	7.73	7.70	153.1	147.0	-	74.6	69.9	81.1	74.3	75.5	74.8	70.6
6.0	96.6	98.9	97.2	96.7	97.8	8.29	8.33	-	7.63	7.66	7.73	7.91	7.69	7.71	7.67	151.0	138.9	-	74.4	69.8	74.0	74.0	75.5	71.1	69.2
7.0	95.9	98.9	96.9	97.0	97.2	8.19	8.31	-	7.64	7.64	7.70	7.84	7.73	7.66	7.65	124.0	125.2	-	74.2	69.5	71.1	72.8	72.1	70.2	68.3
8.0	-	98.8	96.9	96.8	96.9	7.85	8.25	-	7.62	7.63	-	7.80	7.71	7.65	7.57	98.0	111.0	-	73.4	69.8	-	72.7	70.1	70.0	68.0
9.0	-	99.0	96.8	96.5	-	7.80	8.15	-	7.60	7.62	-	7.76	7.68	7.60	-	93.2	97.1	-	73.2	69.7	-	72.2	69.9	69.5	-
10.0	-	98.3	96.2	96.1	-	7.71	-	-	7.59	7.61	-	7.71	7.66	7.60	-	89.3	-	-	73.4	68.9	-	71.5	69.7	69.0	-
11.0	-	96.8	95.4	95.9	-	7.57	-	-	7.57	7.59	-	7.65	7.64	7.61	-	87.1	-	-	72.4	68.5	-	70.8	69.4	68.9	-
12.0	-	96.0	95.5	95.2	-	7.55	ı	-	-	7.58	-	7.61	7.61	7.54	-	86.0	-	-	-	68.4	-	70.4	73.4	68.6	-
13.0	-	94.6	95.1	95.1	-	7.50	1	-	-	7.56	-	7.57	7.60	7.57	-	84.1	-	-	-	68.3	-	70.3	73.8	68.6	-
14.0	-	93.1	94.7	94.9	-	7.47	1	-	-	7.56	-	7.53	7.59	7.56	-	83.8	-	-	-	68.2	-	70.1	73.2	68.5	-
15.0	-	92.1	93.3	94.7	-	7.44	1	-	-	7.56	-	7.51	7.58	7.55	-	83.3	-	-	-	68.2	-	70.5	71.3	68.4	-
16.0	-	91.4	92.4	94.4	-	-	ı	-	-	7.55	-	7.49	7.55	7.55	-	-	-	-	-	68.2	-	70.8	70.2	68.3	-
17.0	-	91.3	92.0	93.6	-	-	ı	-	-	7.53	-	7.47	7.53	7.46	-	-	-	-	-	68.2	-	70.9	69.5	68.1	-
18.0	-	-	91.8	93.2	-	-	ı	-	-	7.54	-	-	7.53	7.53	-	-	-	-	-	68.3	-	-	68.6	67.8	-
19.0	-	-	91.6	92.9	-	-	1	-	-	7.51	-	-	7.52	7.53	-	-	-	-	-	68.5	-	-	68.7	67.7	-
20.0	-	-	91.2	92.4	-	-	-	-	-	7.51	-	-	7.50	7.52	-	-	-	-	-	68.6	-	-	68.7	67.5	-
21.0	-	-	90.8	91.7	-	-	-	-	-	7.49	-	-	7.49	7.50	-	-	-	-	-	69.6	-	-	68.3	66.9	-
22.0	-	-	-	91.4	-	-	ı	-	-	-	-	-	-	7.47	-	-	-	-	-	-	-	-	-	66.6	-
23.0	-	-	-	91.3	-	-	-	-	-	-	-	-	-	7.49	-	-	-	-	-	-	-	-	-	66.6	-
24.0	-	-	-	91.2	-	-	-	-	-	-	-	-	-	7.48	-	-	-	-	-	-	-	-	-	66.6	-
23.0	-	-	-	91.1	-	-	-	-	-	-	-	-	-	7.46	-	-	-	-	-	-	-	-	-	66.6	-
24.0	-	-	-	90.8	-	-	-	-	-	-	-	-	-	7.46	-	-	-	-	-	-	-	-	-	66.6	-
25.0	-	-	-	90.4	-	-	-	-	-	-	-	-	-	7.46	-	-	-	-	-	-	-	-	-	66.8	-
26.0	-	-	-	90.0	-	-	-	-	-	-	-	-	-	7.45	-	-	-	-	-	-	-	-	-	67.0	-
27.0	-	-	-	89.4	-	-	-	-	-	-	-	-	-	7.45	-	-	-	-	-	-	-	-	-	67.1	-

Notes: Total depth at stations BLO-01-A, BLO-01, BLO-01-B, BLO-05-A, BLO-05-B, BLO-05-B, BLO-03, BLO-04, BLO-09, and BLO-06 was 15.0, 10.3, 4.5, 11.7, 20.9, 7.5, 17.6, 21.2, 30.3, and 8.8 m, respectively, at the time of summer sampling.

Table C.64: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth						Temper	ature (°C)										С	issolved O	xygen (mg/l	-)				
(m)	BLO-01-A	BLO-01	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-09	BLO-06
Date Collected	27-Aug-20	27-Aug-20	20-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	19-Aug-20	28-Aug-20	27-Aug-20	27-Aug-20	20-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	19-Aug-20	28-Aug-20
surface	-	-	8.2	-	-	-	-	-	-	-	8.00	-	-	-	11.40	-	-	-	-	-	-	-	11.19	-
1.0	7.3	7.5	8.2	7.5	8.7	8.3	8.1	8.0	7.8	7.8	8.0	7.5	11.76	11.79	11.55	11.83	11.38	11.34	11.39	11.42	11.36	11.40	10.95	11.34
2.0	7.3	7.5	8.2	7.5	8.5	7.9	7.9	8.0	7.8	7.7	7.9	7.4	11.76	11.75	11.42	11.82	11.42	11.42	11.42	11.42	11.38	11.39	11.04	11.35
3.0	7.3	7.5	8.2	7.4	7.9	7.9	7.7	7.9	7.6	7.6	7.9	7.4	11.75	11.75	11.40	11.82	11.44	11.42	11.45	11.43	11.39	11.41	10.98	11.36
4.0	7.3	7.5	8.2	7.4	7.7	7.7	7.7	7.9	7.5	7.6	7.9	7.4	11.74	11.74	11.40	11.81	11.43	11.43	11.44	11.43	11.39	11.38	10.93	11.36
5.0	7.3	7.5	8.2	-	7.6	7.6	7.6	7.8	7.5	7.6	7.9	7.4	11.75	11.74	11.39	-	11.40	11.42	11.44	11.45	11.38	11.38	10.89	11.35
6.0	7.3	7.5	8.2	-	7.6	7.6	7.6	7.6	7.5	7.6	7.9	7.4	11.73	11.73	11.38	-	11.38	11.41	11.47	11.44	11.37	11.37	10.90	11.34
7.0	7.3	7.4	8.2	-	7.5	7.6	-	7.5	7.5	7.6	7.9	7.4	11.73	11.73	11.38	-	11.39	11.40	-	11.41	11.36	11.37	10.85	11.33
8.0	7.3	7.4	8.2	-	7.5	7.5	-	7.5	7.5	7.6	7.9	7.4	11.72	11.71	11.38	-	11.38	11.41	-	11.40	11.35	11.36	10.86	11.33
9.0	7.3	-	8.2	-	7.5	7.5	-	7.5	7.5	7.6	7.9	7.4	11.71	-	11.37	-	11.37	11.42	-	11.38	11.35	11.35	10.95	11.31
10.0	7.3	-	8.2	-	7.5	7.5	-	7.5	7.5	7.6	7.8	-	11.70	-	11.37	-	11.36	11.42	-	11.37	11.35	11.35	10.90	-
11.0	7.3	-	-	-	-	7.5	-	7.5	7.5	7.6	7.8	-	11.72	-	-	-	-	11.42	-	11.35	11.34	11.33	10.89	-
12.0	7.3	-	-	-	-	7.5	-	7.5	7.5	7.6	7.8	-	11.71	-	-	-	-	11.42	-	11.35	11.34	11.32	10.88	-
13.0	7.2	-	-	-	-	7.5	-	7.5	7.5	7.6	7.8	-	11.72	-	-	-	-	11.43	-	11.34	11.33	11.32	10.87	-
14.0	7.2	-	-	-	-	7.5	-	7.5	7.5	7.6	7.7	-	11.72	-	-	-	-	11.42	-	11.34	11.32	11.31	10.89	-
15.0	7.2	-	-	-	-	7.5	-	-	7.5	7.5	7.7	-	11.64	-	-	-	-	11.41	-	-	11.32	11.30	10.89	-
16.0	7.2	-	-	-	-	7.4	-	-	7.5	7.5	7.6	-	11.65	-	-	-	-	11.41	-	-	11.31	11.24	10.89	-
17.0	-	-	-	-	-	7.4	-	-	7.5	7.4	7.6	-	-	-	-	-	-	11.49	-	-	11.31	11.15	10.90	-
18.0	-	-	-	-	-	7.3	-	-	7.5	7.4	7.5	-	-	-	-	-	-	11.33	-	-	11.31	11.13	10.82	-
19.0	-	-	-	-	-	7.3	-	-	7.5	7.4	7.4	-	-	-	-	-	-	11.31	-	-	11.30	11.11	10.95	-
20.0	-	-	-	-	-	7.3	-	-	7.5	7.3	7.2	-	-	-	-	-	-	11.31	-	-	11.30	11.08	10.92	-
21.0	-	-	-	-	-	-	-	-	7.5	7.3	7.2	-	-	-	-	-	-	-	-	-	11.22	11.06	10.86	-
22.0	-	-	-	-	-	-	-	-	-	7.3	7.1	-	-	-	-	-	-	-	-	-	-	11.04	10.78	-
23.0	-	-	-	-	-	-	-	-	-	7.3	7.0	-	-	-	-	-	-	-	-	-	-	11.03	10.82	-
24.0	-	-	-	-	-	-	-	-	-	7.3	7.0	-	-	-	-	-	-	-	-	-	-	11.01	10.80	-
25.0	-	-	-	-	-	-	-	-	-	7.3	7.0	-	-	-	-	-	-	-	-	-	-	11.01	10.86	-
26.0	-	-	-	-	-	-	-	-	-	7.3	6.8	-	-	-	-	-	-	-	-	-	-	10.99	10.82	-
27.0	-	-	-	-	-	-	-	-	-	7.2	6.7	-	-	-	-	-	-	-	-	-	-	10.94	10.87	-
28.0	-	-	-	-	-	-	-	-	-	-	6.6	-	-	-	-	-	-	-	-	-	-	-	10.85	-
29.0	-	-	-	-	-	-	-	-	-	-	6.4	-	-	-	-	-	-	-	-	-	-	-	10.82	-
30.0	-	-	-	-	-	-	-	-	-	-	6.3	-	-	-	-	-	-	-	-	-	-	-	10.68	-

Notes: 19-Aug-20 and 20-Aug-20 sampling was conducted by Minnow. Mary Lake water profile sampling on all other dates was conducted by Baffinland. Total depth at stations BLO-01-B, BLO-05-A, BLO-05-B, BLO-05-B, BLO-05-B, BLO-09, and BLO-06 was 15.1, 9.1, 5.0, 12.0, 20.6, 7.4, 15.3, 22.1, 29.7 and 9.5 m, respectively, at the time of fall sampling.

Table C.64: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth					Disse	olved Oxyg	jen (% Satura	ation)										рН (рЬ	l units)					
(m)	BLO-01-A	BLO-01	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-09	BLO-06	BLO-01-A	BLO-01	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-09	BLO-06
Date Collected	27-Aug-20	27-Aug-20	20-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	19-Aug-20	28-Aug-20	27-Aug-20	27-Aug-20	20-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	19-Aug-20	28-Aug-20
surface	-	-	96.8	-	-	-	-	-	-	-	96.6	-	-	-	8.12	-	-	-	-	-	-	-	7.42	-
1.0	97.8	98.4	98.2	98.6	97.8	96.4	96.4	96.5	95.6	95.7	94.3	94.6	8.23	8.25	8.13	8.26	7.83	7.90	7.77	7.78	7.76	7.72	7.39	7.71
2.0	97.8	98.1	97.0	98.5	97.0	96.3	96.2	96.3	95.2	95.4	94.6	94.6	8.23	8.25	8.14	8.27	7.77	7.76	7.75	7.75	7.74	7.72	7.37	7.68
3.0	97.7	98.0	96.8	98.5	96.2	96.2	96.0	96.3	95.2	95.4	94.2	94.6	8.23	8.25	8.14	8.27	7.76	7.74	7.75	7.74	7.73	7.72	7.38	7.68
4.0	97.6	97.9	96.7	98.4	95.6	95.8	95.8	96.2	95.1	95.2	93.9	94.6	8.23	8.26	8.14	8.27	7.75	7.74	7.75	7.73	7.72	7.71	7.38	7.68
5.0	97.7	97.8	96.7	-	95.3	95.4	95.6	96.3	95.0	95.1	93.5	94.5	8.22	8.25	8.15	-	7.75	7.74	7.75	7.72	7.71	7.71	7.37	7.68
6.0	97.5	97.8	96.6	-	95.2	95.4	95.8	95.6	94.9	95.0	93.5	94.4	8.23	8.25	8.14	-	7.74	7.74	7.76	7.72	7.72	7.71	7.38	7.68
7.0	97.5	97.7	96.6	-	95.1	95.3	-	95.3	94.9	95.0	93.1	94.4	8.23	8.25	8.15	-	7.74	7.74	-	7.72	7.72	7.71	7.35	7.67
8.0	97.4	97.6	96.6	-	95.0	95.2	-	95.1	94.8	94.9	93.1	94.3	8.23	8.24	8.14	-	7.74	7.74	-	7.71	7.72	7.71	7.36	7.67
9.0	97.3	-	96.5	-	94.9	95.2	-	95.4	94.7	94.9	93.9	94.3	8.22	-	8.14	-	7.75	7.74	-	7.70	7.72	7.71	7.38	7.67
10.0	97.2	-	96.5	-	94.7	95.3	-	94.8	94.7	94.8	93.6	-	8.23	-	8.14	-	7.76	7.75	-	7.70	7.72	7.71	7.36	-
11.0	97.3	-	-	-	-	95.3	-	94.7	94.6	94.7	93.2	-	8.24	-	-	-	-	7.78	-	7.70	7.73	7.71	7.36	-
12.0	97.2	-	-	-	-	95.3	-	94.6	94.6	94.6	93.3	-	8.23	-	-	-	-	7.78	-	7.70	7.72	7.71	7.36	-
13.0	97.2	-	-	-	-	95.3	-	94.5	94.6	94.5	93.2	-	8.23	-	-	-	-	7.78	-	7.69	7.72	7.71	7.36	-
14.0	97.1	-	-	-	-	95.3	-	94.5	94.5	94.5	93.2	-	8.22	-	-	-	-	7.80	-	7.69	7.72	7.71	7.36	-
15.0	96.4	-	-	-	-	95.1	-	-	94.4	94.3	92.8	-	8.22	-	-	-	-	7.81	-	-	7.72	7.71	7.36	-
16.0	96.5	-	-	-	-	95.0	-	-	94.4	93.8	93.0	-	8.22	-	-	-	-	7.81	-	-	7.72	7.70	7.35	-
17.0	-	-	-	-	-	94.7	-	-	94.3	92.8	93.0	-	-	-	-	-	-	7.81	-	-	7.72	7.67	7.33	-
18.0	-	-	-	-	-	94.1	-	-	94.3	92.6	92.0	-	-	-	-	-	-	7.81	-	-	7.72	7.66	7.33	-
19.0	-	-	-	-	-	93.9	-	-	94.3	92.4	92.5	-	-	-	-	-	-	7.78	-	-	7.72	7.65	7.32	-
20.0	-	-	-	-	-	93.9	-	-	94.3	92.1	92.0	-	-	-	-	-	-	7.78	-	-	7.72	7.64	7.30	-
21.0	-	-	-	-	-	-	-	-	93.8	91.9	91.6	-	-	-	-	-	-	-	-	-	7.70	7.64	7.28	-
22.0	-	-	-	-	-	-	-	-	-	91.7	90.8	-	-	-	-	-	-	-	-	-	-	7.64	7.26	-
23.0	-	-	-	-	-	-	-	-	-	91.6	90.9	-	-	-	-	-	-	-	-	-	-	7.63	7.25	-
24.0	-	-	-	-	-	-	-	-	-	91.4	90.7	-	-	-	-	-	-	-	-	-	-	7.65	7.24	-
25.0	-	-	-	-	-	-	-	-	-	91.3	91.2	-	-	-	-	-	-	-	-	-	-	7.63	7.22	-
26.0	-	-	-	-	-	-	-	-	-	91.1	90.4	-	-	-	-	-	-	-	-	-	-	7.62	7.20	-
27.0	-	-	-	-	-	-	-	-	-	90.7	89.9	-	-	-	-	-	-	-	-	-	-	7.61	7.18	-
28.0	-	-	-	-	-	-	-	-	-	-	90.2	-	-	-	-	-	-	-	-	-	-	-	7.17	-
29.0	-	-	-	-	-	-	-	-	-	-	89.5	-	-	-	-	-	-	-	-	-	-	-	7.15	-
30.0	-	-	-	-	-	-	-	-	-	-	88.4	-	-	-	-	-	-	-	-	-	-	-	7.03	-

Notes: 19-Aug-20 and 20-Aug-20 sampling was conducted by Minnow. Mary Lake water profile sampling on all other dates was conducted by Baffinland. Total depth at stations BLO-01-B, BLO-05-A, BLO-05-B, BLO-05-B, BLO-05-B, BLO-09, and BLO-06 was 15.1, 5.0, 9.5, 12.0, 20.6, 7.4, 15.3, 22.1, 29.7 and 9.5 m, respectively, at the time of fall sampling.

Table C.64: In Situ Water Quality Profile Data Collected at Mary Lake Water Quality Monitoring Stations in Fall, Mary River Project CREMP, August 2020

Depth					Sp	ecific Condu	ıctance (μS/	cm)				
(m)	BLO-01-A	BLO-01	BLO-01	BLO-01-B	BLO-05-A	BLO-05	BLO-05-B	BLO-03	BLO-04	BLO-09	BLO-09	BLO-06
Date Collected	27-Aug-20	27-Aug-20	20-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	19-Aug-20	28-Aug-20
surface	-	-	192.0	-	-	-	-	-		-	83.4	-
1.0	216.3	214.5	192.1	215.4	86.9	85.1	86.1	80.4	85.5	85.8	83.1	85.6
2.0	216.3	214.5	192.1	215.4	87.9	85.9	85.9	80.4	85.8	85.7	83.0	85.6
3.0	216.3	214.7	192.2	215.5	87.0	86.3	86.2	80.4	85.8	85.7	83.0	85.6
4.0	216.4	215.1	192.1	215.6	86.7	86.1	86.4	80.4	85.4	85.8	83.0	85.6
5.0	216.4	215.3	192.2	-	86.6	86.3	86.1	80.5	85.4	85.7	83.0	85.6
6.0	216.4	215.2	192.0	-	86.9	86.5	85.6	80.8	85.3	85.7	83.1	85.6
7.0	216.5	215.5	192.1	-	88.2	87.1	-	80.6	85.3	85.7	83.2	85.6
8.0	216.5	215.8	192.1	-	94.9	91.2	-	80.7	85.3	85.7	83.2	85.6
9.0	216.5	-	192.0	-	94.8	96.1	-	80.7	85.3	85.8	83.4	85.6
10.0	216.7	-	192.0	-	94.9	96.6	-	80.7	85.2	85.8	83.4	-
11.0	216.9	-	-	-	-	98.5	-	80.7	85.3	85.8	83.5	-
12.0	216.4	-		-	-	102.8	-	80.7	85.2	85.8	83.5	-
13.0	217.8	-		-	-	104.8	-	80.8	85.2	85.9	82.8	-
14.0	218.1	-	-	-	-	104.9	-	80.8	85.2	85.9	81.5	-
15.0	217.9	-		-	-	102.6	-	-	85.2	86.0	80.7	-
16.0	218.0	-		-	-	102.4	-	-	85.0	87.1	79.6	-
17.0	-	-		-	-	102.0	-	-	84.9	87.9	79.1	-
18.0	-	-	-	-	-	102.3	-	-	84.5	88.1	79.4	-
19.0	-	-		-	-	102.6	-	-	84.4	88.2	77.6	-
20.0	-	-		-	-	102.5	-	-	84.5	88.4	77.2	-
21.0	-	-	-	-	-	-	-	-	84.5	86.7	77.3	-
22.0	-	-	-	-	-	-	-	-	-	89.1	76.4	-
23.0	-	-		-	-	-	-	-	-	89.2	75.9	-
24.0	-	-		-	-	-	-	-	-	89.4	75.8	-
25.0	-	-	-	-	-	-	-	-	-	89.5	75.3	-
26.0	-	-	-	-	-	-	-	-	-	90.0	74.6	-
27.0	-	-	-	-	-	-	-	-		90.0	74.2	-
28.0	-	-	-	-	-	-	-	-		-	73.9	-
29.0	-	-	-	-	-	-	-	-		-	73.3	-
30.0	-	-	-	-	-	-	-	-	-	-	73.3	-

Notes: 19-Aug-20 and 20-Aug-20 sampling was conducted by Minnow. Mary Lake water profile sampling on all other dates was conducted by Baffinland. Total depth at stations BLO-01-A, BLO-01-B, BLO-05-A, BLO-05-B, BLO-03, BLO-04, BLO-09, and BLO-06 was 15.1, 5.0, 9.5, 12.0, 20.6, 7.4, 15.3, 22.1, 29.7 and 9.5 m, respectively, at the time of fall sampling.

Table C.65: Sampling Depth, Water Clarity Measures, and Surface and Bottom *In Situ* Water Quality Measures Collected at Mary Lake Benthic Invertebrate Community Stations, Mary River Project CREMP, August 2020

Catego	orization &	Date	Station Depth	Secchi Depth	Depth	Temperature	Dissolve	d Oxygen	рН	Specific Conductance
Repl	licate ID	Sampled	(m)	(m)	sampled	(°C)	(mg/L)	(% sat.)	(units)	(μS/cm)
"	BLO-01	20-Aug-20	10.0	4.78	surface	8.2	11.40	96.8	8.12	192.0
tions	BLO-01	20-Aug-20	10.0	4.70	bottom	9.2	11.37	96.5	8.14	192.0
Sta	BLO-11	16-Aug-20	9.3	3.33	surface	9.3	10.46	93.8	7.20	80.7
low)	BLO-11	10-Aug-20	9.5	5.55	bottom	9.4	10.35	92.9	7.26	84.2
Shal	BLO-07	16-Aug-20	12.8	3.79	surface	8.9	10.99	97.5	7.01	76.0
(s	BLO-07	10-Aug-20	12.0	3.79	bottom	8.8	10.62	94.0	6.74	76.4
Littoral (Shallow) Stations	BLO-06	16-Aug-20	6.7	4.38	surface	8.8	10.67	94.3	6.96	76.0
-	BLO-00	10-Aug-20	0.7	4.30	bottom	8.5	10.59	92.9	6.93	76.0
	BLO-03	16-Aug-20	16.4	3.94	surface	9.2	10.62	94.8	7.19	74.8
	BLO-03	10-Aug-20	10.4	5.54	bottom	6.4	11.26	94.1	6.97	72.2
	BLO-15	16-Aug-20	29.1	3.16	surface	9.1	10.71	95.5	7.24	74.9
Hions	BLO-13	10-Aug-20	29.1	3.10	bottom	4.6	10.75	85.5	6.89	72.3
Stai	BLO-14	20-Aug-20	20.0	5.28	surface	7.8	11.46	96.3	7.90	76.9
(dee	BLO-14	20-Aug-20	20.0	3.20	bottom	7.6	11.43	95.7	7.69	76.9
<u> </u>	BLO-05	16-Aug-20	21.5	3.18	surface	9.3	10.58	95.1	7.32	80.9
epur	BLO-03	10-Aug-20	21.5	3.10	bottom	5.8	10.25	84.5	7.13	69.5
Profundal (Deep) Stations	BLO-13	19-Aug-20	22.0	1.95	surface	7.8	11.11	95.2	7.46	82.8
"	DLO-13	19-Aug-20	22.0	1.85	bottom	7.5	10.89	92.9	7.30	90.6
	BLO-04	19-Aug-20	22.0	1.63	surface	7.8	11.05	94.7	7.41	83.4
	BLO-04	13-Aug-20	22.0	1.03	bottom	7.6	10.68	91.7	7.28	84.7

Table C.66: Statistical Comparison of Bottom *In Situ* Water Quality Between Mary Lake Littoral and Profundal Stations, Mary River Project CREMP, August 2020

		Statistical 1	Test Results				Su	mmary Statis	stics		
Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Lake Zone	Sample Size	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Secchi Depth	tegual	none	NO	0.261	Littoral	4	4.07	0.64	0.32	3.33	4.78
(m)	tequal	none	NO	0.201	Profundal	6	3.19	1.34	0.55	1.63	5.28
Temperature	togual	200	YES	0.006	Littoral	4	8.98	0.40	0.20	8.50	9.40
(°C)	tequal	none	TES	0.006	Profundal	6	6.58	1.22	0.50	4.60	7.60
Dissolved	togual	200	NO	0.618	Littoral	4	10.7	0.4	0.2	10.4	11.4
Oxygen (mg/L)	tequal	none	NO	0.010	Profundal	6	10.9	0.4	0.2	10.3	11.4
Dissolved	to much		NO	0.040	Littoral	4	94.1	1.7	0.8	92.9	96.5
Oxygen (% saturation)	tequal	none	NO	0.212	Profundal	6	90.7	4.6	1.9	84.5	95.7
рН	to much		NO	0.045	Littoral	4	7.27	0.62	0.31	6.74	8.14
(units)	tequal	none	NO	0.845	Profundal	6	7.21	0.29	0.12	6.89	7.69
Specific	NA 10/		NO	0.470	Littoral	4	107.2	56.7	28.3	76.0	192.0
Conductance (umho/cm)	M-W	rank	NO	0.476	Profundal	6	77.7	8.3	3.4	69.5	90.6

Shaded values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.67: Statistical Comparison of Bottom *In Situ* Water Quality Between Mary Lake and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical T	est Results				Summa	ary Statistic	s		
Lake Zone	Parameter	Statistical Test ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Station Depth	tegual	none	NO	0.833	Reference	4	10.0	1.1	0.5	8.5	11.0
	(m)	tequal	Tione	NO	0.655	Mary Lake	4	9.7	2.5	1.3	6.7	12.8
ω	Secchi Depth	tequal	none	YES	0.001	Reference	5	8.12	0.64	0.29	7.38	9.15
Littoral (Shallow) Stations	(m)	tequal	none	123	0.001	Mary Lake	4	4.07	0.64	0.32	3.33	4.78
tat	Temperature	tequal	none	NO	0.180	Reference	5	9.32	0.29	0.13	8.90	9.70
8	(°C)	tequal	none	NO	0.100	Mary Lake	4	8.98	0.40	0.20	8.50	9.40
<u>8</u>	Dissolved Oxygen	tequal	none	YES	0.002	Reference	5	12.6	0.7	0.3	11.8	13.3
hal	(mg/L)	toqual	Hone	TLO	0.002	Mary Lake	4	10.7	0.4	0.2	10.4	11.4
S)	Dissolved Oxygen	tequal	none	YES	0.001	Reference	5	111.9	5.2	2.3	104.6	116.7
ral	(% saturation)	toquai	none	120	0.001	Mary Lake	4	94.1	1.7	8.0	92.9	96.5
Ħ	pH	tequal	none	NO	0.801	Reference	5	7.19	0.23	0.10	6.94	7.56
	(units)	toquai	none	110	0.001	Mary Lake	4	7.27	0.62	0.31	6.74	8.14
	Specific Conductance	M-W	rank	NO	0.190	Reference	5	76.7	3.2	1.4	74.5	82.1
	(umho/cm)		rank	110	0.100	Mary Lake	4	107.2	56.7	28.3	76.0	192.0
	Station Depth	tequal	none	NO	0.547	Reference	5	20.6	1.6	0.7	19.0	23.0
	(m)	10 9 4 4 4				Mary Lake	6	21.8	4.1	1.7	16.4	29.1
	Secchi Depth	tequal	none	YES	0.001	Reference	5	8.39	0.96	0.43	7.18	9.84
ons	(m)	toquai	nono	120	0.001	Mary Lake	6	3.19	1.34	0.55	1.63	5.28
tati	Temperature	tunequal	none	NO	0.189	Reference	5	5.82	0.19	0.09	5.60	6.10
Profundal (Deep) Stations	(°C)	tuiio quai				Mary Lake	6	6.58	1.22	0.50	4.60	7.60
eek	Dissolved Oxygen	tequal	log10	YES	0.001	Reference	5	13.6	1.3	0.6	12.8	15.8
9	(mg/L)	toquai	10910	120	0.001	Mary Lake	6	10.9	0.4	0.2	10.3	11.4
ıda	Dissolved Oxygen	tequal	log10	YES	0.001	Reference	5	110.6	10.3	4.6	103.5	127.9
Į,	(% saturation)	toquai	10910	120	0.001	Mary Lake	6	90.7	4.6	1.9	84.5	95.7
Pre	pH	tequal	none	YES	0.018	Reference	5	6.70	0.30	0.13	6.27	6.95
	(units)	quui		. 20	0.010	Mary Lake	6	7.21	0.29	0.12	6.89	7.69
	Specific Conductance	tequal	none	NO	0.580	Reference	5	75.5	1.6	0.7	74.0	78.1
	(umho/cm)	toquai	110110	110	0.000	Mary Lake	6	77.7	8.3	3.4	69.5	90.6

Highlighted values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Student's t-test assuming equal variance (tequal), Student's t-test assuming unequal variance (tunequal), or Mann-Whitney U-test (M-W).

Table C.68: Water Chemistry at Mary Lake North Basin (BLO-01) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

Parame			Water				Winter Samp						Summer Sa	mpinig Even	•		l		ran Sanı	ling Event		
Paramet			Quality	AEMP	BL0-01-A	BL0-01-A	BL0-01	BL0-01	BL0-01-B	BL0-01-B	BL0-01-A	BL0-01-A	BL0-01	BL0-01	BL0-01-B	BL0-01-B	BLO-01-A	BLO-01-A	BLO-01	BLO-01	BLO-01-B	BLO-01-B
	eter	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a	-	19-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20
C	Conductivity (lab)	umho/cm	-	-	292	303	299	307	306	308	85.8	155	113	153	154	153	220	219	226	226	219	217
	oH (lab)	На	6.5 - 9.0	_	7.26	7.77	7.73	7.72	7.72	7.73	7.40	8.22	8.12	8.31	8.32	8.30	8.2	8.23	8.21	8.23	8.23	8.18
<u> </u>	Hardness (as CaCO ₃)	mg/L	-	-	151	155	153	161	156	160	39.3	71.1	56.4	71.3	69.2	69.6	108	106	106	106	106	106
E To	otal Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ž To	otal Dissolved Solids (TDS)	mg/L	-	-	170	178	180	183	176	183	63	122	67	87	81	80	118	113	122	123	137	129
S Ti	urbidity	NTU	-	-	0.32	<0.10	<0.10	0.17	<0.10	<0.10	2.06	0.71	0.74	0.67	0.69	0.68	0.77	0.70	0.65	0.53	0.67	0.67
Al	Alkalinity (as CaCO ₃)	mg/L	-	-	128	133	130	132	132	134	38.9	69.1	50.8	68.0	69.0	68.9	104	99	97	96	96	96
To	otal Ammonia	mg/L	-	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.0316	<0.0050	<0.0050	0.0092	<0.0050	<0.0050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
B N	litrate	mg/L	3	3	0.174	0.109	0.106	0.111	0.107	0.105	0.0189	0.0051	0.0063	<0.0050	<0.0050	<0.0050	0.127	0.045	0.041	0.04	0.055	0.037
and S	litrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0016	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
tr inic	otal Kjeldahl Nitrogen (TKN)	mg/L	=	=	<0.15	0.16	0.15	<0.15	<0.15	0.19	0.117	0.114	0.095	0.109	0.111	0.113	0.16	0.15	<0.15	<0.15	<0.15	0.17
rie Di	Dissolved Organic Carbon	mg/L	-	-	3.12	3.96	3.28	3.34	3.62	3.83	1.57	1.67	1.74	2.20	4.29	2.26	2.36	2.35	2.36	2.54	3.55	2.35
\$ O TO	otal Organic Carbon	mg/L	-	-	5.02	5.03	4.95	5.04	4.19	4.98	1.59	1.63	1.50	1.74	1.76	1.97	2.88	2.77	2.68	2.79	3.88	24.8
To	otal Phosphorus	mg/L	0.020^{α}	-	<0.0030	<0.0030	0.0055	<0.0030	<0.0030	<0.0030	0.0106	0.0046	0.0036	0.0030	0.0037	0.0028	0.0044	0.0041	0.0065	0.0121	0.0052	0.0066
PI	PhenoIs	mg/L	0.004 ^a	-	0.0024	0.0026	0.0030	0.0025	<0.0010	0.0018	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
<u>د</u> Bı	Bromide (Br)	mg/L	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions Bi Ci Ci	Chloride (CI)	mg/L	120	120	16.7	17.5	17.3	17.9	17.8	17.9	2.21	4.98	3.14	4.89	4.96	4.89	9.51	9.40	9.46	9.38	9.37	9.51
₹ Si	Sulphate (SO ₄)	mg/L	218 ^β	218	6.21	7.48	7.41	7.68	7.53	7.59	1.04	2.23	1.44	2.17	2.15	2.15	4.14	4.04	4.04	4.02	4.03	4.02
Al	Aluminum (AI)	mg/L	0.100	0.13	<0.0030	0.0033	0.0051	0.0034	<0.0030	<0.0030	0.0422	0.0171	0.0252	0.0241	0.0184	0.0251	0.019	0.0244	0.0222	0.0207	0.0212	0.0178
Aı	Antimony (Sb)	mg/L	0.020 ^α	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Aı	Arsenic (As)	mg/L	0.005	0.005	0.00012	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	<0.00010	0.00023	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
В	Barium (Ba)	mg/L	=	-	0.0137	0.0144	0.0145	0.0151	0.0145	0.0150	0.00480	0.00788	0.00612	0.00795	0.00783	0.00781	0.0108	0.0111	0.0111	0.0107	0.0108	0.0107
В	Beryllium (Be)	mg/L	0.011 ^α	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	=	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
_	Cadmium (Cd)	mg/L	0.00012	0.00006	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	30.3	30.8	30.0	31.5	32.0	31.7	8.28	14.2	10.8	14.1	14.6	14.4	21.5	21.5	21.1	21.2	21.5	21.2
<u> </u>	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00013	0.00012	0.00010	0.00020	<0.00010	0.00011	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
_	Cobalt (Co)	mg/L	0.0009°	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
_	Copper (Cu)	mg/L	0.002	0.0024	0.00079	0.00115	0.00144	0.00119	0.00115	0.00119	0.00069	0.00102	0.00084	0.00097	0.00100	0.00098	0.00099	0.00101	0.00102	0.00097	0.00098	0.00097
_	ron (Fe)	mg/L	0.30	0.326	0.043	<0.030	<0.030	<0.030	<0.030	<0.030	0.155	0.033	0.037	0.040	0.030	0.034	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
	ead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000060	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
ــ ت	ithium (Li)	mg/L		-	0.0013	0.0013	0.0016	0.0013	0.0015	0.0015	<0.0010	0.0010	<0.0010	0.0010	0.0010	0.0011 8.75	0.0013	0.0011	0.0013	0.0014	0.0014 12.8	0.0013
	Magnesium (Mg)	mg/L	- 0.005 ^β	=	18.5	18.9	19.4	19.6	19.5	19.7	4.92	8.94	6.68	8.57	8.60		12.9	12.6	12.7	12.9		12.5
¥	Manganese (Mn)	mg/L	0.935^{β} 0.000026	-	0.0184	0.000776 <0.0000050	0.00146 <0.000050	0.000978 <0.0000050	0.00103 <0.0000050	0.000898 <0.0000050	0.0126 <0.0000050	0.00264 <0.0000050	0.00257 <0.0000050	0.00236	0.00252 <0.0000050	0.00255 <0.0000050	0.00236 <0.0000050	0.00241 <0.0000050	0.00245 <0.000050	0.00236 <0.0000050	0.00245 <0.0000050	0.00238
- F	Mercury (Hg) Molybdenum (Mo)	mg/L mg/L	0.000026	-	0.000303	0.000370	0.000409	0.000388	0.000397	0.000381	0.000118	0.000234	0.000157	0.000228	0.000030	0.000230	0.000319	0.000318	0.000324	0.000325	0.0000315	0.000030
_	lickel (Ni)	ma/L	0.075	0.025	0.000303	0.000370	0.000409	0.000388	0.000397	0.000361	<0.000118	0.000234	<0.000157	0.000228	0.000223	0.000230	0.000519	<0.000518	0.000524	<0.00050	0.000515	<0.000517
	Potassium (K)	J.	-		1.32	1.37	1.43	1.44	1.42	1.46	0.603	0.00034	0.763	0.00030	0.969	0.966	1.17	1.17	1.16	1.17	1.16	1.15
_	Selenium (Se)	mg/L mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	2.13	1.35	1.39	1.39	1.38	1.43	0.75	0.67	0.59	0.66	0.66	0.66	0.73	0.74	0.71	0.74	0.73	0.74
_	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	-	6.49	6.74	6.88	7.13	6.99	7.03	1.18	2.88	1.88	2.74	2.82	2.78	4.39	4.47	4.34	4.29	4.32	4.38
	Strontium (Sr)	mg/L	<u> </u>	-	0.0219	0.0220	0.0218	0.0230	0.0226	0.0232	0.00575	0.0110	0.00810	0.0115	0.0113	0.0112	0.0165	0.0162	0.0169	0.0162	0.0161	0.0166
	hallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.00010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	in (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	itanium (Ti)	mg/L	<u> </u>	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.00174	0.00063	0.00010	0.00068	0.00053	0.00089	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Jranium (U)	mg/L	0.015	-	0.00372	0.00460	0.00469	0.00474	0.00474	0.00469	0.000174	0.00003	0.000110	0.00000	0.00033	0.00069	0.00349	0.00345	0.00347	0.00336	0.00349	0.00348
	/anadium (V)	mg/L	0.015°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00403	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
_	Zinc (Zn)	mg/L	0.000	0.030	<0.0030	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
, <u>, , , , , , , , , , , , , , , , , , </u>	\ /	∌/ ⊏	2.200	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000	5.5000	0.0000	3.3000	0.0000	0.0000	5.5000	3.3000	0.5000		2.3000	0.0000	2.0000

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Mary Lake.

Table C.69: Summary of the Magnitude of Elevation in Seasonal Average Parameter Concentrations (Total Metal Concentration Provided) Between Mary Lake and Reference Lake 3 in 2020, and at Mary Lake Between 2020 and the Baseline Period

		Mary	Lake North	Basin			Mary	Lake South	Basin	
Parameter	2020 vs R Lak		20	20 vs Baseli	ne	2020 vs Re Lake		20)20 vs Baselii	ne
	Summer	Fall	Winter	Summer	Fall	Summer	Fall	Winter	Summer	Fall
Conductivity (lab)	1.7	2.8	1.2	1.3	1.3	1.0	1.1	1.3	1.2	1.1
Hardness (as CaCO ₃)	1.8	2.8	1.3	1.2	1.2	1.0	1.1	1.5	1.1	1.1
Total Suspended Solids (TSS)	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	0.6	1.0
Total Dissolved Solids (TDS)	2.0	2.4	1.1	1.2	1.1	1.2	1.0	1.4	1.1	1.0
Turbidity	6.2	4.6	0.7	0.3	8.0	13	9.7	0.2	1.1	1.2
Alkalinity (as CaCO ₃)	1.3	2.9	1.1	1.1	1.2	0.9	1.1	1.3	1.3	1.0
Total Ammonia	1.0	0.7	0.1	0.1	0.1	1.0	0.7	0.1	0.1	0.1
Nitrate	0.4	2.9	1.1	0.1	0.6	1.9	2.2	0.5	0.4	0.4
Nitrite	0.2	1.0	1.2	0.3	8.0	1.6	1.0	1.6	0.4	1.1
Total Kjeldahl Nitrogen (TKN)	0.7	1.0	0.8	0.3	0.6	1.0	1.0	1.1	0.9	0.9
Dissolved Organic Carbon	0.7	0.7	1.7	1.6	1.5	0.7	0.5	2.0	1.6	1.4
Total Organic Carbon	0.4	1.8	2.3	1.0	3.8	0.6	0.6	2.4	1.9	1.5
Total Phosphorus	1.1	2.1	0.5	0.6	0.9	1.1	1.7	0.9	0.8	8.0
Phenols	1.0	1.0	2.2	1.0	1.0	1.0	1.1	1.6	1.0	1.1
Bromide (Br)	0.5	1.0	0.5	0.3	0.7	1.6	1.0	0.9	0.7	0.4
Chloride (CI)	3.1	6.9	2.0	2.4	2.4	2.0	2.5	1.5	1.2	1.2
Sulphate (SO ₄)	0.5	1.1	1.3	8.0	1.0	0.5	0.6	2.1	0.9	0.8
Aluminum (Al)	8.3	6.6	0.6	0.3	0.3	21	12	0.5	1.0	1.1
Antimony (Sb)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Arsenic (As)	1.2	1.0	1.0	1.2	0.5	1.0	1.0	1.0	1.0	0.9
Barium (Ba) Beryllium (Be)	1.1 0.2	1.6	1.2 1.5	1.1 0.3	1.2	0.7 1.0	0.7 1.0	1.4 1.1	1.0	1.0 2.0
• , ,	0.2	1.0	1.0	0.3	1.0	1.0	1.0	1.0	1.0	1.0
Bismuth (Bi) Boron (B)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cadmium (Cd)	0.5	1.0	0.8	0.4	0.7	1.0	1.0	0.2	0.9	0.8
Calcium (Ca)	1.8	2.9	1.3	1.1	1.2	1.0	1.1	1.4	1.0	1.0
Chromium (Cr)	0.3	1.0	1.4	0.2	0.7	1.0	1.0	1.2	1.1	1.1
Cobalt (Co)	1.0	1.0	1.0	0.8	0.7	1.0	1.0	1.0	0.9	0.9
Copper (Cu)	1.3	1.3	1.0	1.0	0.4	0.8	0.8	1.0	0.7	0.7
Iron (Fe)	1.8	1.0	1.2	0.6	0.3	2.2	1.3	1.0	0.9	0.9
Lead (Pb)	1.0	1.0	0.9	0.7	0.7	1.4	1.0	0.9	0.9	0.9
Lithium (Li)	1.0	1.3	0.5	0.3	0.3	1.0	1.0	0.2	0.3	0.4
Magnesium (Mg)	1.8	2.7	1.3	1.2	1.3	1.0	1.1	1.5	1.1	1.1
Manganese (Mn)	5.3	3.5	0.6	1.1	0.2	2.5	1.7	0.5	0.9	1.0
Mercury (Hg)	1.0	1.0	0.5	0.5	0.5	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	1.5	2.1	1.2	1.5	1.4	7.6	1.1	1.6	9.3	1.2
Nickel (Ni)	1.0	1.0	0.9	1.0	0.9	1.0	1.0	1.0	1.0	1.0
Potassium (K)	1.0	1.3	1.1	1.5	1.5	0.7	0.7	1.2	1.2	1.2
Selenium (Se)	0.1	1.0	2.8	0.1	1.8	1.0	1.0	1.2	1.4	1.9
Silicon (Si)	1.3	1.5	1.2	1.0	8.0	1.1	1.0	1.2	1.0	1.1
Silver (Ag)	1.0	1.0	1.6	1.8	1.8	1.0	1.0	1.2	1.9	2.3
Sodium (Na)	2.7	4.5	1.6	2.9	2.1	1.4	1.7	1.5	1.6	1.6
Strontium (Sr)	1.2	2.0	1.4	1.4	1.4	0.7	0.9	1.2	1.0	0.9
Thallium (TI)	0.1	1.0	1.6	0.1	1.0	1.0	1.0	1.1	1.5	2.1
Tin (Sn)	1.0	1.0	0.1	0.0	0.0	1.0	1.0	0.2	0.1	0.1
Titanium (Ti)	0.1	1.0	1.0	0.1	1.0	1.0	1.0	1.0	1.0	1.0
Uranium (U)	3.9	10	1.5	1.5	1.5	2.2	2.9	1.8	1.5	1.4
Vanadium (V)	0.5	1.0	1.0	0.5	0.5	1.0	1.0	1.0	1.0	1.0
Zinc (Zn)	1.0	1.0	1.6	1.6	-	1.3	1.0	1.7	1.8	1.4

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration greater than 10 times higher than respective mean reference or baseline period value).

Denotes differences in method detection limit between the 2020 and baseline data, precluding an evaluation of magnitude of elevation.

Table C.70: Dissolved Metal Concentrations at Mary Lake North Basin Water Quality Monitoring Stations, Mary River Project CREMP, 2020

	Parameters				Winter Sam	pling Event					Summer Sar	npling Event					Fall Samp	ling Event		
	Davamatava	l lmita	BL0-01-A	BL0-01-A	BL0-01	BL0-01	BL0-01-B	BL0-01-B	BL0-01-A	BL0-01-A	BL0-01	BL0-01	BL0-01-B	BL0-01-B	BL0-01-A	BL0-01-A	BL0-01	BL0-01	BL0-01-B	BL0-01-B
	Parameters	Units	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			19-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	19-Apr-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	30-Jul-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20
	Aluminum (AI)	mg/L	<0.0030	0.0041	0.0060	0.0058	0.0067	<0.0030	0.0097	0.0085	0.0070	0.0078	0.0580	0.0078	0.0063	0.0047	0.0045	0.0049	0.005	0.0045
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.0136	0.0145	0.0144	0.0154	0.0144	0.0150	0.00454	0.00809	0.00617	0.00816	0.00800	0.00807	0.011	0.011	0.0106	0.0107	0.0105	0.0108
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	30.1	30.4	30.0	31.1	30.6	31.8	8.11	14.8	11.7	14.8	14.3	14.3	22.2	21.5	21.1	21.2	21.4	21.8
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00078	0.00126	0.00124	0.00124	0.00125	0.00119	0.00055	0.00091	0.00071	0.00088	0.00089	0.00087	0.00102	0.00096	0.00098	0.00097	0.00095	0.00096
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.049	0.013	0.010	0.014	0.011	0.012	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
<u>s</u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	0.0013	0.0014	0.0014	0.0013	0.0014	0.0016	<0.0010	0.0010	<0.0010	0.0010	0.0010	<0.0010	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
	Magnesium (Mg)	mg/L	18.3	19.3	18.9	20.2	19.4	19.5	4.61	8.29	6.62	8.34	8.13	8.21	12.7	12.7	12.9	12.8	12.9	12.5
Dissolved	Manganese (Mn)	mg/L	0.00187	0.000444	0.000494	0.000395	0.000501	0.000403	0.00207	0.00074	0.00030	0.00065	0.00080	0.00073	0.000548	0.000448	0.000423	0.000364	0.000464	0.000479
Diss	Mercury (Hg)	mg/L	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.000307	0.000393	0.000383	0.000396	0.000397	0.000393	0.000126	0.000236	0.000180	0.000232	0.000238	0.000233	0.00031	0.000323	0.000311	0.000318	0.000313	0.000306
	Nickel (Ni)	mg/L	0.00074	0.00077	0.00075	0.00079	0.00075	0.00073	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00052	<0.00050	<0.00050
	Potassium (K)	mg/L	1.32	1.40	1.38	1.47	1.41	1.45	0.585	0.941	0.777	0.959	0.941	0.953	1.17	1.13	1.16	1.16	1.18	1.14
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	2.16	1.37	1.39	1.41	1.39	1.39	0.633	0.635	0.553	0.615	0.615	0.633	0.700	0.710	0.720	0.700	0.700	0.700
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	6.55	6.90	6.78	7.19	6.85	6.97	1.15	2.87	1.98	2.80	2.74	2.75	4.43	4.38	4.46	4.40	4.39	4.38
	Strontium (Sr)	mg/L	0.0218	0.0225	0.0231	0.0231	0.0226	0.0230	0.00580	0.0117	0.00855	0.0118	0.0115	0.0115	0.0165	0.0165	0.0161	0.0163	0.0163	0.0161
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00366	0.00480	0.00462	0.00482	0.00470	0.00482	0.000428	0.00147	0.000947	0.00146	0.00145	0.00147	0.00343	0.00343	0.00338	0.00339	0.00346	0.00341
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	0.0082	<0.0030	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.71: Magnitude of Elevation in Seasonal Average Dissolved Metal Concentrations Between Mary Lake and Reference Lake 3 in 2020, and at Mary Lake Between 2020 and the Baseline Period

		Mary L	ake North	n Basin			Mary	Lake Sou	uth Basin	
Dissolved Metal	2020 vs R		202	20 vs Basel	ine	2020 vs R Lake		202	20 vs Base	ine
	Summer	Fall	Winter	Summer	Fall	Summer	Fall	Winter	Summer	Fall
Aluminum (Al)	1.3	1.2	0.4	1.4	1.0	1.2	3.1	0.5	1.3	2.8
Antimony (Sb)	1.0	1.0	0.8	0.8	1.0	1.0	1.0	0.8	0.8	1.0
Arsenic (As)	1.0	1.0	0.8	0.9	1.0	1.0	1.0	0.8	0.9	1.0
Barium (Ba)	1.2	1.7	1.6	0.8	2.4	0.7	0.8	0.8	0.5	1.1
Beryllium (Be)	0.2	1.0	1.0	0.3	2.1	1.0	1.0	1.0	1.4	2.1
Bismuth (Bi)	0.1	1.0	1.0	0.1	1.0	1.0	1.0	1.0	1.0	1.0
Boron (B)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cadmium (Cd)	0.5	1.0	0.8	0.3	1.0	1.0	1.0	0.8	0.5	1.0
Calcium (Ca)	1.9	3.0	1.8	0.7	1.4	1.0	1.1	0.8	0.4	0.5
Chromium (Cr)	0.2	1.0	1.3	0.3	2.1	1.0	1.0	1.3	1.7	2.1
Cobalt (Co)	1.0	1.0	0.8	0.8	1.0	1.0	1.0	0.8	0.8	1.0
Copper (Cu)	1.2	1.3	0.8	0.6	1.3	0.8	0.8	0.6	0.4	0.7
Iron (Fe)	0.6	1.0	0.9	0.6	1.8	1.0	1.0	0.9	1.1	1.8
Lead (Pb)	1.0	1.0	1.0	0.8	1.0	1.0	1.0	1.0	0.8	1.0
Lithium (Li)	1.0	1.3	0.3	0.3	0.6	1.0	1.0	0.2	0.3	0.4
Magnesium (Mg)	1.7	2.6	1.9	0.7	1.4	1.0	1.0	8.0	0.4	0.6
Manganese (Mn)	3.9	3.3	0.5	0.6	0.1	2.8	1.8	0.3	0.4	0.1
Mercury (Hg)	1.0	1.0	0.5	0.5	0.5	1.0	1.0	0.5	0.5	0.5
Molybdenum (Mo)	1.6	2.0	1.6	8.0	1.8	1.0	1.1	1.0	0.5	1.0
Nickel (Ni)	1.0	1.0	1.2	0.7	0.9	1.0	1.0	8.0	0.7	0.9
Potassium (K)	1.0	1.2	1.7	1.0	1.5	0.6	0.7	1.0	0.6	0.9
Selenium (Se)	0.1	1.0	-	0.5	-	1.0	1.0	-	-	-
Silicon (Si)	1.3	1.4	1.7	0.7	8.0	0.9	0.9	0.7	0.5	0.5
Silver (Ag)	1.0	1.0	0.2	1.8	2.5	1.0	1.0	0.2	1.8	2.5
Sodium (Na)	2.6	4.3	4.0	1.1	2.1	1.4	1.6	1.3	0.6	0.8
Strontium (Sr)	1.2	2.0	2.1	0.9	1.7	0.7	0.9	1.1	0.5	0.7
Thallium (TI)	0.1	1.0	1.0	0.1	2.5	1.0	1.0	1.0	1.4	2.5
Tin (Sn)	1.0	1.0	0.0	0.2	0.4	1.0	1.0	0.0	0.2	0.4
Titanium (Ti)	0.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0
Uranium (U)	4.0	10	2.3	0.6	2.3	2.2	2.8	0.7	0.3	0.6
Vanadium (V)	0.5	1.0	8.0	0.5	1.0	1.0	1.0	8.0	0.9	1.0
Zinc (Zn)	0.4	1.0	2.1	0.5	1.2	1.0	1.1	1.9	1.3	1.3

Denotes slight elevation (mean concentration 3 to 5 times higher than respective mean reference or baseline period value).

Denotes moderate elevation (mean concentration 5 to 10 times higher than respective mean reference or baseline period value).

Denotes highly elevated concentration (mean concentration ≥ 10 times higher than respective mean reference or baseline period value).

Denotes differences in method detection limit between the 2020 and baseline data, precluding an evaluation of magnitude of elevation.

Table C.72: Water Chemistry at Mary Lake South Basin (BLO) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water								Winter Sam	pling Event						
	_		Quality	AEMP	BL0-05-A	BL0-05-A	BL0-05	BL0-05	BL0-05-B	BL0-05-B	BL0-03	BL0-03	BL0-04	BL0-04	BL0-09	BL0-09	BL0-06	BL0-06
	Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
	Conductivity (lab)	umho/cm	-	-	123	131	125	130	130	133	124	138	123	131	122	132	128	133
als	pH (lab)	pН	6.5 - 9.0	-	7.70	7.73	7.56	7.67	7.68	7.68	7.65	7.71	7.61	7.72	7.42	7.66	7.60	7.68
ntionals	Hardness (as CaCO ₃)	mg/L	-	-	65.4	68.1	65.5	68.2	69.5	69.4	65.2	71	63.5	66.2	62.4	63.9	64.9	67.8
ent	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ž	Total Dissolved Solids (TDS)	mg/L	-	-	82	95	91	102	91	89	83	96	66	79	73	78	77	82
ပိ	Turbidity	NTU	-	-	<0.10	<0.10	0.14	<0.10	0.12	0.12	<0.10	0.10	0.13	0.12	0.18	<0.10	<0.10	0.10
	Alkalinity (as CaCO ₃)	mg/L	-	-	57	59	59	60	60	61	56	62	58	62	56	62	59	61
	Total Ammonia	mg/L	variable ^c	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
and	Nitrate	mg/L	3	3	0.044	0.049	0.051	0.048	0.042	0.050	0.043	0.052	0.057	0.068	0.079	0.046	0.050	0.051
s ar	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
an	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	0.20	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.23
tric Org	Dissolved Organic Carbon	mg/L	-	-	3.00	3.14	3.18	3.20	3.19 3.87	2.84	3.51	3.36	3.02	3.11	2.63 3.22	2.96 3.39	2.99 3.22	3.05
ž	Total Phosphorus	mg/L	- 0.020 ^α	-	3.86 <0.0030	4.16 <0.0030	3.84 <0.0030	4.21 <0.0030	<0.0030	4.04 <0.0030	3.34 <0.0030	3.36 <0.0030	3.24 <0.0030	3.46 <0.0030	<0.0030	0.0033	<0.0030	3.63 <0.0030
	Total Phosphorus Phenols	mg/L mg/L	0.020 ^α 0.004 ^α	-	0.0030	0.0030	<0.0030 0.0022	0.0030	0.0030	0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0033	<0.0030	<0.0030
S	Bromide (Br)	mg/L	0.004	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.0010	<0.10	<0.10	<0.0010	<0.0010	<0.10	<0.0010	<0.00
nions	Chloride (CI)	mg/L	120	120	4.33	4.63	4.36	4.60	4.64	4.70	4.35	4.96	4.34	4.67	4.47	4.63	4.48	4.69
An	Sulphate (SO ₄)	mg/L	218 ^β	218	3.73	3.95	3.74	3.97	4.01	4.03	3.47	3.94	3.72	3.99	3.66	3.99	3.88	4.04
	Aluminum (Al)	mg/L	0.100	0.130	0.0057	0.0052	0.0064	0.0058	0.0053	0.0088	0.0049	0.0037	0.0060	0.0055	0.0085	0.0053	0.0063	0.0081
	Antimony (Sb)	mg/L	0.020°	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00671	0.00739	0.00675	0.00699	0.00694	0.00706	0.00662	0.00698	0.00663	0.00710	0.00706	0.00720	0.00702	0.00731
	Beryllium (Be)	mg/L	0.011 ^a	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00006	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	12.7	13.0	13.0	13.1	13.6	13.3	12.4	13.6	12.4	12.7	12.3	12.6	13.0	13.6
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00072	0.00080	0.00071	0.00074	0.00073	0.00077	0.00078	0.00075	0.00071	0.00074	0.00070	0.00074	0.00075	0.00078
	Iron (Fe)	mg/L	0.30	0.326	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
ω.	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Metals	Lithium (Li)	mg/L	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Magnesium (Mg)	mg/L	- 0	-	7.73	8.46	7.64	7.84	7.91	8.16	7.97	8.26	7.10	7.65	7.34	7.56	7.50	7.81
Total	Manganese (Mn)	mg/L	0.935 ^β	-	0.000413	0.000394	0.000822	0.000322	0.000364	0.000416	0.000521	0.00103	0.000514	0.000318	0.000913	0.000351	0.000398	0.000428
	Mercury (Hg)	mg/L	0.000026	-	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	0.0000061	0.0000052	<0.0000050	<0.000050	<0.0000050	<0.0000050
	Molybdenum (Mo)	mg/L	0.073	- 0.005	0.000223	0.000230	0.000217	0.000235	0.000243	0.000241	0.000215	0.000228	0.000254	0.000276	0.000230	0.000264	0.000263	0.000275
	Nickel (Ni) Potassium (K)	mg/L	0.025	0.025	<0.00050 0.79	0.00052 0.87	<0.00050 0.79	<0.00050 0.82	<0.00050 0.82	<0.00050 0.82	0.00052 0.79	<0.00050 0.86	<0.00050 0.83	0.00051 0.88	<0.00050 0.84	<0.00050 0.89	<0.00050 0.88	0.00051 0.92
	Selenium (Se)	mg/L mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.001		0.58	0.60	0.60	0.59	0.56	0.59	0.58	0.61	0.58	0.60	0.79	0.60	0.59	0.60
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.00010	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Sodium (Na)	mg/L	-	-	1.99	2.19	1.98	2.08	2.12	2.11	2.11	2.22	2.00	2.12	2.09	2.11	2.13	2.21
	Strontium (Sr)	mg/L	-	_	0.0111	0.0117	0.0112	0.0113	0.0118	0.0120	0.0109	0.0121	0.0106	0.0119	0.0102	0.0116	0.0117	0.0122
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00117	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	_	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.00133	0.00140	0.00129	0.00137	0.00139	0.00141	0.00126	0.00138	0.00131	0.00137	0.00121	0.00139	0.00139	0.00140
	Vanadium (V)	mg/L	0.006°	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
		. 5																

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Mary Lake.

Table C.72: Water Chemistry at Mary Lake South Basin (BLO) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water								Summer Sar	mpling Event						
		l	Quality	AEMP	BL0-05-A	BL0-05-A	BL0-05	BL0-05	BL0-05-B	BL0-05-B	BL0-03	BL0-03	BL0-04	BL0-04	BL0-09	BL0-09	BL0-06	BL0-06
	Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	31-Jul-20	31-Jul-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20
-	Conductivity (lab)	umho/cm	-	-	76.5	76.1	76.2	77.1	79.4	93.3	73.2	78.0	73.1	79.9	70.1	78.4	78.9	79.0
als	pH (lab)	Hq	6.5 - 9.0	-	7.54	7.72	7.52	7.72	7.63	7.82	7.55	7.89	7.45	7.81	7.44	7.75	7.61	7.72
ő	Hardness (as CaCO ₃)	mg/L	-	-	32.9	34.6	33.8	34.3	35	41.6	31.5	35.3	31.1	34.1	29.9	33.7	33.8	33.6
ntion	Total Suspended Solids (TSS)	mg/L	-	-	2.1	<2.0	2.1	<2.0	2.1	2.5	2.1	<2.0	2.5	<2.0	2.2	<2.0	3.0	<2.0
l %	Total Dissolved Solids (TDS)	mg/L	-	-	47	52	43	48	53	63	38	46	53	53	49	51	47	51
Ī	Turbidity	NTU	-	-	3.12	1.73	1.83	1.75	3.33	4.09	1.47	1.13	1.96	1.03	1.80	1.38	1.83	1.50
	Alkalinity (as CaCO ₃)	mg/L	-	-	40	40	44	44	41	55	42	44	39	38	40	45	43	41
	Total Ammonia	mg/L	variable ^c	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	<0.010	<0.010
-	Nitrate	mg/L	3	3	0.039	0.021	0.024	0.021	0.039	0.043	0.025	<0.020	<0.10	<0.10	0.030	0.020	<0.020	0.022
and	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	<0.025	<0.0050	<0.0050	<0.0050	<0.0050
ats nic	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
rjer	Dissolved Organic Carbon	mg/L	-	-	2.09	1.95	2.24	2.11	1.39	2.28	2.06	2.36	2.68	1.90	2.50	2.65	2.46	2.57
불호	Total Organic Carbon	mg/L	-	-	2.91	3.06	2.81	3.07	3.13	3.21	2.94	2.02	2.84	3.10	2.94	3.12	3.20	3.03
	Total Phosphorus	mg/L	0.020^{α}	-	0.0042	0.0035	0.0051	<0.0030	0.0072	0.0047	0.0043	0.0032	0.0072	0.0043	0.0047	0.0049	0.0050	0.0045
	Phenols	mg/L	0.004 ^a	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
us	Bromide (Br)	mg/L	=	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.50	<0.10	<0.10	<0.10	<0.10
ie	Chloride (CI)	mg/L	120	120	3.01	2.63	2.66	2.67	2.79	3.34	2.57	2.59	2.6	3.3	2.38	2.64	2.63	2.64
Ā	Sulphate (SO ₄)	mg/L	218 ^β	218	1.94	1.86	1.84	1.81	2.00	2.46	1.51	1.60	1.7	1.9	1.68	1.81	1.83	1.84
	Aluminum (AI)	mg/L	0.100	0.13	0.0887	0.0635	0.0639	0.0700	0.114	0.131	0.0124	0.0391	0.0684	0.0346	0.0743	0.0435	0.0520	0.0512
	Antimony (Sb)	mg/L	0.020^{α}	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00489	0.00453	0.00429	0.00474	0.00507	0.00602	0.00384	0.00465	0.00416	0.00444	0.00449	0.00444	0.00446	0.00482
	Beryllium (Be)	mg/L	0.011 ^a	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
	Boron (B)	mg/L	1.5	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00006	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L		-	7.21	7.22	6.48	6.80	7.67	8.22	6.38	7.01	6.54	6.94	6.16	6.69	7.45	6.99
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009^{α}	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00064	0.00057	0.00057	0.00060	0.00064	0.00074	<0.00050	0.00060	0.00057	0.00056	0.00063	0.00057	0.00056	0.00057
	Iron (Fe)	mg/L	0.30	0.326	0.103	0.061	0.057	0.066	0.095	0.110	<0.030	0.041	0.074	0.042	0.074	0.052	0.051	0.052
	Lead (Pb)	mg/L	0.001	0.001	0.000101	0.000061	0.000066	0.000059	0.000107	0.000109	<0.000050	<0.000050	0.000084	<0.000050	0.000080	0.000060	0.000061	0.000053
tals	Lithium (Li)	mg/L	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Met	Magnesium (Mg)	mg/L	-	-	4.03	4.08	3.83	4.19	4.15	4.94	4.08	4.40	3.48	4.11	3.69	4.12	3.99	4.17
Total	Manganese (Mn)	mg/L	0.935^{β}	-	0.00269	0.00177	0.00223	0.00197	0.00246	0.00249	0.000527	0.00184	0.00240	0.00175	0.00274	0.00178	0.00171	0.00177
Ĺ	Mercury (Hg)	mg/L	0.000026	-	<0.0000050	0.0000051	0.0000053	<0.0000050	0.0000063	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	0.0000052	<0.0000050
	Molybdenum (Mo)	mg/L	0.073	-	0.000130	0.000143	0.000114	0.000135	0.000148	0.000193	0.0122	0.000114	0.000121	0.000125	0.000113	0.000132	0.000139	0.000131
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	-	-	0.59	0.57	0.54	0.58	0.60	0.72	0.53	0.58	0.50	0.55	0.54	0.56	0.54	0.58
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.57	0.53	0.52	0.59	0.64	0.71	0.45	0.45	0.55	0.44	0.53	0.49	0.50	0.46
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	-	1.26	1.27	1.17	1.35	1.38	1.74	1.28	1.34	1.06	1.24	1.13	1.27	1.20	1.30
	Strontium (Sr)	mg/L	-	-	0.00635	0.00644	0.00556	0.00614	0.00708	0.00813	0.00530	0.00584	0.00591	0.00591	0.00555	0.00618	0.00658	0.00609
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	- 0.045	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	-	0.000755	0.000721	0.000583	0.000681	0.000864	0.00113	0.000505	0.000642	0.000639	0.000648	0.000574	0.000689	0.000728	0.000686
	Vanadium (V)	mg/L	0.006 ^α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	<0.0030	0.0136	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Mary Lake.

Table C.72: Water Chemistry at Mary Lake South Basin (BLO) Water Quality Monitoring Stations, Mary River Project CREMP, 2020

			Water								Fall Samp	ling Event						
			Quality	AEMP	BL0-05-A	BL0-05-A	BL0-05	BL0-05	BL0-05-B	BL0-05-B	BL0-03	BL0-03	BL0-04	BL0-04	BL0-09	BL0-09	BL0-06	BL0-06
	Parameters	Units	Guideline	Benchmark ^b	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			(WQG) ^a		28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20
	Conductivity (lab)	umho/cm	-	-	89.2	88.9	87.8	87.4	88.4	88	83.3	84.1	89.1	88.2	91.1	87.8	87.9	88.4
<u>s</u>	pH (lab)	рН	6.5 - 9.0	-	7.76	7.78	7.81	7.75	7.78	7.79	7.73	7.75	7.76	7.76	7.7	7.75	7.73	7.39
ntionals	Hardness (as CaCO ₃)	mg/L	-	-	42.2	41.5	41.9	41.5	42.6	42.3	39.5	38.9	40.1	41.0	41.3	41.0	40.6	40.8
nţi	Total Suspended Solids (TSS)	mg/L	-	-	<2.0	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	<2.0	<2.0	2.0	3.2
١٨e	Total Dissolved Solids (TDS)	mg/L	-	-	49	52	57	57	52	45	46	58	58	56	48	50	52	50
ပ်	Turbidity	NTU	-	-	1.45	1.44	1.56	1.56	1.49	1.59	0.63	0.63	1.41	1.60	1.69	1.45	1.67	1.60
	Alkalinity (as CaCO ₃)	mg/L	-	-	40	38	38	39	38	38	36	37	37	38	39	38	38	40
	Total Ammonia	mg/L	variable ^c	0.855	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
_	Nitrate	mg/L	3	3	0.038	0.037	0.036	0.051	0.041	0.054	<0.020	0.027	0.054	0.039	0.084	0.036	0.05	0.038
and	Nitrite	mg/L	0.06	0.06	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
ts a	Total Kjeldahl Nitrogen (TKN)	mg/L	-	-	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.15
ien	Dissolved Organic Carbon	mg/L	-	_	1.75	1.83	1.72	1.69	1.88	1.82	1.89	2.03	2.18	1.86	1.84	2.18	1.81	1.66
호 년	Total Organic Carbon	mg/L	-	_	2.21	2.16	2.19	2.09	2.41	2.31	2.23	2.61	2.17	2.20	2.23	2.40	2.33	2.07
z	Total Phosphorus	mg/L	0.020 ^a	_	<0.0030	<0.0030	0.0032	<0.0030	0.0041	0.0061	0.0093	<0.0030	0.0067	0.0049	0.0031	0.0049	0.0045	0.0124
	Phenols	mg/L	0.004°	_	0.0014	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0016	<0.0010	<0.0010	0.0012	0.0013	0.0013	<0.0010
Ø	Bromide (Br)	mg/L	-	_	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anions	Chloride (CI)	mg/L	120	120	3.40	3.39	3.33	3.37	3.37	3.39	2.99	3.00	3.35	3.47	4.43	3.35	3.38	3.37
٩	Sulphate (SO ₄)	mg/L	218 ^β	218	2.40	2.41	2.34	2.39	2.41	2.64	1.77	1.76	2.35	2.44	2.74	2.37	2.37	2.38
	Aluminum (Al)	mg/L	0.100	0.13	0.0459	0.0459	0.03	0.0432	0.0489	0.035	0.0178	0.0165	0.0357	0.0356	0.044	0.0502	0.0421	0.0459
	Antimony (Sb)	mg/L	0.020°	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.005	0.005	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	-	-	0.00523	0.0053	0.00507	0.0052	0.00522	0.00507	0.00441	0.00445	0.00515	0.00529	0.00543	0.00509	0.00504	0.00527
	Beryllium (Be)	mg/L	0.011 ^α	_	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	1.5	_	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	0.00012	0.00006	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	-	-	7.97	8.07	7.95	7.93	8.08	8.00	7.51	7.52	7.98	7.95	8.27	8.08	7.93	7.91
	Chromium (Cr)	mg/L	0.0089	0.0089	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	0.0009 ^a	0.004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.002	0.0024	0.00061	0.0006	0.00057	0.0006	0.00059	0.00055	0.00057	0.00053	0.00058	0.00059	0.0007	0.0006	0.00058	0.00062
	Iron (Fe)	mg/L	0.30	0.326	0.044	0.04	0.034	0.038	0.045	0.037	<0.030	<0.030	0.042	0.037	0.048	0.046	0.044	0.047
	Lead (Pb)	mg/L	0.001	0.001	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.00005	<0.000050	<0.000050	<0.000050
<u>s</u>	Lithium (Li)	mg/L	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Metals	Magnesium (Mg)	mg/L		_	4.91	5.03	4.93	5.08	4.97	5.01	4.64	4.72	5.03	4.92	5.23	4.96	4.81	5.02
=	Manganese (Mn)	mg/L	0.935 ^β	_	0.00124	0.00113	0.00105	0.00108	0.00127	0.00106	0.0011	0.000787	0.00118	0.00112	0.00148	0.00116	0.00126	0.00125
Total	Mercury (Hg)	mg/L	0.000026	_	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
-	Molybdenum (Mo)	mg/L	0.073	-	0.000171	0.000182	0.00017	0.000179	0.000184	0.000164	0.000144	0.000152	0.000173	0.000177	0.000194	0.000185	0.000166	0.000183
	Nickel (Ni)	mg/L	0.025	0.025	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	-	-	0.63	0.65	0.63	0.65	0.65	0.63	0.57	0.57	0.64	0.64	0.64	0.64	0.62	0.64
	Selenium (Se)	mg/L	0.001	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	-	-	0.51	0.50	0.47	0.53	0.49	0.48	0.43	0.46	0.48	0.48	0.53	0.51	0.47	0.50
	Silver (Ag)	mg/L	0.00025	0.0001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	-	-	1.63	1.62	1.60	1.65	1.57	1.61	1.49	1.46	1.65	1.59	1.64	1.63	1.59	1.63
	Strontium (Sr)	mg/L	-	_	0.00709	0.00725	0.00711	0.00709	0.00727	0.00711	0.00626	0.00621	0.00714	0.00713	0.0075	0.00707	0.00698	0.00713
	Thallium (TI)	mg/L	0.0008	0.0008	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.015	_	0.00101	0.00102	0.000984	0.000981	0.00101	0.000974	0.000762	0.000744	0.000994	0.000983	0.00109	0.00102	0.000973	0.000984
	Vanadium (V)	mg/L	0.006 ^α	0.006	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	0.030	0.030	<0.0030	<0.0030	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0010	<0.0010	<0.0030	<0.0030	<0.0030	<0.0030
	\ - /			2.000	2.3000	2.3000	2.3000	5000	2.3000	2.0000	2.0000	2.3000	2.3000	2.3000	2.3000	2.3000	2.3000	2.3000

BOLD Indicates parameter concentration above the AEMP benchmark.

Note: "-" indicates no WQG benchmark applicable.

^a Canadian Water Quality Guideline for the protection of aquatic life (CCME 1987, 1999) except those indicated by α (Ontario Provincial Water Quality Objective [PWQO]; OMOE 1994) and β (British Columbia Water Quality Guideline [BCWQG]; BCMOE 2013). See Table 2.2 for information regarding WQG criteria.

^b AEMP Water Quality Benchmarks developed by Intrinsik (2013) using baseline water quality data specific to Mary Lake.

Table C.73: Dissolved Metal Concentrations at Mary Lake South Basin Water Quality Monitoring Stations, Mary River Project CREMP, 2020

									Winter Samp	ling Event						
	Parameters	Units	BL0-05-A	BL0-05-A	BL0-05	BL0-05	BL0-05-B	BL0-05-B	BL0-03	BL0-03	BL0-04	BL0-04	BL0-09	BL0-09	BL0-06	BL0-06
	Farameters	Units	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20
	Aluminum (Al)	mg/L	0.0081	0.0048	0.0046	0.0051	0.0076	0.0041	0.0037	0.0031	0.0045	0.0038	0.0097	0.0091	0.0060	0.0045
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00706	0.00726	0.00711	0.00742	0.00750	0.00744	0.00665	0.00762	0.00679	0.00709	0.00708	0.00730	0.00699	0.00721
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	13.1	13.8	12.9	13.5	13.9	13.8	13.1	14.1	13.2	14.1	13.0	13.2	13.7	14.2
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00079	0.00082	0.00076	0.00081	0.00084	0.00081	0.00074	0.00080	0.00073	0.00157	0.00081	0.00080	0.00076	0.00076
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
ဟ	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000102	0.000055	<0.000050	<0.000050	<0.000050
Dissolved Metals	Lithium (Li)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
≥	Magnesium (Mg)	mg/L	7.93	8.21	8.05	8.37	8.44	8.48	7.89	8.68	7.42	7.53	7.30	7.54	7.48	7.85
olve	Manganese (Mn)	mg/L	0.000436	0.000302	0.000541	0.000298	0.000328	0.000281	0.000300	0.000847	0.000348	0.000239	0.000696	0.000386	0.000310	0.000306
iss	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	0.0000051	<0.000050	<0.000050	<0.0000050	0.0000054	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050
1	Molybdenum (Mo)	mg/L	0.000223	0.000234	0.000229	0.000254	0.000247	0.000252	0.000204	0.000242	0.000253	0.000257	0.000256	0.000258	0.000266	0.000268
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	0.00053	0.00054	0.00051	<0.00050	<0.00050	<0.00050	<0.00050	0.00051	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	0.81	0.84	0.81	0.87	0.87	0.87	0.78	0.88	0.84	0.87	0.85	0.91	0.87	0.91
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.57	0.59	0.60	0.61	0.60	0.60	0.57	0.63	0.58	0.59	0.78	0.62	0.58	0.59
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	2.07	2.18	2.08	2.20	2.17	2.20	2.03	2.27	2.10	2.14	2.10	2.18	2.08	2.22
	Strontium (Sr)	mg/L	0.0114	0.0118	0.0115	0.0120	0.0121	0.0119	0.0110	0.0119	0.0103	0.0116	0.0104	0.0119	0.0116	0.0120
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00138	0.00143	0.00132	0.00144	0.00145	0.00145	0.00130	0.00146	0.00135	0.00144	0.00127	0.00148	0.00142	0.00147
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0107	<0.0030	<0.0030

Table C.73: Dissolved Metal Concentrations at Mary Lake South Basin Water Quality Monitoring Stations, Mary River Project CREMP, 2020

								Su	mmer Sampli	ing Event						
	Parameters	Units	BL0-05-A	BL0-05-A	BL0-05	BL0-05	BL0-05-B	BL0-05-B	BL0-03	BL0-03	BL0-04	BL0-04	BL0-09	BL0-09	BL0-06	BL0-06
	Parameters	Ullits	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	31-Jul-20	31-Jul-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20	01-Aug-20
	Aluminum (Al)	mg/L	0.0143	0.0132	0.0155	0.0163	0.0126	0.0196	0.0357	0.0111	0.0137	0.0103	0.0141	0.0097	0.0127	0.0119
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00423	0.00407	0.00414	0.00417	0.00446	0.00545	0.00398	0.00444	0.00394	0.00409	0.00385	0.00406	0.00416	0.00415
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	6.41	7.03	6.85	6.96	7.14	8.54	6.39	6.71	6.30	6.94	6.00	6.94	6.90	6.72
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	<0.00050	0.00050	0.00051	0.00051	0.00057	0.00111	0.00051	0.00058	<0.00050	0.00051	<0.00050	0.00051	0.00052	0.00052
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.044	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
S	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
etal	Lithium (Li)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
≥	Magnesium (Mg)	mg/L	4.09	4.14	4.05	4.11	4.18	4.92	3.77	4.51	3.73	4.08	3.63	3.98	4.04	4.09
olve	Manganese (Mn)	mg/L	0.000621	0.000492	0.000469	0.000469	0.000545	0.000601	0.00239	0.000416	0.000634	0.000362	0.000595	0.000410	0.000422	0.000409
Dissolved Metals	Mercury (Hg)	mg/L	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050
-	Molybdenum (Mo)	mg/L	0.000128	0.000145	0.000134	0.000133	0.000148	0.000206	0.000093	0.000109	0.000126	0.000128	0.000110	0.000131	0.000130	0.000132
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	0.55	0.54	0.54	0.55	0.58	0.68	0.49	0.63	0.51	0.53	0.50	0.54	0.55	0.56
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.44	0.42	0.42	0.43	0.45	0.49	0.45	0.39	0.43	0.39	0.43	0.40	0.42	0.41
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	1.28	1.27	1.23	1.27	1.40	1.71	1.14	1.36	1.13	1.26	1.07	1.26	1.32	1.27
	Strontium (Sr)	mg/L	0.00581	0.00604	0.00600	0.00599	0.00657	0.00817	0.00538	0.00562	0.00569	0.00609	0.00549	0.00609	0.00599	0.00578
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.000642	0.000688	0.000687	0.000682	0.000804	0.00113	0.000596	0.000583	0.000582	0.000661	0.000551	0.000682	0.000658	0.000630
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030

Table C.73: Dissolved Metal Concentrations at Mary Lake South Basin Water Quality Monitoring Stations, Mary River Project CREMP, 2020

									Fall Samp	ling Event						
	Parameters	Units	BL0-05-A	BL0-05-A	BL0-05	BL0-05	BL0-05-B	BL0-05-B	BL0-03	BL0-03	BL0-04	BL0-04	BL0-09	BL0-09	BL0-06	BL0-06
	raiailleteis	Ullits	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface	bottom	surface
			28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20
	Aluminum (AI)	mg/L	0.0141	0.0169	0.0105	0.0142	0.0144	0.012	0.0063	0.0065	0.0142	0.0175	0.0148	0.016	0.0118	0.0161
	Antimony (Sb)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Barium (Ba)	mg/L	0.00508	0.00508	0.00507	0.00488	0.00489	0.00509	0.00442	0.00434	0.00486	0.00499	0.0051	0.00478	0.00505	0.00481
	Beryllium (Be)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Calcium (Ca)	mg/L	8.11	8.19	8.16	8.04	8.51	8.25	7.74	7.57	7.93	8.14	7.99	8.20	8.06	8.15
	Chromium (Cr)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Copper (Cu)	mg/L	0.00054	0.00056	0.0006	0.00057	0.00056	0.00054	0.0005	0.00052	0.00054	0.00057	0.00058	0.00055	0.00056	0.00057
	Iron (Fe)	mg/L	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
<u> </u>	Lead (Pb)	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
leta	Lithium (Li)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
ک او	Magnesium (Mg)	mg/L	5.33	5.12	5.23	5.20	5.19	5.26	4.91	4.86	4.92	5.02	5.17	4.98	4.97	4.96
l se	Manganese (Mn)	mg/L	0.000321	0.000327	0.000225	0.000298	0.000193	0.000246	0.000141	0.000182	0.000245	0.000248	0.000205	0.000227	0.00034	0.000208
Dissolved Metals	Mercury (Hg)	mg/L	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
1"	Molybdenum (Mo)	mg/L	0.000178	0.000183	0.000179	0.00019	0.000178	0.000183	0.000143	0.000139	0.000181	0.000181	0.000188	0.00018	0.000185	0.000175
	Nickel (Ni)	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Potassium (K)	mg/L	0.66	0.73	0.66	0.73	0.67	0.73	0.58	0.62	0.63	0.73	0.65	0.74	0.66	0.74
	Selenium (Se)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)	mg/L	0.46	0.47	0.45	0.46	0.45	0.47	0.43	0.42	0.44	0.43	0.46	0.44	0.45	0.47
	Silver (Ag)	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	1.74	1.73	1.71	1.73	1.77	1.71	1.54	1.56	1.65	1.67	1.76	1.63	1.67	1.62
	Strontium (Sr)	mg/L	0.00724	0.00727	0.00715	0.00721	0.00727	0.00709	0.00623	0.00619	0.00707	0.00712	0.00729	0.00711	0.00719	0.00719
	Thallium (TI)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.00099	0.000976	0.000962	0.000972	0.000986	0.000955	0.000743	0.000739	0.000949	0.000963	0.00103	0.000973	0.000932	0.000945
	Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.0072	<0.0030	<0.0030	<0.0030	<0.0030

APPENDIX D SEDIMENT QUALITY DATA

Table D.1: Deposited Sediment Field Observations and Collection Details at Unnamed Reference Creek^a, Mary River Project CREMP, August 2020

Station	Visually Assessed Texture Observations	Presence of Silt Precipitate
REF-CRK-1	medium (sized) course sand	none observed
REF-CRK-3	medium (sized) course sand	none observed
REF-CRK-5	medium (sized) course sand	none observed

^a Deposited sediment samples were collected using a stainless steel spoon.

Table D.2: Deposited Sediment Total Organic Carbon and Metal Concentrations at Unnamed Reference Creek (REF-CRK), Mary River Project CREMP, August 2020

_			Unnamed	Reference Cre	ek Station	Study A	rea Summary S	Statistics
Parameter	Units	SQGª	REF-CRK-B1	REF-CRK-B3	REF-CRK-B5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	<0.10	<0.10	0.16	0.12	0.035	0.020
Aluminum (Al)	μg/g	-	482	473	797	584	185	107
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.13	0.18	0.34	0.22	0.11	0.06
Barium (Ba)	μg/g	-	2.18	2.44	3.54	2.72	0.722	0.417
Beryllium (Be)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Boron (B)	μg/g	-	<5.0	<5.0	<5.0	<5.0	0	0
Cadmium (Cd)	μg/g	3.5	<0.020	<0.020	<0.020	<0.020	0	0
Calcium (Ca)	µg/g	-	342	358	781	494	249	144
Chromium (Cr)	µg/g	90	1.82	9.25	12.3	7.79	5.39	3.11
Cobalt (Co)	μg/g	-	0.350	1.06	1.45	0.953	0.558	0.322
Copper (Cu)	μg/g	197	0.570	0.830	2.24	1.21	0.899	0.519
Iron (Fe)	μg/g	40,000 ^α	1,880	14,700	20,900	12,493	9,700	5,600
Lead (Pb)	μg/g	91.3	0.870	1.70	1.90	1.49	0.546	0.315
Lithium (Li)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Magnesium (Mg)	μg/g	i	377	322	632	444	165	95
Manganese (Mn)	μg/g	1,100 ^{α,β}	12.3	28.5	41.4	27.4	14.6	8.42
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0
Molybdenum (Mo)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Nickel (Ni)	μg/g	75 ^{α,β}	0.820	1.79	2.66	1.76	0.920	0.531
Phosphorus (P)	μg/g	2,000 ^α	109	111	280	167	98	57
Potassium (K)	μg/g	i	120	100	180	133	42	24
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	=	<50	<50	<50	<50	0	0
Strontium (Sr)	μg/g	=	1.59	1.80	2.62	2.00	0.544	0.314
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	<0.050	<0.050	<0.050	<0.050	0	0
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	35.3	84.6	130	83.3	47.4	27.3
Uranium (U)	μg/g	-	0.195	0.600	0.643	0.5	0.25	0.14
Vanadium (V)	μg/g	-	2.44	21.0	27.1	16.8	12.8	7.4
Zinc (Zn)	μg/g	315	<2.0	2.7	4.4	3.0	1.2	0.71
Zirconium (Zr)	μg/g	-	1.1	2.5	2.8	2.1	0.91	0.52

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.3: Field Observations of Sediment Properties at Reference Lake 3 (REF-03) Benthic Stations^a, Mary River Project CREMP, August 2020

Station	Station Depth (m)	Colour and Texture Observations	Evidence of Anoxia ^b	Plant or Algal Presence
REF-03-1	10.5	brown silt on top of grey silt	presence of hydrogen sulphide odour	none observed
REF-03-2	10.6	grey silt sand	presence of hydrogen sulphide odour	sparse macrophytes, sparse algae
REF-03-3	10.0	brown grey silt and clay, some sandy material	none detected	none observed
REF-03-4	8.5	brown silt on grey silt	presence of hydrogen sulphide odour	sparse algae
REF-03-5	11.0	brown silt	none detected	sparse algae
REF-03-6	20.5	brown silt	none detected	none observed
REF-03-7	23.0	brown silt	none detected	none observed
REF-03-8	19.0	light brown and orange brown silt	none detected	none observed
REF-03-9	21.0	brown silt, slightly clay-like	none detected	none observed
REF-03-10	19.5	brown silt/clay, some red brown silt	none detected	none observed

^a Sediment particle size and benthic invertebrate community samples were collected using a petite Ponar.

^b Evidence of anoxic sediments assessed visually as the presence of blackened substrate, and by smell based on presence/strength of hydrogen sulphide odour.

Table D.4: Observations from Sediment Cores Collected at Reference Lake 3 (REF-03), Mary River Project CREMP, August 2020

Sample Station	Station Depth (m)	Station Type	Core Number	Core Length (cm)	Surficial Substrate Texture Description
	,		1	30.0	
DEE 02.4	0.0	1:441	2	31.0	dark brown unconsolidated silt over
REF-03-1	9.0	Littoral	3	27.5	dark grey fine sand.
			4	34.0	
			1	20.5	
DEE 02 6	20.0	Drofundal	2	22.0	light brown silt and fine sand over
REF-03-6	20.0	Profundal	3	11.0	dark brown/grey coarse silt and sand.
			4	15.0	
			1	37.0	
DEE 02 2	0.0	Littoral	2	38.0	light brown silt over
REF-03-2	9.0	Lillorai	3	35.0	dark grey fine sand.
			4	33.0	
			1	12.0	
DEE 00.7	00.0	D f	2	17.0	light brown mixture of fine sand and silt
REF-03-7	23.0	Profundal	3	19.0	with orange brown floc present, overlying
			4	21.0	unconsolidated light brown silt.
			1	25.0	
555.00.0	40.0		2	26.0	brown unconsolidated silt-sand fines
REF-03-3	10.0	Littoral	3	20.0	overlying dark grey fine sand.
			4	19.0	1
			1	8.0	
555.00.0	40.5		2	19.5	brown silt/fine sand (brown) upper layer on
REF-03-8	18.5	Profundal	3	18.5	top of consolidated light grey sand
			4	20.0	overlying brown silt/sand.
			1	23.0	
DEE 00.4	0.0	1 244 1	2	8.0	light brown silt on top of consolidated dark
REF-03-4	8.0	Littoral	3	16.0	grey fine sand underlain by light brown silt/sand.
			4	27.5	light brown shysand.
			1	10.5	
DEE 00 0	04.0	D f	2	9.0	brown silt, unconsolidated, or red/brown
REF-03-9	21.0	Profundal	3	10.0	silt with some minor black streaking overlying consolidated grey silt.
			4	12.0	overlying consolidated grey siit.
			1	30.5	brown unconsolidated silt overlying
DEE 00 5	44.0	1	2	33.5	fine grey sand or dark grey silt/sand
REF-03-5	11.0	Littoral	3	26.0	unconsolidated floc overlying
			4	27.0	dark grey silt/sand.
			1	9.0	
DEE 33 46	00.0		2	11.0	loose light brown silt overlying
REF-03-10	20.0	Profundal	3	14.0	consolidated light grey silt.
			4	16.0	-

Table D.5: Statistical Comparison of Substrate Physical Properties between Littoral and Profundal Sediment Stations of Individual Study Lakes, Mary River Project CREMP, August 2020

			Statistical 1	est Results			Summary Statistics								
Lake	Habitat Variable	Statistical Analysis ^a	Transform- ation	Significant Difference Between Areas?	P-value	Station Type	N	Mean	Standard Deviation	Standard Error	Minimum	Maximum			
	Sand	tequal	none	NO	0.109	Littoral	5	65.4	20.1	9.0	41.1	85.0			
	(% by weight)	·				Profundal	9	41.5	26.8	8.9	17.3	86.8			
	Silt	tequal	none	NO	0.156	Littoral	5	32.1	18.2	8.2	14.2	55.1			
Camp Lake	(% by weight)	·				Profundal	9	50.6	23.6	7.9	11.8	79.2			
•	Clay	M-W	rank	YES	0.045	Littoral	5	2.6	2.0	0.9	1.0	5.5			
	(% by weight)					Profundal	9	7.9	4.7	1.6	1.4	14.7			
	TOC	tequal	none	NO	0.888	Littoral	5	1.4	1.2	0.5	0.3	3.4			
	(%)	'		-		Profundal	9	1.5	0.9	0.3	0.3	3.1			
	Sand	tequal	log10	YES	0.009	Littoral	7	40.5	24.6	9.3	20.1	93.0			
	(% by weight)					Profundal	7	17.2	9.3	3.5	8.5	35.3			
	Silt	M-W	rank	YES	0.038	Littoral	7	48.6	20.5	7.7	6.4	67.1			
Sheardown	(% by weight)			0		Profundal	7	68.2	9.8	3.7	49.3	78.9			
Lake NW	Clay	M-W	rank	YES	0.073	Littoral	7	10.9	4.7	1.8	1.0	14.8			
	(% by weight)	veight)		0		Profundal	7	14.6	3.3	1.2	8.8	17.2			
	TOC	tequal	none	YES	0.077	Littoral	7	2.5	1.4	0.5	0.2	4.3			
	(%)	104001				Profundal	7	1.4	0.5	0.2	0.4	2.0			
	Sand	tequal	none	NO	0.330	Littoral	5	11.1	6.7	3.0	5.2	21.6			
	(% by weight)					Profundal	5	15.1	5.3	2.4	8.3	20.7			
	Silt	tequal	none	NO	0.383	Littoral	5	75.0	5.5	2.5	68.9	81.5			
Sheardown	(% by weight)	104001				Profundal	5	72.2	4.0	1.8	67.5	76.6			
Lake SE	Clay	tegual	none	NO	0.590	Littoral	5	13.9	3.7	1.7	9.4	17.5			
	(% by weight)	toquai	Hone	NO	0.000	Profundal	5	12.7	2.8	1.2	9.5	15.6			
	TOC	tequal	none	NO	0.428	Littoral	5	1.4	0.8	0.4	0.4	2.3			
	(%)	tequal	none	NO	0.420	Profundal	5	1.1	0.6	0.2	0.2	1.6			
	Sand	tequal	log10	NO	0.839	Littoral	4	28.1	34.5	17.2	5.2	78.6			
	(% by weight)	iequai	10910	NO	0.038	Profundal	11	21.6	24.7	7.4	2.3	91.9			
	Silt	M-W	rank	NO	0.851	Littoral	4	53.6	24.0	12.0	18.0	69.9			
Mary Lake	(% by weight)	IVI-VV	Idik	NO	0.031	Profundal	11	54.9	18.6	5.6	6.0	73.4			
	Clay	togual	none	NO	0.459	Littoral	4	18.3	14.5	7.2	3.4	32.0			
	(% by weight)		NO	0.458	Profundal	11	23.5	10.6	3.2	2.1	33.2				
	TOC		- NO	0.706	Littoral	4	0.8	0.5	0.2	0.2	1.3				
	(%)	tequal	none	NO	0.796	Profundal	11	0.7	0.3	0.1	0.2	1.5			

Highlighted values indicate significant difference between study areas based on statistical test p-value less than 0.10.

a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table D.6: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Reference Lake 3 (REF-03) Sediment Stations, Mary River Project CREMP, August 2020

			Sediment					Reference L	ake 3 Station					Study Ar	Study Area Summary Statistics			
Parai	meter	Units	Quality Guideline	REF-03-1	REF-03-6	REF-03-2	REF-03-7	REF-03-3	REF-03-8	REF-03-4	REF-03-9	REF-03-5	REF-03-10		Standard	Standard		
			(SQG) ^a	(littoral)	(profundal)	(littoral)	(profundal)	(littoral)	(profundal)	(littoral)	(profundal)	(littoral)	(profundal)	Mean	Deviation	Error		
S	Sand	%	-	40.4	56.6	23.4	13.9	24.7	55.3	34.5	15.2	24.8	16.8	30.6	15.7	4.97		
Non-metals	Silt	%	-	53.4	36.9	68.4	71.9	61.9	38.4	59.3	71.8	68.2	68.1	59.8	13.05	4.13		
Ę	Clay	%	-	6.3	6.5	8.2	14.2	13.4	6.3	6.2	13.0	7.0	15.1	9.6	3.79	1.198		
lon	Moisture	%	-	90.0	78.3	92.3	86.6	87.9	79.4	80.2	84.9	89.2	84.0	85.3	4.79	1.51		
	Total Organic Carbon	%	10 ^α	6.95	2.20	6.54	4.30	3.71	2.36	2.26	4.52	4.54	3.71	4.11	1.66	0.525		
	Aluminum (AI)	mg/kg	_	15,400	19,000	18,200	24,700	19,300	20,400	16,200	22,300	15,300	22,600	19,340	3,204	1,013		
	Antimony (Sb)	mg/kg	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0	0		
	Arsenic (As)	mg/kg	17	4.73	3.66	4.36	4.65	3.67	3.76	2.78	4.03	2.10	4.24	3.80	0.82	0.261		
	Barium (Ba)	mg/kg	-	139	98.4	134	143	99.7	108	88.4	129	124	132	120	19.3	6.10		
	Beryllium (Be)	mg/kg	-	0.59	0.68	0.74	0.93	0.69	0.77	0.65	0.80	0.56	0.84	0.73	0.11	0.036		
	Bismuth (Bi)	mg/kg	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0	0		
	Boron (B)	mg/kg	-	11.6	11.9	13.1	16.8	13.2	14.5	11.7	15.1	11.5	15.0	13.4	1.84	0.580		
	Cadmium (Cd)	mg/kg	3.5	0.246	0.128	0.184	0.175	0.120	0.144	0.163	0.142	0.150	0.150	0.160	0.0359	0.0114		
	Calcium (Ca)	mg/kg	-	6,080	4,410	7,440	5,480	4,820	4,830	4,190	5,180	5,510	5,150	5,309	930	294		
	Chromium (Cr)	mg/kg	90	54.9	57.1	57.4	73.0	59.4	59.3	48.6	68.5	51.3	67.3	59.7	7.75	2.45		
	Cobalt (Co)	mg/kg	-	10.8	13.2	9.86	17.2	12.8	14.1	11.8	15.6	8.59	15.8	13.0	2.77	0.88		
	Copper (Cu)	mg/kg	197	80.0	68.8	89.7	97.6	72.2	77.5	59.8	86.1	55.3	89.2	77.6	13.7	4.32		
	Iron (Fe)	mg/kg	40,000 ^α	83,200	39,600	68,900	51,100	41,400	42,100	38,000	45,700	21,500	46,900	47,840	17,136	5,419		
	Lead (Pb)	mg/kg	91.3	13.7	14.2	14.3	19.1	14.8	15.8	12.9	17.2	13.1	17.1	15.2	2.03	0.64		
	Lithium (Li)	mg/kg	_	23.2	29.3	26.3	38.8	29.6	30.6	26.8	34.4	24.1	35.5	29.9	5.09	1.61		
	Magnesium (Mg)	mg/kg	-	11,600	12,500	11,800	16,000	12,500	13,000	10,400	14,800	10,900	14,600	12,810	1,811	573		
Metals	Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	578	909	413	1,250	790	1,010	866	1,820	246	1,160	904	451	143		
Me	Mercury (Hg)	mg/kg	0.486	0.0730	0.0391	0.0594	0.0689	0.0396	0.0497	0.0269	0.0806	0.0511	0.0530	0.0541	0.0167	0.0053		
	Molybdenum (Mo)	mg/kg	_	6.77	2.74	8.95	2.86	2.87	2.40	2.74	2.19	0.87	2.42	3.48	2.43	0.770		
	Nickel (Ni)	mg/kg	75 ^{α,β}	44.5	39.5	41.7	50.9	40.4	41.6	38.5	47.3	35.1	45.7	42.5	4.64	1.47		
	Phosphorus (P)	mg/kg	2,000 ^α	1,700	888	1,470	1,000	963	959	810	933	892	999	1,061	287	91		
	Potassium (K)	mg/kg	-	3,560	4,660	4,280	6,030	4,760	4,940	4,040	5,590	3,860	5,470	4,719	805	255		
	Selenium (Se)	mg/kg	-	1.02	0.40	1.09	0.68	0.58	0.55	0.42	0.89	0.53	0.55	0.67	0.24	0.077		
	Silver (Ag)	mg/kg	_	0.17	0.12	0.21	0.26	0.12	0.18	<0.10	0.25	0.11	0.20	0.17	0.058	0.018		
	Sodium (Na)	mg/kg	-	283	299	315	413	332	347	259	421	332	366	337	52	17		
	Strontium (Sr)	mg/kg	_	11.7	10.5	14.3	13.8	11.3	11.8	9.64	12.9	11.0	12.6	12.0	1.46	0.461		
	Sulphur (S)	mg/kg	-	1,700	<1,000	1,900	1,300	1,300	<1,000	<1,000	1,400	1,100	<1,000	1,270	320	101		
	Thallium (TI)	mg/kg	-	0.373	0.470	0.402	0.714	0.437	0.535	0.355	0.637	0.330	0.614	0.487	0.132	0.0418		
	Tin (Sn)	mg/kg	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0	0		
	Titanium (Ti)	mg/kg	-	936	1,070	866	1,190	1,030	1,100	1,050	1,170	1,150	1,150	1,071	105	33		
	Uranium (U)	mg/kg	-	14.3	15.5	12.5	24.2	10.3	19.5	9.85	16.7	8.13	22.8	15.4	5.48	1.73		
	Vanadium (V)	mg/kg	-	52.4	57.7	61.7	70.2	57.2	60.0	51.3	63.4	47.9	65.7	58.8	6.90	2.18		
	Zinc (Zn)	mg/kg	315	71.3	73.7	85.7	96.4	74.8	79.3	67.9	82.9	65.8	86.7	78.5	9.56	3.02		
	Zirconium (Zr)	mg/kg		4.4	3.9	4.9	4.2	3.3	3.5	3.9	3.8	6.0	4.3	4.2	0.78	0.25		

Indicates parameter concentration above Sediment Quality Guideline (SQG).

Indicates parameter concer Note: "-" indicates no SQG applicable.

^a Canadian Sediment Quality Guideline for the protection of aquatic life probable effects level (PEL; CCME 2015) except α (Ontario Provincial Sediment Quality Guideline [PSQO] severe effect level [SEL]; OMOE 1993) and β (British Columbia Working Sediment Quality Guideline [BCSQG], probable effects level [PEL; BCMOE 2015]).

Table D.7: Deposited Sediment Field Sampling Observations from Camp Lake Tributary 1 and Camp Lake Tributary 2^a, Mary River Project CREMP, August 2020

Study Area	Station	Texture of Collected Sediment	Silt Presence ^b
Camp Lake	CLT1 US-1	medium (sized) coarse sand	none observed
Tributary 1 Upstream (North Branch;	CLT1 US-3	medium (sized) sand	none observed
CLT1 US)	CLT1 US-5	medium (sized) sand	none observed
Camp Lake	CLT1 DS-1	medium (sized) coarse sand	precipitate and deposits (<1 mm)
Tributary 1 Downstream (Lower Main	CLT1 DS-3	medium (sized) coarse sand	precipitate and deposits (<1 mm)
Stem; CLT1 DS)	CLT1 DS-5	medium (sized) coarse sand	precipitate and deposits (<1 mm)
Camp Lake	CLT2 US-1	medium (sized) coarse sand	none observed
Tributary 2 Upstream	CLT2 US-3	medium (sized) coarse sand	none observed
(CLT2 US)	CLT2 US-5	medium (sized) coarse sand	precipitate and deposits (<1 mm)
Camp Lake	CLT2 DS-1	medium (sized) coarse sand	none observed
Tributary 2 Downstream	CLT2 DS-3	medium (sized) coarse sand	none observed
(CLT2 DS)	CLT2 DS-5	medium (sized) coarse sand	precipitate and deposits (<1 mm)

^a Sediment samples collected using a stainless steel scoop directly from the streambed or shoreline, as available.

^b Evidence of silt precipitate included fine material present on the surface of in-stream substrate and/or as interstitial deposits not otherwise expected to occur at such habitat.

Table D.8: Deposited Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 1 Upstream (CLT1-US) Stations, Mary River Project CREMP, August 2020

_			Camp Lake 1	Γributary 1 Ups	tream Station	Study A	Area Summary S	Statistics
Parameter	Units	SQG ^a	CLT1-US-1	CLT1-US-3	CLT1-US-5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	1.05	0.94	0.66	0.88	0.20	0.12
Aluminum (AI)	μg/g	-	8,010	7,080	7,080	7,390	537	310
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.82	0.58	0.67	0.69	0.12	0.07
Barium (Ba)	μg/g	-	21.2	17.4	14.8	17.8	3.2	1.9
Beryllium (Be)	μg/g	-	0.32	0.27	0.26	0.28	0.03	0.02
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Boron (B)	μg/g	-	10.2	9.2	8.5	9.3	0.9	0.5
Cadmium (Cd)	μg/g	3.5	0.056	0.043	0.042	0.047	0.008	0.005
Calcium (Ca)	μg/g	-	2,890	2,430	2,660	2,660	230	133
Chromium (Cr)	μg/g	90	29.4	25.7	24.9	26.7	2.4	1.4
Cobalt (Co)	μg/g	-	7.36	6.14	5.69	6.40	0.86	0.50
Copper (Cu)	µg/g	197	35.8	22.1	13.8	23.9	11.1	6.41
Iron (Fe)	μg/g	40,000 ^α	29,300	18,200	21,000	22,833	5,773	3,333
Lead (Pb)	μg/g	91.3	4.88	3.86	3.66	4.13	0.65	0.38
Lithium (Li)	μg/g	-	11.5	11.5	10.7	11.2	0.46	0.27
Magnesium (Mg)	μg/g	-	8,610	8,180	8,100	8,297	274	158
Manganese (Mn)	μg/g	1,100 ^{α,β}	199	171	132	167	34	19
Mercury (Hg)	μg/g	0.486	0.0053	<0.0050	<0.0050	0.0051	0.0002	0.0001
Molybdenum (Mo)	μg/g	-	0.37	0.30	0.21	0.29	0.08	0.05
Nickel (Ni)	μg/g	75 ^{α,β}	20.2	19.4	17.2	18.9	1.6	0.9
Phosphorus (P)	μg/g	2,000°	291	236	256	261	28	16
Potassium (K)	μg/g	-	1,380	1,260	1,140	1,260	120	69
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	84	71	78	78	7	4
Strontium (Sr)	μg/g	-	3.04	2.65	2.86	2.85	0.195	0.113
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.120	0.093	0.079	0.097	0.021	0.012
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	508	397	422	442	58	34
Uranium (U)	μg/g	-	0.984 0.914		0.795	0.898	0.096	0.055
Vanadium (V)	μg/g	-	27.2	22.7	22.9	24.3	2.5	1.5
Zinc (Zn)	μg/g	315	21.5	17.6	17.7	18.9	2.2	1.3
Zirconium (Zr)	μg/g	-	2.8	2.6	2.7	2.7	0.1	0.1

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.9: Deposited Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 1 Downstream (CLT1-DS) Stations, Mary River Project CREMP, August 2020

Parameter	Units	2228		np Lake Tributa wnstream Stat	-	Study A	rea Summary S	Statistics
Parameter	Units	SQGª	CLT1-DS-1	CLT1-DS-3	CLT1-DS-5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.46	0.70	3.55	1.57	1.72	0.992
Aluminum (AI)	μg/g	-	7,160	4,690	5,690	5,847	1,242	717
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.73	0.47	0.80	0.67	0.17	0.10
Barium (Ba)	μg/g	-	32.9	24.1	21.5	26.2	5.97	3.45
Beryllium (Be)	μg/g	-	0.28	0.19	0.23	0.23	0.045	0.026
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Boron (B)	μg/g	-	<5.0	<5.0	6.4	5.5	0.81	0.47
Cadmium (Cd)	μg/g	3.5	0.052	0.044	0.050	0.049	0.0042	0.0024
Calcium (Ca)	μg/g	-	4,200	2,610	4,300	3,703	948	547
Chromium (Cr)	μg/g	90	23.7	13.9	25.9	21.2	6.39	3.69
Cobalt (Co)	μg/g	-	6.45	3.69	5.66	5.27	1.42	0.82
Copper (Cu)	μg/g	197	10.6	7.27	17.0	11.6	4.95	2.86
Iron (Fe)	μg/g	40,000 ^α	24,700	18,300	36,600	26,533	9,287	5,362
Lead (Pb)	μg/g	91.3	5.24	3.62	8.33	5.73	2.39	1.38
Lithium (Li)	μg/g	-	9.1	6.4	7.8	7.8	1.4	0.8
Magnesium (Mg)	μg/g	-	8,910	5,460	6,360	6,910	1,790	1,033
Manganese (Mn)	μg/g	1,100 ^{α,β}	327	183	230	247	73	42
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	0.0076	0.0059	0.0015	0.00087
Molybdenum (Mo)	μg/g	-	1.18	1.44	0.59	1.07	0.44	0.25
Nickel (Ni)	μg/g	75 ^{α,β}	26.0	13.1	31.1	23.4	9.3	5.4
Phosphorus (P)	μg/g	2,000 ^α	197	176	332	235	85	49
Potassium (K)	μg/g	-	2,900	2,050	1,430	2,127	738	426
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	100	63	62	75	22	13
Strontium (Sr)	μg/g	-	3.96	2.86	5.11	3.98	1.13	0.65
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.159	0.102	0.105	0.122	0.032	0.019
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	462	342	396	400	60	35
Uranium (U)	μg/g	-	1.52	1.01	2.03	1.52	0.51	0.29
Vanadium (V)	μg/g	-	16.0	10.8	20.7	15.8	5.0	2.9
Zinc (Zn)	μg/g	315	33.7	23.2	22.1	26.3	6.4	3.7
Zirconium (Zr)	μg/g	-	6.1	4.2	3.7	4.7	1.3	0.73

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.10: Magnitude of Elevation in Deposited Sediment Metal Concentrations between Camp Lake Tributary Study Areas and Average Lotic Reference Area Data, Mary River Project CREMP, August 2020

		Reference	Area Data	Camp Lake	Tributary 1	Camp Lake Tributary 2		
Parameter	Units	Reference Creek (REF-CRK)	Mary River Reference (GO-09)	CLT1-US Magnitude of Elevation	CLT1-DS Magnitude of Elevation	CLT2-US Magnitude of Elevation	CLT2-DS Magnitude of Elevation	
		, ,						
Total Organic Carbon	%	0.12	0.11	7.6	13.5	2.9	2.2	
Aluminum (Al)	μg/g	584	2,757	7.7	6.1	4.7	3.2	
Antimony (Sb)	μg/g	<0.10	<0.10	1.0	1.0	1.0	1.0	
Arsenic (As)	μg/g	0.22	0.38	2.5	2.4	2.7	1.7	
Barium (Ba)	μg/g	2.72	12.6	4.0	5.9	3.5	2.2	
Beryllium (Be)	μg/g	<0.10	0.14	2.5	2.0	1.6	1.4	
Bismuth (Bi)	μg/g	<0.20	<0.20	1.0	1.0	1.0	1.0	
Boron (B)	μg/g	<5.0	5.4	1.8	1.0	1.0	1.0	
Cadmium (Cd)	μg/g	<0.020	<0.020	2.4	2.4	1.5	1.3	
Calcium (Ca)	μg/g	494	2,750	3.2	4.4	6.3	2.6	
Chromium (Cr)	μg/g	7.79	13.6	2.7	2.1	2.2	1.5	
Cobalt (Co)	μg/g	0.953	2.40	4.7	3.9	3.3	2.0	
Copper (Cu)	μg/g	1.21	4.45	12.5	6.1	6.2	3.9	
Iron (Fe)	μg/g	12,493	11,063	1.9	2.3	1.5	1.2	
Lead (Pb)	μg/g	1.49	3.07	2.1	2.9	1.7	1.5	
Lithium (Li)	μg/g	<2.0	5.0	3.9	2.7	2.3	1.4	
Magnesium (Mg)	μg/g	444	2,810	10.8	9.0	9.2	5.3	
Manganese (Mn)	μg/g	27.4	75.7	4.2	6.1	3.6	2.5	
Mercury (Hg)	μg/g	<0.0050	<0.0050	1.0	1.2	1.0	1.0	
Molybdenum (Mo)	μg/g	<0.10	0.11	2.8	10.1	3.2	4.5	
Nickel (Ni)	μg/g	1.76	6.11	6.9	8.6	5.6	3.7	
Phosphorus (P)	μg/g	167	350	1.2	1.0	1.1	0.8	
Potassium (K)	μg/g	133	750	5.6	9.4	5.8	4.8	
Selenium (Se)	μg/g	<0.20	<0.20	1.0	1.0	1.0	1.0	
Silver (Ag)	μg/g	<0.10	<0.10	1.0	1.0	1.0	1.0	
Sodium (Na)	μg/g	<50	68	1.3	1.3	1.1	1.0	
Strontium (Sr)	μg/g	2.00	4.72	1.0	1.4	1.4	0.9	
Sulphur (S)	μg/g	<1,000	<1,000	1.0	1.0	1.0	1.0	
Thallium (TI)	μg/g	<0.050	0.068	1.7	2.1	1.4	1.2	
Tin (Sn)	μg/g	<2.0	<2.0	1.0	1.0	1.0	1.0	
Titanium (Ti)	μg/g	83.3	353	3.3	3.0	2.5	1.8	
Uranium (U)	μg/g	0.479	0.922	1.4	2.4	1.2	1.7	
Vanadium (V)	μg/g	16.8	19.5	1.3	0.9	0.9	0.7	
Zinc (Zn)	μg/g	3.03	10.3	4.0	5.6	3.0	3.8	
Zirconium (Zr)	μg/g	2.1	5.8	0.9	1.5	1.2	1.1	

Table D.11: Deposited Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 2 Upstream (CLT2-US) Stations, Mary River Project CREMP, August 2020

		3	Camp Lake	Γributary 2 Upst	ream Station	Study Area Summary Statistics				
Parameter	Units	SQG ^a	CLT2-US-B1	CLT2-US-B3	CLT2-US-B5	Mean	Standard Deviation	Standard Error		
Total Organic Carbon	%	10 ^α	0.24	0.31	0.45	0.33	0.11	0.015		
Aluminum (Al)	μg/g	-	3,210	3,230	7,010	4,483	2,188	301		
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0		
Arsenic (As)	μg/g	17	0.55	0.61	1.06	0.74	0.28	0.038		
Barium (Ba)	μg/g	-	12.0	12.0	23.6	15.9	6.70	0.920		
Beryllium (Be)	μg/g	-	0.14	0.15	0.27	0.19	0.072	0.0099		
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0		
Boron (B)	μg/g	-	<5.0	<5.0	5.9	5.3	0.52	0.071		
Cadmium (Cd)	μg/g	3.5	0.029	0.024	0.038	0.030	0.0071	0.0010		
Calcium (Ca)	μg/g	-	4,770	3,670	7,390	5,277	1,911	263		
Chromium (Cr)	μg/g	90	19.0	16.3	29.6	21.6	7.03	0.97		
Cobalt (Co)	μg/g	-	3.61	3.37	6.38	4.45	1.67	0.230		
Copper (Cu)	μg/g	197	7.11	13.8	14.7	11.9	4.15	0.570		
Iron (Fe)	μg/g	40,000 ^α	13,600	12,700	27,900	18,067	8,528	1,171		
Lead (Pb)	μg/g	91.3	2.68	2.55	2.55 5.23		1.51	0.208		
Lithium (Li)	μg/g	-	5.1	5.0	9.6	6.6	2.6	0.36		
Magnesium (Mg)	μg/g	-	5,640	5,200	10,300	7,047	2,826	388		
Manganese (Mn)	μg/g	1,100 ^{α,β}	119	122	189	143	40	5.4		
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0		
Molybdenum (Mo)	μg/g	-	0.16	0.35	0.51	0.34	0.18	0.024		
Nickel (Ni)	μg/g	75 ^{α,β}	11.9	10.5	23.5	15.3	7.14	0.980		
Phosphorus (P)	μg/g	2,000 ^α	219	214	328	254	64	8.8		
Potassium (K)	μg/g	-	830	780	2,330	1,313	881	121		
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0		
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0		
Sodium (Na)	μg/g	-	51	<50	87	63	21	2.9		
Strontium (Sr)	μg/g	-	3.37	3.18	5.03	3.86	1.018	0.140		
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0		
Thallium (TI)	μg/g	-	0.060	0.055	0.132	0.082	0.043	0.0059		
Tin (Sn)	μg/g - <2.0 <2.0		<2.0	<2.0	<2.0	0	0			
Titanium (Ti)	μg/g	-	261 242		506	336	147	20		
Uranium (U)	μg/g	-	0.480 0.460 1.29		1.29	0.743	0.474	0.0650		
Vanadium (V)	μg/g	-	15.9	12.8	20.8	16.5	4.03	0.55		
Zinc (Zn)	μg/g 315 9.40 9.70 22.5		22.5	13.9	7.48	1.03				
Zirconium (Zr)	μg/g	-	3.3	2.6	5.2	3.7	1.3	0.18		

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.12: Deposited Sediment Total Organic Carbon and Metal Concentrations at Camp Lake Tributary 2 Downstream (CLT2-DS) Stations, Mary River Project CREMP, August 2020

_		200	Camp Lake Tr	ibutary 2 Down	stream Station	Study	Study Area Summary Statistics				
Parameter	Units	SQGª	CLT2-DS-1	CLT2-DS-3	CLT2-DS-5	Mean	Standard Deviation	Standard Error			
Total Organic Carbon	%	10 ^α	0.48	0.17	0.13	0.26	0.19	0.026			
Aluminum (Al)	μg/g	-	3,720	4,210	1,240	3,057	1,592	219			
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0			
Arsenic (As)	μg/g	17	0.62	0.47	0.31	0.47	0.16	0.021			
Barium (Ba)	μg/g	-	12.0	12.3	4.61	9.64	4.36	0.598			
Beryllium (Be)	μg/g	-	0.17	0.21	<0.10	0.16	0.056	0.0076			
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0			
Boron (B)	μg/g	-	<5.0	<5.0	<5.0	<5.0	0	0			
Cadmium (Cd)	μg/g	3.5	0.024	0.033	<0.020	0.026	0.0067	0.0009			
Calcium (Ca)	μg/g	-	2,810	2,540	1,220	2,190	851	117			
Chromium (Cr)	μg/g	90	25.7	12.8	7.19	15.2	9.49	1.30			
Cobalt (Co)	μg/g	-	3.90	3.06	1.15	2.70	1.41	0.194			
Copper (Cu)	μg/g	197	7.45	8.40	6.54	7.46	0.930	0.128			
Iron (Fe)	μg/g	40,000 ^α	20,800	15,400	4,570	13,590	8,265	1,135			
Lead (Pb)	μg/g	91.3	3.31	3.77	2.07	3.05	0.879	0.121			
Lithium (Li)	μg/g	-	5.1	5.3	<2.0	4.1	1.9	0.25			
Magnesium (Mg)	μg/g	-	5,060	5,460	1,700	4,073	2,065	284			
Manganese (Mn)	μg/g	$1,100^{\alpha,\beta}$	131	131	43	102	50.8	6.98			
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0			
Molybdenum (Mo)	μg/g	-	0.38	0.92	0.12	0.47	0.41	0.056			
Nickel (Ni)	μg/g	75 ^{α,β}	14.4	11.1	4.96	10.2	4.79	0.658			
Phosphorus (P)	μg/g	2,000 ^α	232	198	101	177	68.0	9.34			
Potassium (K)	μg/g	-	1,020	1,780	430	1,077	677	93			
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0			
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0			
Sodium (Na)	μg/g	-	80	<50	<50	60	17	2.4			
Strontium (Sr)	μg/g	-	3.08	2.63	1.83	2.51	0.633	0.087			
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0			
Thallium (Tl)	μg/g	-	0.070	0.091	<0.050	0.070	0.021	0.0028			
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0			
Titanium (Ti)	μg/g	-	308	317	120	248	111	15			
Uranium (U)	μg/g	-	1.25	1.31	0.708	1.09	0.332	0.0455			
Vanadium (V)	μg/g	-	22.4	10.1	5.60	12.7	8.70	1.19			
Zinc (Zn)	μg/g	315	22.9	22.0	8.10	17.7	8.30	1.140			
Zirconium (Zr)	μg/g	-	3.4	5.0	1.8	3.4	1.6	0.22			

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.13: Field Observations of Sediment Properties at Camp Lake (JLO) Benthic Stations^a, Mary River Project CREMP, August 2020

Station	Station Depth (m)	Colour and Texture Observations	Evidence of Anoxia ^b	Plant or Algal Presence
JLO-02	11.0	dark grey silt, red brown silt on top, contains organics	none detected	sparse algae
JLO-01	18.0	light brown silt	none detected	sparse algae
JLO-21	10.0	dark brown silt	none detected	sparse algae
JLO-20	7.0	grey-brown silt-sand mixture	none detected	sparse algae
JLO-19	7.5	thick brown silt layer over dark grey fine silt-sand mixture	none detected	sparse algae
JLO-07	33.0	thin layer of silt overlying grey, very fine sand	none detected	sparse algae
JLO-18	12.0	dark grey organics (roots) mixed in with silt and sand	some hydrogen sulphide odour	sparse algae
JLO-16	16.0	thin layer of silt overlying grey fine sand	none detected	sparse algae
JLO-11	28.5	grey-brown fine sand mixed with some silt overlying degraded organics	some hydrogen sulphide odour	sparse algae
JLO-12	17.0	brown sand overlying grey sand; some black streaking between brown and grey layers	some blackened substrate	none observed

^a Sediment particle size and benthic invertebrate community samples were collected using a petite-Ponar.

b Evidence of anoxic sediments assessed visually as the presence of blackened substrate, and by smell based on presence/strength of hydrogen sulphide odour.

Table D.14: Observations from Sediment Cores Collected at Camp Lake (JLO), Mary River Project CREMP, August 2020

Sample Station	Station Depth (m)	Station Type	Core Number	Core Length (cm)	Surficial Substrate Texture Description
			1	19.5	
JLO-02	11.0	Littoral	2	19.5	light floc of light reddish brown silt overlying
JLO-02	11.0	Littoral	3	17.0	grey sandy material; no black streaking
			4	16.5	
			1	15.5	
JLO-01	17.7	Profundal	2	11.5	Length (cm) 19.5 19.5 19.5 19.5 17.0 18.5 18.5 18.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19
3LO-01	17.7	Fiolulidai	3	11.5	
			4	12.0	
			1	6.0	
JLO-14	26.5	Profundal	2	20.0	
JLO-14	20.5	Fiolulidai	3	14.0	
			4	10.0	
			1	14.5	
JLO-17	15.6	Profundal	2	13.0	unconsolidated light brown silt over consolidated
JLO-17	15.0	Fiolulidai	3	13.5	grey fine sand; no dark streaking
			4	17.0	
			1	11.5	
JLO-07	33.1	Profundal	2	16.0	, ,
3LO-07	33.1	Fiolulidai	3	17.0	light floc of light reddish brown silt overlying grey sandy material; no black streaking black-brown silt floc (some speckling in second core) over light brown siltghtly consolidated silt and consolidated brown silt light brown silt floc over consolidated brown silt and grey sandy material (core 3 and 4 had black streaking between brown and grey layer) unconsolidated light brown silt over consolidated grey fine sand; no dark streaking light brown unconsolidated silt floc overlying consolidated dark grey sand (some dark brown sand mixed) and variegated unconsolidated brown silt or consolidated grey sand with some light brown silt unconsolidated brown silt overlying consolidated brown silt with fine grey sand; black streaking associated with brown silt layer unconsolidated fine light brown silt over consolidated grey sand; some black streaking unconsolidated light brown fine silt over consolidated light brown fine silt thin (<1 mm) layer of brown silt overlying consolidated light brown coarse sand, or consolidated light grey coarse sand; some black streaking
			4	14.0	
			1	4.5	
JLO-16	16.2	Profundal	2	6.5	light brown silt floc over consolidated grev sand with some light brown silt
3LO-10	10.2	Fiolulidai	3	5.0	Thight brown siit not over consolidated grey sand with some light brown siit
			4	4.5	
			1	11.0	
JLO-15	17.0	Profundal	2	12.0	
3LO-13	17.0	Fiolulidai	3	10.5	
			4	11.5	
			1	8.5	
JLO-11	29.0	Profundal	2	14.0	unconsolidated fine light brown silt over consolidated grey sand; some
JLO-11	29.0	i ioiuilual	3	11.0	black streaking
			4	14.5	
			1	13.5	
JLO-13	17.0	Profundal	2	7.0	unconsolidated light brown fine silt over consolidated light brown fine silt
JLU-13	17.0	Fioluliual	3	15.0	Turiconsolidated light brown line silt over consolidated light brown line silt
			4	10.0	
			1	5.0	
JLO-12	17.0	Profundal	2	5.5	
JLU-12	17.0	i Totaliual	3	5.5	
			4	4.5	

Table D.15: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Camp Lake (JLO) Sediment Stations, Mary River Project CREMP, August 2020

			Sediment						Camp Lak	e Stations					Summary Statistics		
	Parameter	Units	Quality	AEMP	JLO-02	JLO-01	JLO-14	JLO-17	JLO-07	JLO-16	JLO-15	JLO-11	JLO-13	JLO-12		Standard	
			Guideline (SQG) ^a	Benchmark ^b	(littoral)	(profundal)	Mean	Deviation									
s	Sand	%	-	-	46.5	27.6	20.8	17.3	18.3	86.8	42.2	47.8	29.3	83.4	42.0	25.3	
etal	Silt	%	-	-	48.0	62.9	64.5	79.2	69.4	11.8	49.5	42.9	60.4	14.9	50.4	22.3	
ı-metals	Clay	%	-	-	5.5	9.6	14.7	3.4	12.3	1.4	8.3	9.3	10.3	1.7	7.65	4.50	
Non	Moisture	%	-	-	81.7	73.6	75.4	70.3	74.4	26.4	59.2	63.8	71.9	38.8	63.6	17.7	
Z	Total Organic Carbon	%	10 ^α	-	3.39	1.83	1.99	2.03	3.13	0.26	1.18	1.33	1.52	0.33	1.70	1.03	
	Aluminum (AI)	mg/kg	-	-	15,500	19,800	19,400	15,200	19,300	5,070	16,100	17,900	18,700	6,260	15,323	5,359	
	Antimony (Sb)	mg/kg	-	-	0.11	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	0.0032	
	Arsenic (As)	mg/kg	17	5.9	9.03	5.61	6.82	16.6	3.49	1.00	3.90	4.99	5.22	2.21	5.89	4.40	
	Barium (Ba)	mg/kg	-	-	122	80.3	83.1	222	73.6	20.6	57.9	96.5	71.2	39.5	86.7	55.3	
	Beryllium (Be)	mg/kg	-	-	0.78	1.06	1.10	0.90	1.07	0.26	0.82	0.91	1.08	0.31	0.83	0.31	
	Bismuth (Bi)	mg/kg	-	-	0.29	0.31	0.34	0.28	0.35	<0.20	0.23	0.25	0.27	<0.20	0.27	0.053	
	Boron (B)	mg/kg	-	-	17.8	34.2	34.6	22.6	30.9	7.6	19.9	28.5	32.7	9.3	23.8	10.0	
	Cadmium (Cd)	mg/kg	3.5	1.5	0.269	0.206	0.204	0.183	0.268	0.041	0.151	0.166	0.167	0.045	0.17	0.078	
	Calcium (Ca)	mg/kg	-	-	5,650	5,010	5,120	5,290	5,860	10,600	3,770	4,120	4,500	1,830	5,175	2,234	
	Chromium (Cr)	mg/kg	90	98	66.2	81.3	82.9	66.9	79.9	33.3	65.9	70.7	72.5	28.4	64.8	19.0	
	Cobalt (Co)	mg/kg	1	-	18.4	19.2	20.8	22.0	17.9	6.05	16.2	18.3	18.5	7.63	16.5	5.34	
	Copper (Cu)	mg/kg	197	50	49.9	49.7	51.5	42.2	61.6	12.6	38.7	43.8	44.4	12.1	40.7	16.2	
	Iron (Fe)	mg/kg	$40,000^{\alpha}$	52,400	61,000	39,300	52,500	63,100	34,900	13,200	31,900	40,100	35,800	20,700	39,250	16,075	
	Lead (Pb)	mg/kg	91.3	35	18.9	22.7	24.0	20.3	24.5	4.98	17.5	19.3	22.6	5.80	18.1	7.05	
	Lithium (Li)	mg/kg	-	-	22.4	33.2	34.0	27.3	33.6	8.7	29.7	32.1	36.2	10.9	26.8	9.80	
	Magnesium (Mg)	mg/kg	-	-	13,400	14,300	14,000	12,100	14,800	11,200	13,300	13,700	13,500	5,380	12,568	2,732	
Metals	Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	4,370	1,410	1,320	1,850	7,790	300	150	958	2,820	1,510	1,870	1,998	2,178	
Met	Mercury (Hg)	mg/kg	0.486	0.17	0.0530	0.0508	0.0637	0.0473	0.0761	0.0059	0.0325	0.0407	0.0399	0.0069	0.0417	0.0223	
_	Molybdenum (Mo)	mg/kg	-	-	2.45	1.37	1.54	5.67	1.08	0.32	0.72	1.33	1.18	0.50	1.62	1.55	
	Nickel (Ni)	mg/kg	75 ^{α,β}	72	72.5	77.2	74.6	72.1	71.4	33.2	60.8	66.3	67.4	26.1	62.2	17.8	
	Phosphorus (P)	mg/kg	2,000°	1,580	1,310	963	1,370	2,220	808	494	827	1,030	995	625	1,064	488	
	Potassium (K)	mg/kg	-	-	4,100	5,730	5,640	4,190	5,540	1,290	3,960	4,650	5,160	1,380	4,164	1,626	
	Selenium (Se)	mg/kg	-	-	0.49	0.44	0.53	0.46	0.56	<0.20	0.28	0.33	0.31	<0.20	0.38	0.13	
	Silver (Ag)	mg/kg	-	-	0.12	0.14	0.15	0.10	0.23	<0.10	<0.10	0.11	0.13	<0.10	0.13	0.040	
	Sodium (Na)	mg/kg	-	-	203	265	284	212	495	78	182	235	223	70	225	118	
	Strontium (Sr)	mg/kg	-	-	9.87	12.8	15.2	12.0	25.6	7.58	9.27	10.8	13.6	4.55	12.1	5.64	
	Sulphur (S)	mg/kg	-	-	<1,000	<1,000	<1,000	<1,000	8,100	<1,000	<1,000	<1,000	<1,000	<1,000	1,710	2,245	
	Thallium (TI)	mg/kg	-	-	0.467	0.597	0.541	0.592	0.545	0.112	0.416	0.445	0.519	0.148	0.438	0.173	
	Tin (Sn)	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0	
	Titanium (Ti)	mg/kg	-	-	833	1,040	1,020	697	948	379	880	989	979	413	818	244	
	Uranium (U)	mg/kg	-	-	7.39	6.45	8.07	5.66	7.67	0.990	4.39	5.44	5.45	1.22	5.27	2.48	
	Vanadium (V)	mg/kg	-	-	54.3	68.4	69.2	54.7	58.4	20.1	56.6	59.7	63.4	21.9	52.7	17.5	
	Zinc (Zn)	mg/kg	315	135	59.4	67.6	64.3	52.3	70.4	17.9	50.4	55.1	54.3	19.5	51.1	18.3	
	Zirconium (Zr)	mg/kg	-	-	7.8	4.6	5.2	3.7	14.4	4.2	5.1	4.4	4.9	1.7	5.6	3.4	

Indicates parameter concentration above Sediment Quality Guideline (SQG).

BOLD Indicates parameter concentration above the AEMP Benchmark.

Note: "-" indicates no SQG applicable.

^a Canadian Sediment Quality Guideline for the protection of aquatic life probable effects level (PEL; CCME 2015) except those indicated by α (Ontario Provincial Sediment Quality Guideline [PSQG] severe effect level [SEL]; OMOE 1993) and β (British Columbia Working Sediment Quality Guideline [BCSQG] probable effects level [PEL; BCMOE 2015]).

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013) using sediment quality guidelines, background sediment quality data, and method detection limits. The indicated values are specific to Camp Lake.

Table D.16: Statistical Comparison of Sediment Physical Properties Between Camp Lake and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

		;	Statistical Tes	t Results		Summary Statistics							
Lake Zone	Sediment Variable	Statistical Analysis ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum	
	Sand-Sized Material	tegual	none	YES	0.006	Reference	5	29.6	7.5	3.4	23.4	40.4	
ဖွ	(%)	tequal	Hone	ILO	0.000	Camp	5	65.4	20.1	9.0	41.1	85.0	
tion	Silt-Sized Material	tegual	none	YES	0.008	Reference	5	62.2	6.3	2.8	53.4	68.4	
Sta	(%)	tequal	Hone	ILO	0.000	Camp	5	32.1	18.2	8.2	14.2	55.1	
low)	Clay-Sized Material	M-W	rank	YES	0.012	Reference	5	8.2	3.0	1.3	6.2	13.4	
shal	(%)	101-00	Talik	TLO	0.012	Camp	5	2.6	2.0	0.9	1.0	5.5	
Littoral (Shallow) Stations	Moisture (%)	tegual	none	YES	0.006	Reference	5	87.9	4.6	2.1	80.2	92.3	
ttor		tequal	110110	120	0.000	Camp	5	57.3	17.9	8.0	37.7	81.7	
	Total Organic Carbon	tegual	none	YES	0.011	Reference	5	4.8	2.0	0.9	2.3	7.0	
	(TOC) Content (%)	tequal	Hone	TLO	0.011	Camp	5	1.4	1.2	0.5	0.3	3.4	
	Sand-Sized Material	M-W	rank	NO	0.298	Reference	5	31.6	22.3	10.0	13.9	56.6	
	(%)	1V1-VV	Tank	110	0.230	Camp	9	41.5	26.8	8.9	17.3	86.8	
Stations	Silt-Sized Material	tequal	none	NO	0.588	Reference	5	57.4	18.1	8.1	36.9	71.9	
Sta	(%)	tequal	Hone	110	0.000	Camp	9	50.6	23.6	7.9	11.8	79.2	
(dəə	Clay-Sized Material	tequal	none	NO	0.243	Reference	5	11.0	4.3	1.9	6.3	15.1	
Ğ)	(%)	tequal	Hone	NO	0.243	Camp	9	7.9	4.7	1.6	1.4	14.7	
epur	Moisture	M-W	rank	YES	0.001	Reference	5	82.6	3.6	1.6	78.3	86.6	
Profundal (Deep)	(%)	IVI-VV	Idilk	TLO	0.001	Camp	9	61.5	17.5	5.8	26.4	75.4	
	Total Organic Carbon		0.004	Reference	5	3.4	1.1	0.5	2.2	4.5			
	(TOC) Content (%)		Hone	YES	0.004	Camp	9	1.5	0.9	0.3	0.3	3.1	

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table D.17: Magnitude of Elevation in Sediment Metal Concentrations between Camp Lake and Reference Lake 3 2020 Data, and between Camp Lake 2020 and Baseline Data, Mary River Project CREMP, 2020

		•	2020 versus Lake 3 2020				2020 versus e Period		
	Littoral St	ations	Profundal S	tations	Littoral St	ations	Profundal Stations		
Parameter	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Camp Lake Baseline Concentration (mg/kg)	Magnitude of Elevation	Camp Lake Baseline Concentration (mg/kg)	Magnitude of Elevation	
Aluminum (AI)	16,880	0.9	21,800	0.7	18,267	0.8	15,175	1.0	
Antimony (Sb)	<0.10	1.1	<0.10	1.0	1.0	0.1	1.0	0.1	
Arsenic (As)	3.53	2.6	4.07	1.4	2.80	3.2	3.47	1.6	
Barium (Ba)	117	1.0	122	0.7	105	1.2	68	1.2	
Beryllium (Be)	0.65	1.2	0.80	1.0	1.0	0.8	1.0	0.8	
Bismuth (Bi)	<0.20	1.5	<0.20	1.4	-	-	-	-	
Boron (B)	12.2	1.5	14.7	1.7	0.733	24.3	1.83	13.4	
Cadmium (Cd)	0.173	1.6	0.148	1.1	0.500	0.5	0.50	0.3	
Calcium (Ca)	5,608	1.0	5,010	1.0	3,130	1.8	2,857	1.8	
Chromium (Cr)	54.3	1.2	65.0	1.0	81.0	0.8	71.0	0.9	
Cobalt (Co)	10.8	1.7	15.2	1.1	18.3	1.0	16.5	1.0	
Copper (Cu)	71.4	0.7	83.8	0.5	45.0	1.1	39.5	1.0	
Iron (Fe)	50,600	1.2	45,080	0.8	36,133	1.7	33,206	1.1	
Lead (Pb)	13.8	1.4	16.7	1.1	18.0	1.1	18.7	1.0	
Lithium (Li)	26.0	0.9	33.7	0.8	-	-	-	-	
Magnesium (Mg)	11,440	1.2	14,180	0.9	13,967	1.0	10,113	1.2	
Manganese (Mn)	579	2.4	1,230	1.7	699	2.0	942	2.2	
Mercury (Hg)	0.0500	1.1	0.0583	0.7	0.100	0.5	0.100	0.4	
Molybdenum (Mo	4.44	0.6	2.52	0.6	1.00	2.5	1.00	1.5	
Nickel (Ni)	40.0	1.8	45.0	1.4	67.0	1.1	62.5	1.0	
Phosphorus (P)	1,167	1.1	956	1.1	800	1.6	1,125	0.9	
Potassium (K)	4,100	1.0	5,338	0.8	3,450	1.2	3,771	1.1	
Selenium (Se)	0.73	0.7	0.61	0.6	1.0	0.5	1.0	0.4	
Silver (Ag)	0.14	0.8	0.20	0.6	0.27	0.4	0.35	0.4	
Sodium (Na)	304	0.7	369	0.6	279	0.7	254	0.9	
Strontium (Sr)	11.6	0.9	12.3	1.0	9.33	1.1	12.0	1.0	
Sulphur (S)	1,400	0.7	1,140	1.6	-	-	-	-	
Thallium (TI)	0.379	1.2	0.594	0.7	1.0	0.5	1.0	0.4	
Tin (Sn)	<2.0	1.0	<2.0	1.0	-	-	-	-	
Titanium (Ti)	1,006	0.8	1,136	0.7	-	-	-	-	
Uranium (U)	11.0	0.7	19.7	0.3	-	-	-	-	
Vanadium (V)	54.1	1.0	63.4	0.8	69.0	0.8	56.8	0.9	
Zinc (Zn)	73.1	0.8	83.8	0.6	67.0	0.9	56.8	0.9	
Zirconium (Zr)	4.5	1.7	3.9	1.4	-	-	-	-	

Note: '-'indicates baseline data not available.

Table D.18: Deposited Sediment Field Sampling Observations at Sheardown Lake Tributaries 1, 12, and 9^a, Mary River Project CREMP, August 2020

Study Area	Station	Texture of Collected Sediment	Silt Presence ^b
	SDLT1-1	red-brown silt	precipitate and deposits (>1 mm)
Sheardown Lake Tributary 1 (SDLT1)	SDLT1-3	red-brown silt	precipitate and deposits (>1 mm)
,	SDLT1-5	red-brown silt	precipitate and deposits (>1 mm)
	SDLT12-1 coarse sand		precipitate and deposits (<1 mm)
Sheardown Lake Tributary 12 (SDLT12)	SDLT12-2	coarse sand and gravel	precipitate and deposits (<1 mm)
, ,	SDLT12-3	coarse sand and gravel	precipitate and deposits (<1 mm)
	SDLT9-1	medium (sized) coarse sand	none observed
Sheardown Lake Tributary 9 (SDLT9)	SDLT9-3	medium (sized) coarse sand	precipitate and deposits (<1 mm)
	SDLT9-5	medium (sized) coarse sand	none observed

^a Sediment samples collected using a stainless steel scoop directly from the streambed or shoreline, as available.

^b Evidence of silt precipitate included fine material present on the surface of in-stream substrate and/or as interstitial deposits not otherwise expected to occur at such habitat.

Table D.19: Deposited Sediment Total Organic Carbon and Metal Concentrations at Sheardown Lake Tributary 1 (SDLT1) Stations, Mary River Project CREMP, August 2020

			Sheardow	n Lake Tributar	y 1 Station	Study A	Area Summary S	statistics
Parameter	Units	SQGª	SDLT1-1	SDLT1-3	SDLT1-5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.71	0.97	0.61	0.76	0.19	0.107
Aluminum (Al)	μg/g	-	17,600	15,900	14,400	15,967	1,601	924
Antimony (Sb)	μg/g	-	0.12	0.23	0.15	0.17	0.057	0.033
Arsenic (As)	μg/g	17	2.26	4.50	3.11	3.29	1.13	0.65
Barium (Ba)	μg/g	-	78.0	51.9	61.0	63.6	13.2	7.65
Beryllium (Be)	μg/g	-	0.68	0.66	0.60	0.65	0.042	0.024
Bismuth (Bi)	μg/g	-	0.61	0.31	0.53	0.48	0.16	0.090
Boron (B)	μg/g	-	7.3	7.6	5.6	6.8	1.1	0.62
Cadmium (Cd)	μg/g	3.5	0.156	0.113	0.160	0.143	0.0261	0.0150
Calcium (Ca)	μg/g	-	4,850	2,730	3,790	3,790	1,060	612
Chromium (Cr)	μg/g	90	34.5	35.5	31.2	33.7	2.25	1.30
Cobalt (Co)	μg/g	-	12.4	14.9	12.7	13.3	1.37	0.788
Copper (Cu)	μg/g	197	25.5	21.5	24.9	24.0	2.16	1.25
Iron (Fe)	μg/g	40,000 ^α	114,000	174,000	170,000	152,667	33,546	19,368
Lead (Pb)	μg/g	91.3	13.0	12.6	11.7	12.4	0.666	0.384
Lithium (Li)	μg/g	-	19.0	17.8	16.6	17.8	1.20	0.693
Magnesium (Mg)	μg/g	-	16,500	12,800	12,700	14,000	2,166	1,250
Manganese (Mn)	μg/g	1,100 ^{α,β}	646	657	740	681	51.4	29.7
Mercury (Hg)	μg/g	0.486	0.0059	0.0072	0.0063	0.0065	0.00067	0.00038
Molybdenum (Mo)	μg/g	-	5.41	7.19	4.59	5.73	1.33	0.767
Nickel (Ni)	μg/g	75 ^{α,β}	32.8	34.4	32.2	33.1	1.14	0.657
Phosphorus (P)	μg/g	2,000 ^α	368	287	378	344	49.9	28.8
Potassium (K)	μg/g	-	6,590	5,870	4,990	5,817	801	463
Selenium (Se)	μg/g	-	<0.20	0.22	0.22	0.21	0.012	0.0067
Silver (Ag)	μg/g	-	0.14	0.10	0.13	0.12	0.021	0.012
Sodium (Na)	μg/g	-	158	118	101	126	29	17
Strontium (Sr)	μg/g	-	4.43	3.52	3.67	3.87	0.488	0.282
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (Tl)	μg/g	-	0.296	0.276	0.241	0.271	0.0278	0.0161
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	971	714	777	821	134	77
Uranium (U)	μg/g	-	3.85	5.94	3.26	4.35	1.41	0.813
Vanadium (V)	μg/g	-	31.9	25.4	25.8	27.7	3.64	2.10
Zinc (Zn)	μg/g	315	79.4	65.7	82.4	75.8	8.90	5.14
Zirconium (Zr)	μg/g	-	9.5	10.6	6.9	9.0	1.9	1.1

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.20: Magnitude of Elevation in Deposited Sediment Metal Concentrations at the Sheardown Lake Tributaries Compared to Average Lotic Reference Area Data, Mary River Project CREMP, August 2020

		Reference	Area Data	Shoardown Lako	Sheardown Lake	Shoardown Lako
Parameter	Units	Reference Creek (REF-CRK)	Mary River Reference (GO-09)	Tributary 1 (SDLT1) Magnitude of Elevation	Tributary 12 (SDLT12) Magnitude of Elevation	Tributary 9 (SDLT9) Magnitude of Elevation
Total Organic Carbon	%	0.12	0.11	6.5	6.4	17.4
Aluminum (Al)	μg/g	584	2,757	16.6	8.5	7.3
Antimony (Sb)	μg/g	<0.10	<0.10	1.7	2.2	1.1
Arsenic (As)	μg/g	0.22	0.38	11.9	21.1	6.0
Barium (Ba)	μg/g	2.72	12.6	14.2	3.8	7.2
Beryllium (Be)	μg/g	<0.10	0.14	5.6	5.9	2.8
Bismuth (Bi)	μg/g	<0.20	<0.20	2.4	1.3	1.1
Boron (B)	μg/g	<5.0	5.4	1.3	1.1	1.6
Cadmium (Cd)	μg/g	<0.020	<0.020	7.2	2.5	3.2
Calcium (Ca)	μg/g	494	2,750	4.5	1.5	3.5
Chromium (Cr)	μg/g	7.79	13.6	3.4	3.1	2.3
Cobalt (Co)	μg/g	0.953	2.40	9.8	10.7	4.6
Copper (Cu)	μg/g	1.21	4.45	12.6	10.2	8.2
Iron (Fe)	μg/g	12,493	11,063	13.0	29.4	5.1
Lead (Pb)	μg/g	1.49	3.07	6.2	2.7	2.7
Lithium (Li)	μg/g	<2.0	5.0	6.2	2.9	2.7
Magnesium (Mg)	μg/g	444	2,810	18.3	7.6	7.9
Manganese (Mn)	μg/g	27.4	75.7	16.9	20.1	7.3
Mercury (Hg)	μg/g	<0.0050	<0.0050	1.3	1.0	2.4
Molybdenum (Mo)	μg/g	<0.10	0.11	53.9	36.0	17.1
Nickel (Ni)	μg/g	1.76	6.11	12.1	13.4	9.0
Phosphorus (P)	μg/g	167	350	1.5	1.1	1.9
Potassium (K)	μg/g	133	750	25.7	3.5	7.1
Selenium (Se)	μg/g	<0.20	<0.20	1.1	1.3	1.4
Silver (Ag)	μg/g	<0.10	<0.10	1.2	1.0	1.0
Sodium (Na)	μg/g	<50	68	2.2	0.9	1.1
Strontium (Sr)	μg/g	2.00	4.72	1.4	0.7	1.4
Sulphur (S)	μg/g	<1,000	<1,000	1.0	1.0	1.0
Thallium (TI)	μg/g	<0.050	0.068	4.7	1.2	2.7
Tin (Sn)	μg/g	<2.0	<2.0	1.0	1.0	1.0
Titanium (Ti)	μg/g	83.3	353	6.1	1.6	3.6
Uranium (U)	μg/g	0.479	0.922	6.9	3.7	2.0
Vanadium (V)	μg/g	16.8	19.5	1.5	0.9	1.0
Zinc (Zn)	μg/g	3.03	10.3	16.2	5.4	4.9
Zirconium (Zr)	μg/g	2.1	5.8	2.9	1.1	0.9

Table D.21: Deposited Sediment Total Organic Carbon and Metal Concentrations at Sheardown Lake Tributary 12 (SDLT12) Stations, Mary River Project CREMP, August 2020

			Sheardow	n Lake Tributar	y 12 Station	Study A	rea Summary S	Statistics
Parameter	Units	SQG ^a	SDLT12-1	SDLT12-2	SDLT12-3	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.91	0.54	0.80	0.75	0.19	0.11
Aluminum (Al)	μg/g	-	9,070	7,840	7,550	8,153	807	466
Antimony (Sb)	μg/g	-	0.21	0.21	0.25	0.22	0.02	0.01
Arsenic (As)	μg/g	17	5.04	6.95	5.50	5.83	1.00	0.576
Barium (Ba)	μg/g	-	23.0	10.8	17.5	17.1	6.11	3.53
Beryllium (Be)	μg/g	-	0.68	0.70	0.66	0.68	0.020	0.012
Bismuth (Bi)	μg/g	-	0.29	0.21	0.26	0.25	0.040	0.023
Boron (B)	μg/g	-	6.3	<5.0	5.3	5.5	0.68	0.39
Cadmium (Cd)	μg/g	3.5	0.050	0.040	0.062	0.051	0.011	0.0064
Calcium (Ca)	μg/g	-	1,830	549	1,290	1,223	643	371
Chromium (Cr)	μg/g	90	30.1	31.3	30.3	30.6	0.643	0.371
Cobalt (Co)	μg/g	-	14.6	15.3	13.8	14.6	0.751	0.433
Copper (Cu)	μg/g	197	20.1	18.8	19.3	19.4	0.656	0.379
Iron (Fe)	μg/g	40,000 ^α	283,000	378,000	374,000	345,000	53,731	31,021
Lead (Pb)	μg/g	91.3	6.24	4.28	5.91	5.48	1.05	0.606
Lithium (Li)	μg/g	-	10.1	7.0	7.4	8.2	1.7	0.97
Magnesium (Mg)	μg/g	-	6,890	5,150	5,330	5,790	957	552
Manganese (Mn)	μg/g	1,100 ^{α,β}	699	905	825	810	104	60
Mercury (Hg)	μg/g	0.486	0.0055	<0.0050	<0.0050	0.0052	0.00029	0.00017
Molybdenum (Mo)	μg/g	-	4.10	3.63	3.73	3.82	0.248	0.143
Nickel (Ni)	μg/g	75 ^{α,β}	36.3	38.2	34.8	36.4	1.70	0.984
Phosphorus (P)	μg/g	2,000 ^α	300	198	259	252	51.3	29.6
Potassium (K)	µg/g	-	1,180	410	810	800	385	222
Selenium (Se)	µg/g	-	<0.20	0.28	0.32	0.27	0.061	0.035
Silver (Ag)	µg/g	-	<0.10	<0.10	<0.10	0.10	0	0
Sodium (Na)	μg/g	-	<50	<50	<50	<50	0	0
Strontium (Sr)	μg/g	-	2.62	1.50	2.13	2.08	0.561	0.324
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.084	<0.050	0.071	0.068	0.017	0.010
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	283	146	226	218	69	40
Uranium (U)	μg/g	-	2.63	1.88	2.47	2.33	0.395	0.228
Vanadium (V)	μg/g	-	16.3	14.3	16.3	15.6	1.15	0.667
Zinc (Zn)	μg/g	315	31.1	19.8	24.7	25.2	5.67	3.27
Zirconium (Zr)	μg/g	-	3.7	3.1	3.8	3.5	0.38	0.22

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.22: Deposited Sediment Total Organic Carbon and Metal Concentrations at Sheardown Lake Tributary 9 (SDLT9) Stations, Mary River Project CREMP, August 2020

			Sheardow	n Lake Tributai	y 9 Station	Study A	Area Summary S	statistics
Analyte	Units	SQG ^a	SDLT9-1	SDLT9-3	SDLT9-5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.81	1.31	3.96	2.03	1.69	0.977
Aluminum (Al)	μg/g	-	4,310	5,880	10,800	6,997	3,386	1,955
Antimony (Sb)	μg/g	-	<0.10	<0.10	0.12	<0.10	0	0
Arsenic (As)	μg/g	17	0.86	1.13	2.97	1.65	1.15	0.66
Barium (Ba)	μg/g	-	17.6	24.8	54.3	32.2	19.4	11.2
Beryllium (Be)	μg/g	-	0.17	0.24	0.55	0.32	0.20	0.12
Bismuth (Bi)	μg/g	-	<0.20	<0.20	0.26	0.22	0.035	0.020
Boron (B)	μg/g	-	<5.0	<5.0	15.5	8.50	6.06	3.50
Cadmium (Cd)	μg/g	3.5	0.037	0.044	0.110	0.064	0.040	0.023
Calcium (Ca)	μg/g	-	1,610	1,960	5,190	2,920	1,974	1,139
Chromium (Cr)	μg/g	90	15.1	18.6	34.5	22.7	10.3	5.97
Cobalt (Co)	μg/g	-	3.86	5.16	9.71	6.24	3.07	1.77
Copper (Cu)	μg/g	197	7.17	11.3	28.5	15.7	11.3	6.53
Iron (Fe)	μg/g	40,000 ^α	31,300	42,100	107,000	60,133	40,945	23,640
Lead (Pb)	μg/g	91.3	3.25	4.27	8.92	5.48	3.02	1.75
Lithium (Li)	μg/g	-	4.90	6.50	11.6	7.67	3.50	2.02
Magnesium (Mg)	μg/g	-	3,630	4,990	9,430	6,017	3,033	1,751
Manganese (Mn)	μg/g	1,100 ^{α,β}	164	225	493	294	175	101
Mercury (Hg)	μg/g	0.486	0.0061	0.0103	0.0196	0.0120	0.0069	0.0040
Molybdenum (Mo)	μg/g	-	0.960	1.22	3.27	1.82	1.27	0.731
Nickel (Ni)	μg/g	75 ^{α,β}	13.6	18.6	41.3	24.5	14.8	8.52
Phosphorus (P)	μg/g	2,000 ^α	330	347	606	428	155	89
Potassium (K)	μg/g	-	900	1,380	2,510	1,597	827	477
Selenium (Se)	μg/g	-	<0.20	<0.20	0.41	0.27	0.12	0.070
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	<50	<50	88	63	22	13
Strontium (Sr)	μg/g	-	3.13	2.99	6.05	4.06	1.73	1.00
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.088	0.130	0.240	0.153	0.078	0.045
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	379	433	642	485	139	80
Uranium (U)	μg/g	-	0.672	0.800	2.37	1.28	0.946	0.546
Vanadium (V)	μg/g	-	11.6	15.3	27.1	18.0	8.10	4.67
Zinc (Zn)	μg/g	315	13.5	18.7	37.2	23.1	12.5	7.19
Zirconium (Zr)	μg/g	-	1.4	1.9	5.3	2.9	2.1	1.2

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.23: Field Observations of Sediment Properties at Sheardown Lake Northwest (DLO-01) Benthic Stations^a, Mary River Project CREMP, August 2020

Station	Station Depth (m)	Colour and Texture Observations	Evidence of Anoxia ^b	Plant or Algal Presence
DLO-01-9	7.6	thin oxidized layer over brown-coloured silt and sand	none detected	sparse macrophytes, sparse algae
DLO-01-4	7.5	brown-coloured silt	none detected	sparse macrophytes, sparse algae
DLO-01-3	8.2	brown-coloured silt	none detected	sparse macrophytes
DLO-01-11	8.2	thin layer of red-brown silt floc over grey-brown silt	slight hydrogen sulphide odour	none observed
DLO-01-10	7.9	reddish-brown coloured silt over grey-brown sandy silt	none detected	none observed
DLO-01-5	23.3	brown-coloured silt	slight hydrogen sulphide odour	none observed
DLO-01-14	22.0	reddish-brown coloured silt over grey-brown sandy silt	slight hydrogen sulphide odour	none observed
DLO-01-15	21.7	brown-coloured silt	none detected	none observed
DLO-01-2	17.5	brown-coloured silt	none detected	none observed
DLO-01-12	14.0	reddish-brown coloured silt	none detected	none observed

^a Sediment particle size and benthic invertebrate community samples were collected using a petite-Ponar.

^b Evidence of anoxic sediments assessed visually as the presence of blackened substrate, and by smell based on presence/strength of hydrogen sulphide odour.

Table D.24: Observations from Sediment Cores Collected at Sheardown Lake NW (DLO-01), Mary River Project CREMP, August 2020

Sample Station	Station Depth (m)	Station Type	Core Number	Core Length (cm)	Surficial Substrate Texture Description
			1	14.0	
DLO-01-05	23.1	Profundal	2	12.0	dark brown silt floc over consolidated dark
DLO-01-03	23.1	Fiolulidai	3	13.0	grey silt/clay
			4	12.5	
		1 22.0			
DD-HAB 9-	10.8	Littoral	2	Length (cm) 14.0 14.0 12.0 dark brown silt floc over consolidated dark grey silt/clay 12.5 22.0 17.5 unconsolidated red brown silt overlying grey silt (some sand intermixed) and dark grey silty-clay 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.5 5.5 11.5 brown silt floc overlying brown silt and grey silty-clay layers containing some fine sand 18.0 5.5 11.5 brown silt floc overlying consolidated brown silt containing some fine sand 18.0 5.0 19.0 21.0 red-brown silt floc overlying consolidated brown silt containing some fine sand 16.0 16.0 16.0 19.5 and grey silty-clay layers containing some fine sand 16.0 16.0 16.0 16.0 16.0 19.5 and grey silt floc overlying consolidated brown silt containing some fine sand 16.0 16.0 16.0 16.0 17.5 18.5	
STN2	10.0	Littoral	3	19.0	,
			4	18.0	
			1	19.0	
DLO-01-08	11.5	Littoral	2	19.0	
520 01 00	11.0	3		19.5	
			4	18.0	
			1	5.5	
DLO-01	20.8	Profundal	2	11.5	
5200.	20.0	riolandar	3	12.0	silt containing some fine sand
			4	5.0	
			1	19.0	
DLO-01-13	18.4	Profundal	2	21.0	
DE0-01-13	10.4	Tiolulidai	3	19.0	brown silt containing some fine sand
			4	16.0	
			1	16.0	
51.0.04.0	40.0		2	8.0	
DLO-01-2	18.6	Profundal	3	19.5	
			4	18.5	_
			1	16.0	
DI O 04 0	7.0	1 344 - 11-1	2	20.0	red-brown silt floc overlying grey silt; some
DLO-01-9	7.8	Littoral	3	21.0	
			4	20.0	
			1	14.0	
DI O 04 40	7.0	1 :441	2	10.0	
DLO-01-10	7.6	Littoral	3	14.0	
			4	15.0	

Table D.25: Sediment Particle Size, Total Organic Carbon, Metal Concentrations at Sheardown Lake Northwest (DLO-01) Sediment Stations, Mary River Project CREMP, August 2020

		Sediment	4540				Sheardown Lake I	Iorthwest Stations				Summar	y Statistics
Parameter	Units	Quality Guideline	AEMP Benchmark ^b	DLO-01-5	DD-HAB 9-STN2	DLO-01-8	DLO-01	DLO-01-13	DLO-01-2	DLO-01-9	DLO-01-10		Standard
		(SQG) ^a	Delicililark	(profundal)	(littoral)	(littoral)	(profundal)	(profundal)	(profundal)	(littoral)	(littoral)	Mean	Deviation
_{σ} Sand	%	-	-	8.5	38.0	20.1	35.3	18.9	9.9	45.0	93.0	33.6	27.4
Salid Silt Clay Moisture	%	-	-	74.3	47.2	65.8	49.3	64.7	78.9	44.6	6.40	53.9	23.0
Ç Clay	%	ı	-	17.2	14.8	14.1	15.3	16.3	11.1	10.4	<1.0	12.5	5.22
Moisture	%	ı	-	64.3	75.2	76.2	49.9	65.7	70.9	84.3	27.4	64.2	18.0
Total Organic Carbon	%	10 ^α	-	1.76	3.15	1.60	0.38	1.24	1.30	3.47	0.17	1.63	1.18
Aluminum (Al)	mg/kg	-	-	23,100	19,300	20,800	15,000	23,700	20,900	19,800	2,640	18,155	6,808
Antimony (Sb)	mg/kg	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0
Arsenic (As)	mg/kg	17	6.2	4.40	7.13	5.43	2.87	4.03	3.57	3.03	0.62	3.89	1.92
Barium (Ba)	mg/kg	-	-	144	149	80.9	61.5	90.4	143	106	11.1	98.2	47.9
Beryllium (Be)	mg/kg	-	-	1.05	1.09	1.17	0.72	1.12	1.01	1.08	0.16	0.925	0.338
Bismuth (Bi)	mg/kg	1	-	0.29	0.25	0.23	<0.20	0.23	0.22	0.25	<0.20	0.23	0.030
Boron (B)	mg/kg	-	-	33.8	30.7	36.6	21.6	33.9	30.3	30.7	<5.0	27.8	10.2
Cadmium (Cd)	mg/kg	3.5	1.5	0.270	0.447	0.225	0.186	0.263	0.292	0.309	0.025	0.252	0.119
Calcium (Ca)	mg/kg	-	-	4,540	5,200	4,290	3,390	4,470	4,680	5,280	1,320	4,146	1,283
Chromium (Cr)	mg/kg	90	97	77.3	74.2	77.1	54.5	79.4	73.9	75.4	13.8	65.7	22.4
Cobalt (Co)	mg/kg	-	-	19.0	16.2	15.0	11.2	17.0	16.2	12.7	2.18	13.7	5.25
Copper (Cu)	mg/kg	197	58	47.9	53.0	43.4	33.8	47.2	41.1	49.7	5.82	40.2	15.1
Iron (Fe)	mg/kg	40,000 ^α	52,200	60,300	62,200	48,300	28,800	42,200	42,100	42,900	11,400	42,275	16,447
Lead (Pb)	mg/kg	91.3	35	22.8	21.5	20.2	14.2	22.3	19.6	20.6	3.70	18.1	6.40
Lithium (Li)	mg/kg	-	-	36.7	36.4	39.1	23.9	38.8	33.5	37.6	5.1	31.4	11.7
Magnesium (Mg)	mg/kg	-	-	14,800	12,700	12,300	9,520	14,900	13,200	12,700	2,020	11,518	4,186
Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	4,530	5,580	974	649	843	1,140	13,600	404	77.0	2,908	4,659
Manganese (Mn) Mercury (Hg)	mg/kg	0.486	0.17	0.0521	0.0517	0.0269	0.0187	0.0329	0.0290	0.0388	<0.0050	0.0319	0.0159
Molybdenum (Mo)	mg/kg	-	-	6.69	5.20	3.43	1.18	1.80	11.2	3.15	0.52	4.15	3.51
Nickel (Ni)	mg/kg	75 ^{α,β}	77	68.8	80.4	67.4	46.9	65.4	64.3	66.1	10.4	58.7	21.6
Phosphorus (P)	mg/kg	2,000°	1,958	1,040	1,130	1,140	860	870	831	707	351	866	258
Potassium (K)	mg/kg	-	-	5,970	5,240	5,600	3,800	6,050	5,330	5,150	680	4,728	1,777
Selenium (Se)	mg/kg	-	-	0.47	0.57	0.32	<0.20	0.30	0.30	0.38	<0.20	0.34	0.13
Silver (Ag)	mg/kg	-	-	0.18	0.20	0.15	0.13	0.18	0.15	0.17	<0.10	0.16	0.032
Sodium (Na)	mg/kg	-	-	320	308	277	212	317	282	294	<50	258	91
Strontium (Sr)	mg/kg	-	-	12.2	11.4	11.5	9.20	12.5	11.7	11.0	3.88	10.4	2.82
Sulphur (S)	mg/kg	-	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	0
Thallium (TI)	mg/kg	-	-	0.598	0.606	0.487	0.332	0.558	0.568	0.518	0.064	0.466	0.185
Tin (Sn)	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0
Titanium (Ti)	mg/kg	-	-	1,310	1,150	1,200	884	1,340	1,240	1,160	227	1,064	366
Uranium (U)	mg/kg	-	-	7.61	9.91	5.74	4.92	7.08	5.86	7.75	1.27	6.27	2.54
Vanadium (V)	mg/kg	-	-	62.0	57.1	57.6	42.3	64.5	58.0	57.7	10.7	51.2	17.6
Zinc (Zn)	mg/kg	315	123	72.6	69.6	66.4	46.4	70.0	64.1	67.9	10.0	58.4	21.2
Zirconium (Zr)	mg/kg	-	-	7.2	15.1	7.8	5.0	9.1	6.8	15.4	2.0	8.6	4.6

Indicates parameter concentration above Sediment Quality Guideline (SQG).

BOLD5 Indicates parameter concentration above the AEMP Benchmark.

Note: "-" indicates no SQG applicable.

^a Canadian Sediment Quality Guideline for the protection of aquatic life probable effects level (PEL; CCME 2015) except α (Ontario Provincial Sediment Quality Guideline [PSQG] severe effect level [SEL]; OMOE 1993) and β (British Columbia Working Sediment Quality Guideline [BCSQG] probable effects

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013) using sediment quality guidelines, background sediment quality data, and method detection limits. The indicated values are specific to Sheardown Lake Northwest.

Table D.26: Statistical Comparison of Sediment Physical Properties Between Sheardown Lake NW and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Tes	t Results				Sumn	nary Statistic	s		
Lake Zone	Sediment Variable	Statistical Analysis ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Sand-Sized Material	tequal	log10	NO	0.397	Reference	5	29.6	7.5	3.4	23.4	40.4
တ	(%)	tequal	10910	Sheardown NW 7 40.5 24	24.6	9.3	20.1	93.0				
Littoral (Shallow) Stations	Silt-Sized Material	M-W	rank		0.140	Reference	5	62.2	6.3	2.8	53.4	68.4
Sta	(%)	IVI-VV	Idilk	NO	0.149	Sheardown NW	7	48.6	20.5	7.7	6.4	67.1
(wo	Clay-Sized Material	M-W	rank	NO	0.149	Reference	5	8.2	3.0	1.3	6.2	13.4
hall	(%)	IVI-VV	rank	NO	0.149	Sheardown NW	7	10.9	4.7	1.8	1.0	14.8
al (S	Moisture	M-W	rank	YES	0.015	Reference	5	87.9	4.6	2.1	80.2	92.3
ttor	(%)	IVI-VV	Talik	120	0.015	Sheardown NW	7	70.0	19.3	7.3	27.4	84.3
	Total Organic Carbon	tagual	nana	YES	0.035	Reference	5	4.8	2.0	0.9	2.3	7.0
	(TOC) Content (%)	tequal	none	TES	0.033	Sheardown NW	7	2.5	1.4	0.5	0.2	4.3
	Sand-Sized Material	toqual	nono	NO	0.154	Reference	5	31.6	22.3	10.0	13.9	56.6
	(%)	tequal	none	INO	0.154	Sheardown NW	7	17.2	9.3	3.5	8.5	35.3
ions	Silt-Sized Material	tagual	nono	NO	0.211	Reference	5	57.4	18.1	8.1	36.9	71.9
Profundal (Deep) Stations	(%)	tequal	none	NO	0.211	Sheardown NW	7	68.2	9.8	3.7	49.3	78.9
(dəs	Clay-Sized Material	N4.10/		VEC	0.072	Reference	5	11.0	4.3	1.9	6.3	15.1
<u>ğ</u>	(%)	M-W	rank	YES	0.073	Sheardown NW	7	14.6	3.3	1.2	8.8	17.2
nda	Moisture	M-W	ronk	YES	0.003	Reference	5	82.6	3.6	1.6	78.3	86.6
Profi	(%)	IVI-VV	rank	150	0.003	Sheardown NW	7	65.6	7.3	2.8	49.9	70.9
"	Total Organic Carbon	tagual	nana	VEC	0.001	Reference	5	3.4	1.1	0.5	2.2	4.5
	(TOC) Content (%)	tequal	none	YES	0.001	Sheardown NW	7	1.4	0.5	0.2	0.4	2.0

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table D.27: Magnitude of Elevation in Sediment Metal Concentrations between Sheardown Lake NW and Reference Lake 3 2020 Data, and between Sheardown Lake NW 2020 and Baseline Data, Mary River Project CREMP, 2020

	Sheardown Lal	ke NW versi	us Reference Lak	e 3 in 2020	Sheardown Lake NW 2020 versus Baseline Period					
	Littoral St	ations	Profundal S	tations	Littoral Sta	ations	Profundal Stations			
Parameter	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Sheardown Lake NW Baseline Concentration (mg/kg)	Magnitude of Elevation	Sheardown Lake NW Baseline Concentration (mg/kg)	Magnitude of Elevation		
Aluminum (Al)	16,880	0.9	21,800	0.9	11,792	1.3	17,745	1.2		
Antimony (Sb)	<0.10	1.0	<0.10	1.0	1.0	0.1	1.0	0.1		
Arsenic (As)	3.53	1.1	4.07	0.9	2.95	1.4	3.20	1.2		
Barium (Ba)	117	0.7	122	0.9	78.1	1.1	93.2	1.2		
Beryllium (Be)	0.65	1.4	0.80	1.2	1.0	0.9	1.0	1.0		
Bismuth (Bi)	<0.20	1.2	<0.20	1.2	-	-	-	-		
Boron (B)	12.2	2.1	14.7	2.0	2.86	9.0	3.11	9.6		
Cadmium (Cd)	0.173	1.5	0.148	1.7	0.500	0.5	0.500	0.5		
Calcium (Ca)	5,608	0.7	5,010	0.9	2,697	1.5	3,558	1.2		
Chromium (Cr)	54.3	1.1	65.0	1.1	52.8	1.1	81.0	0.9		
Cobalt (Co)	10.8	1.1	15.2	1.0	10.4	1.1	15.5	1.0		
Copper (Cu)	71.4	0.5	83.8	0.5	32.6	1.2	48.3	0.9		
Iron (Fe)	50,600	0.8	45,080	1.0	28,120	1.5	40,382	1.1		
Lead (Pb)	13.8	1.2	16.7	1.2	12.7	1.3	20.1	1.0		
Lithium (Li)	26.0	1.1	33.7	1.0	-	-	-	-		
Magnesium (Mg)	11,440	0.9	14,180	0.9	7,448	1.3	11,498	1.1		
Manganese (Mn)	579	0.9	1,230	4.3	756	0.7	2,164	2.4		
Mercury (Hg)	0.0500	0.6	0.0583	0.6	0.100	0.3	0.100	0.3		
Molybdenum (Mo)	4.44	0.7	2.52	2.1	3.40	0.9	3.55	1.5		
Nickel (Ni)	40.0	1.4	45.0	1.4	49.3	1.1	68.9	0.9		
Phosphorus (P)	1,167	0.7	956	0.9	863	1.0	1,400	0.6		
Potassium (K)	4,100	1.0	5,338	1.0	2,681	1.6	4,612	1.1		
Selenium (Se)	0.73	0.5	0.61	0.5	1.0	0.4	1.0	0.3		
Silver (Ag)	0.14	1.1	0.20	0.8	0.27	0.6	0.30	0.5		
Sodium (Na)	304	0.8	369	0.8	249	0.9	342	0.8		
Strontium (Sr)	11.6	0.8	12.3	0.9	7.20	1.3	11.4	1.0		
Sulphur (S)	1,400	0.7	1,140	0.9	-	-	-	-		
Thallium (TI)	0.379	1.1	0.594	0.9	1.0	0.4	1.0	0.5		
Tin (Sn)	<2.0	1.0	<2.0	1.0	-	-	-	-		
Titanium (Ti)	1,006	0.9	1,136	1.1	-	-	-	-		
Uranium (U)	11.0	0.6	19.7	0.3	-	-	-	-		
Vanadium (V)	54.1	0.8	63.4	0.9	37.4	1.2	57.9	1.0		
Zinc (Zn)	73.1	0.7	83.8	0.8	51.1	1.0	76.0	0.8		
Zirconium (Zr)	4.5	2.2	3.9	1.8	-	-	-	-		

Note: '-'indicates baseline data not available.

Table D.28: Field Observations of Sediment Properties at Sheardown Lake Southeast (DLO-02) Benthic Stations^a, Mary River Project CREMP, August 2020

Station	Station Depth (m)	Colour and Texture Observations	Evidence of Anoxia ^b	Plant or Algal Presence
DLO-02-11	7.0	brown silt overlying dark grey silt-clay; some organics present	none detected	none observed
DLO-02-10	7.0	brown silt overlying dark grey silt-clay; some organics present	none detected	none observed
DLO-02-4	8.0	brown silt overlying dark grey silt-clay	none detected	none observed
DLO-02-9	8.5	light brown silt overlying grey silt-clay	none detected	none observed
DLO-02-1	12.1	reddish brown thin layer at surface; medium brown compact silt with some fine sand intermixed	none detected	sparse algae (mare's eggs)
DLO-02-12	11.0	brown silt overlying dark grey silt-clay	none detected	none observed
DLO-02-8	13.0	brown silt overlying grey silt-clay	none detected	sparse algae
DLO-02-13	11.0	brown silt overlying grey silt-clay	none detected	sparse algae
DLO-02-2	15.0	brown silt overlying dark grey silt-clay; some organics present	none detected	sparse algae
DLO-02-3	13.2	reddish brown thin layer over medium brown to grey-brown compact silt	none detected	sparse macrophytes (bryophytes)

^a Sediment particle size and benthic invertebrate community samples were collected using a petite-Ponar.

^b Evidence of anoxic sediments assessed visually as the presence of blackened substrate, and by smell based on presence/strength of hydrogen sulphide odour.

Table D.29: Observations from Sediment Cores Collected at Sheardown Lake Southeast (DLO-02), Mary River Project CREMP, August 2020

Sample Station	Station Depth (m)	Station Type	Core Number	Core Length (cm)	Surficial Substrate Texture Description			
			1	7.5				
DLO-02-1	11.5	Littoral	2	11.0	reddish oxidized silt overlying grey brown silt;			
DLO-02-1	11.5	Littoral	3	11.0	some black streaking			
			4	11.0				
		1 18.5						
DLO-02-11	7.0		brown silt floc overlying compact grey silt					
DLO-02-11	7.0	7.0	7.0	Littorai	Littoral	3	15.5	containing some clay
			4	11.5				
			1	13.0				
DLO-02-4	8.8	Littoral	2	13.5 brown silt floc overlying compact grey	brown silt floc overlying compact grey silt			
DLO-02-4	0.0	Littoral	3	19.5	containing some clay			
			4	12.0				
			1	7.0				
DLO-02-2	15.4	Profundal	2	12.5	brown silt floc overlying compact grey silt			
DLO-02-2	15.4	Profundai	3	8.0	containing some clay			
			4	9.0				
			1	14.0				
DLO-02-3	13.0	Profundal	2	15.0	red-brown silt overlying grey-brown to dark			
DLU-02-3	13.0	Profundal	3	20.0	grey-brown silt			
			4	18.0				

Table D.30: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Sheardown Lake Southeast (DLO-02) Sediment Stations, Mary River Project CREMP, August 2020

			Sediment	Ι Τ		Sheardow	n Lake Southeast Ba	sin Station			Summary Statistics Mean Standard Deviation	
Param	eter	Units	Quality Guideline	AEMP Benchmark ^b	DLO-02-1	DLO-02-11	DLO-02-4	DLO-02-2	DLO-02-3		Otan dand Daviation	Standard
			(SQG) ^a	Benchinark	(littoral)	(littoral)	(littoral)	(profundal)	(profundal)	Wean	Standard Deviation	Error
S	Sand	%	-	-	21.6	5.2	6.7	20.7	20.3	14.9	8.20	3.67
Non-metals	Silt	%	-	-	68.9	77.4	77.8	69.8	67.5	72.3	4.93	2.20
÷.	Clay	%	-	-	9.4	17.5	15.5	9.5	12.2	12.8	3.61	1.62
ou	Moisture	%	-	-	48.9	62.6	63.7	49.0	41.9	53.2	9.52	4.26
Z	Total Organic Carbon	%	10 ^α	-	1.89	0.39	0.74	1.39	0.92	1.07	0.585	0.262
	Aluminum (Al)	mg/kg	-	-	16,200	17,600	18,400	16,200	18,900	17,460	1,240	555
	Antimony (Sb)	mg/kg	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0	0
	Arsenic (As)	mg/kg	17	5.9	3.48	3.49	4.05	3.11	2.94	3.41	0.428	0.191
	Barium (Ba)	mg/kg	-	-	74.2	94.6	106	68.2	79.8	84.6	15.5	6.92
	Beryllium (Be)	mg/kg	-	-	0.81	0.84	0.96	0.78	0.89	0.86	0.071	0.032
	Bismuth (Bi)	mg/kg	-	-	0.21	0.27	0.25	<0.20	0.23	0.23	0.029	0.013
	Boron (B)	mg/kg	-	-	20.4	20.4	26.2	22.3	19.3	21.7	2.73	1.22
	Cadmium (Cd)	mg/kg	3.5	1.5	0.091	0.112	0.104	0.079	0.101	0.097	0.013	0.0057
	Calcium (Ca)	mg/kg	-	-	6,540	9,250	7,200	5,870	6,110	6,994	1,359	607.6
	Chromium (Cr)	mg/kg	90	79	69.3	86.5	83.2	74.0	70.5	76.7	7.73	3.46
	Cobalt (Co)	mg/kg	-	-	13.4	13.9	13.9	12.6	14.0	13.6	0.586	0.262
	Copper (Cu)	mg/kg	110	56	25.6	29.7	29.3	24.2	27.9	27.3	2.38	1.06
	Iron (Fe)	mg/kg	40,000 ^α	34,400	49,500	36,900	41,800	37,000	46,900	42,420	5,710	2,554
	Lead (Pb)	mg/kg	91.3	35	15.2	18.0	18.9	14.5	16.3	16.6	1.85	0.828
	Lithium (Li)	mg/kg	-	-	30.6	33.0	34.3	30.5	33.9	32.5	1.81	0.808
	Magnesium (Mg)	mg/kg	-	-	13,600	17,700	14,900	12,800	14,800	14,760	1,861	832
als	Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	657	698	978	1,100	645	559	796	231	103
Metais	Mercury (Hg)	mg/kg	0.486	0.17	0.0217	0.0218	0.0210	0.0162	0.0245	0.0210	0.00302	0.00135
_	Molybdenum (Mo)	mg/kg	-	-	1.78	1.22	1.49	1.27	1.53	1.46	0.225	0.100
	Nickel (Ni)	mg/kg	75 ^{α,β}	66	52.0	69.0	63.0	56.4	51.9	58.5	7.43	3.32
Ī	Phosphorus (P)	mg/kg	2,000 ^α	1,278	1,020	942	1,050	946	912	974	58	26
	Potassium (K)	mg/kg	-	-	4,060	4,250	4,720	4,050	5,080	4,432	453	203
;	Selenium (Se)	mg/kg	-	-	0.21	<0.20	<0.20	<0.20	0.21	0.20	0.0055	0.0024
,	Silver (Ag)	mg/kg	-	-	0.11	0.12	0.12	0.11	0.13	0.12	0.0084	0.0037
	Sodium (Na)	mg/kg	-	-	247	282	308	270	251	272	24.8	11.1
	Strontium (Sr)	mg/kg	-	-	10.3	12.0	12.8	11.2	10.1	11.3	1.14	0.509
,	Sulphur (S)	mg/kg	-	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	0	0
ŀ	Thallium (TI)	mg/kg	-	-	0.349	0.432	0.465	0.338	0.389	0.395	0.0540	0.0242
ŀ	Tin (Sn)	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0	0
ŀ	Titanium (Ti)	mg/kg	-	-	1,220	1,300	1,390	1,290	1,290	1,298	60.6	27.1
	Uranium (U)	mg/kg	-	-	5.22	4.54	5.34	4.39	5.32	4.96	0.459	0.205
,	Vanadium (V)	mg/kg	-	-	46.6	52.1	54.3	47.1	49.4	49.9	3.29	1.47
	Zinc (Zn)	mg/kg	315	135	56.1	56.3	59.4	50.2	59.3	56.3	3.74	1.67
-	Zirconium (Zr)	mg/kg	-	-	15.7	18.0	19.2	16.6	19.1	17.7	1.54	0.689

Indicates parameter concentration above Sediment Quality Guideline (SQG).

BOLD Indicates parameter concentration above the AEMP Benchmark.

Note: "-" indicates no SGQ applicable.

^a Canadian Sediment Quality Guideline for the protection of aquatic life probable effects level (PEL; CCME 2015) except α (Ontario Provincial Sediment Quality Guideline [PSQG] severe effect level [SEL]; OMOE 1993) and β (British Columbia Working Sediment Quality Guideline [BCSQG] probable effects level [PEL; BCMOE 2015]).

AEMP Sediment Quality Benchmarks developed by Intrinsik (2013) using sediment quality guidelines, background sediment quality data, and method detection limits. The indicated values are specific to Sheardown Lake Southeast.

Table D.31: Statistical Comparison of Sediment Physical Properties Between Sheardown Lake SE and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Tes	t Results				Summ	ary Statistic	s		
Lake Zone	Sediment Variable	Statistical Analysis ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Sand-Sized Material	tequal	log10	YES	0.004	Reference	5	29.6	7.5	3.4	23.4	40.4
દા	(%)	·				Sheardown SE	5	11.1	6.7	3.0	5.2	21.6
atio	Silt-Sized Material	tequal	none	YES	0.009	Reference	5	62.2	6.3	2.8	53.4	68.4
Sta	(%)	toquai	110110	120	0.000	Sheardown SE	5	75.0	5.5	2.5	68.9	81.5
<u> </u>	Clay-Sized Material	tequal	none	YES	0.029	Reference	5	8.2	3.0	1.3	6.2	13.4
hal	(%)	tequal	Hone	TES	0.029	Sheardown SE	5	13.9	3.7	1.7	9.4	17.5
a (S	Moisture	tagual	nana	YES	0.001	Reference	5	87.9	4.6	2.1	80.2	92.3
ttor	Silt-Sized Material (%) Clay-Sized Material (%) Moisture (%)	tequal	none	TES	0.001	Sheardown SE	5	60.9	7.3	3.3	48.9	68.6
	Total Organic Carbon	tagual	nono	YES	0.008	Reference	5	4.8	2.0	0.9	2.3	7.0
	(TOC) Content (%)	tequal	none	TES	0.006	Sheardown SE	5	1.4	0.8	0.4	0.4	2.3
	Sand-Sized Material	tagual	none	NO	0.146	Reference	5	31.6	22.3	10.0	13.9	56.6
	(%)	tequal	none	NO	0.140	Sheardown SE	5	15.1	5.3	2.4	8.3	20.7
ions	Silt-Sized Material	togual	nono	NO	0.112	Reference	5	57.4	18.1	8.1	36.9	71.9
Stat	(%)	tequal	none	NO	0.112	Sheardown SE	5	72.2	4.0	1.8	67.5	76.6
эер)	Clay-Sized Material	tagual	nana	NO	0.477	Reference	5	11.0	4.3	1.9	6.3	15.1
<u>ğ</u>	(%)	tequal	none	NO	0.477	Sheardown SE	5	12.7	2.8	1.2	9.5	15.6
ruda	Moisture	togual	nono	YES	0.001	Reference	5	82.6	3.6	1.6	78.3	86.6
Profundal (Deep) Stations	(%)	tequal	none	150	0.001	Sheardown SE	5	55.8	11.8	5.3	41.9	70.7
	Total Organic Carbon	toqual	nono	YES	0.002	Reference	5	3.4	1.1	0.5	2.2	4.5
	(TOC) Content (%)	tequal	none	TES	0.002	Sheardown SE	5	1.1	0.6	0.2	0.2	1.6

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table D.32: Magnitude of Elevation in Sediment Metal Concentrations between Sheardown Lake SE and Reference Lake 3 2020 Data, and between Sheardown Lake SE 2020 and Baseline Data, Mary River Project CREMP, 2020

	Sheardown Lai	ke SE versu	ıs Reference Lak	e 3 in 2020	Sheardown L	ake SE 202	0 versus Baseline	e Period
	Littoral Sta	ations	Profundal S	tations	Littoral Sta	itions	Profundal S	tations
Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) Boron (B) Cadmium (Cd) Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Mercury (Hg) Molybdenum (Mc Nickel (Ni) Phosphorus (P) Potassium (Se)	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Sheardown Lake SE Baseline Concentration (mg/kg)	Magnitude of Elevation	Sheardown Lake SE Baseline Concentration (mg/kg)	Magnitude of Elevation
Aluminum (AI)	16,880	1.0	21,800	0.8	14,950	1.2	13,133	1.3
Antimony (Sb)	<0.10	1.0	<0.10	1.0	1.0	0.1	1.0	0.1
Arsenic (As)	3.53	1.0	4.07	0.7	1.85	2.0	1.53	2.0
Barium (Ba)	117	0.8	122	0.6	80.5	1.1	64.3	1.2
Beryllium (Be)	0.65	1.3	0.80	1.0	1.0	0.9	1.0	0.8
Bismuth (Bi)	<0.20	1.2	<0.20	1.1	-	-	-	-
Boron (B)	12.2	1.8	14.7	1.4	2.50	8.9	1.35	15.4
Cadmium (Cd)	0.173	0.6	0.148	0.6	0.500	0.2	0.625	0.1
Calcium (Ca)	5,608	1.4	5,010	1.2	6,310	1.2	8,925	0.7
Chromium (Cr)	54.3	1.5	65.0	1.1	78.0	1.0	72.3	1.0
Cobalt (Co)	10.8	1.3	15.2	0.9	12.5	1.1	12.0	1.1
Copper (Cu)	71.4	0.4	83.8	0.3	29.5	1.0	24.5	1.1
Iron (Fe)	50,600	0.8	45,080	0.9	32,284	1.3	29,117	1.4
Lead (Pb)	13.8	1.3	16.7	0.9	17.0	1.0	13.8	1.1
Lithium (Li)	26.0	1.3	33.7	1.0	-	-	-	-
Magnesium (Mg)	11,440	1.3	14,180	1.0	12,634	1.2	13,742	1.0
Manganese (Mn)	579	1.6	1,230	0.5	462	2.0	410	1.5
Mercury (Hg)	0.0500	0.4	0.0583	0.3	0.100	0.2	0.100	0.2
Molybdenum (Mo	4.44	0.3	2.52	0.6	1.5	1.0	1.0	1.4
Nickel (Ni)	40.0	1.5	45.0	1.2	61.5	1.0	62.0	0.9
Phosphorus (P)	1,167	0.9	956	1.0	1,150	0.9	950	1.0
Potassium (K)	4,100	1.1	5,338	0.9	3,947	1.1	3,317	1.4
Selenium (Se)	0.73	0.3	0.61	0.3	1.0	0.2	1.0	0.2
Silver (Ag)	0.14	0.8	0.20	0.6	0.42	0.3	0.31	0.4
Sodium (Na)	304	0.9	369	0.7	353	0.8	330	0.8
Strontium (Sr)	11.6	1.0	12.3	0.9	16.0	0.7	11.0	1.0
Sulphur (S)	1,400	0.7	1,140	0.9	-	-	-	-
Thallium (TI)	0.379	1.1	0.594	0.6	1.0	0.4	1.0	0.4
Tin (Sn)	<2.0	1.0	<2.0	1.0	-	-	-	-
Titanium (Ti)	1,006	1.3	1,136	1.1	-	-	-	-
Uranium (U)	11.0	0.5	19.7	0.2	-	-	-	-
Vanadium (V)	54.1	0.9	63.4	0.8	52.0	1.0	44.3	1.1
Zinc (Zn)	73.1	0.8	83.8	0.7	51.0	1.1	50.8	1.1
Zirconium (Zr)	4.5	3.9	3.9	4.5	-	-	-	-

Note: '-' indicates baseline data not available.

Table D.33: Deposited Sediment Field Sampling Observations at Mary River Study Areas^a, Mary River Project CREMP, August 2020

Study Area	Station	Texture of Collected Sediment	Silt Presence ^b
	GO-09-1	medium (sized) coarse sand and gravel	precipitate and deposits (<1 mm)
GO-09 Upstream Reference	GO-09-3	medium (sized) coarse sand and gravel	precipitate and deposits (<1 mm)
	GO-09-5	medium (sized) coarse sand and gravel	precipitate and deposits (<1 mm)
	GO-03-1	medium (sized) coarse sand and gravel	none observed
GO-03 Upstream	GO-03-3	coarse sand and gravel	none observed
	GO-03-5	coarse sand and gravel	none observed
	EO-01-1	gravel	none observed
EO-01 Upper Mine-Exposed	EO-01-3	gravel and coarse sand	none observed
	EO-01-5	medium (sized) coarse sand	none observed
	EO-20-1	medium (sized) coarse sand	precipitate and deposits (<1 mm complex with periphyton)
EO-20 Middle Mine-Exposed	EO-20-3	medium (sized) coarse sand	none observed
	EO-20-5	medium (sized) coarse sand	none observed
	CO-05-1	medium (sized) coarse sand	none observed
CO-05 Lower Mine-Exposed	CO-05-3	medium (sized) coarse sand	none observed
	CO-05-5	medium (sized) coarse sand	none observed

^a Sediment samples collected using a stainless steel scoop directly from the streambed or shoreline, as available.

^b Silt observations described as fine material present on the surface of in-stream substrate and/or as interstitial deposits, occurring unusually.

Table D.34: Deposited Sediment Total Organic Carbon and Metal Concentrations at Mary River GO-09 Reference Stations, Mary River Project CREMP, August 2020

			Mary Rive	r GO-09 Referei	nce Station	Study A	rea Summary S	tatistics
Analyte	Units	SQGª	GO-09-B1	GO-09-B3	GO-09-B5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.12	<0.10	0.12	0.11	0.012	0.0067
Aluminum (Al)	μg/g	-	3,930	1,650	2,690	2,757	1,141	659
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.45	0.26	0.43	0.38	0.10	0.060
Barium (Ba)	μg/g	-	17.7	7.61	12.4	12.6	5.05	2.91
Beryllium (Be)	μg/g	-	0.18	<0.10	0.13	0.14	0.040	0.023
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Boron (B)	μg/g	-	6.3	<5.0	<5.0	5.4	0.75	0.43
Cadmium (Cd)	μg/g	3.5	<0.020	<0.020	<0.020	<0.020	0	0
Calcium (Ca)	μg/g	-	3,540	1,780	2,930	2,750	894	516
Chromium (Cr)	μg/g	90	16.8	8.68	15.4	13.6	4.34	2.51
Cobalt (Co)	μg/g	-	3.09	1.59	2.53	2.40	0.758	0.438
Copper (Cu)	μg/g	197	7.18	2.28	3.90	4.45	2.50	1.44
Iron (Fe)	μg/g	40,000 ^α	11,400	8,490	13,300	11,063	2,423	1,399
Lead (Pb)	μg/g	91.3	3.96	2.25	3.01	3.07	0.857	0.495
Lithium (Li)	μg/g	-	7.4	2.9	4.8	5.0	2.3	1.3
Magnesium (Mg)	μg/g	-	4,060	1,640	2,730	2,810	1,212	700
Manganese (Mn)	μg/g	1,100 ^{α,β}	104	45.4	77.8	75.7	29.4	16.9
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0
Molybdenum (Mo)	μg/g	-	0.14	<0.10	<0.10	0.11	0.023	0.013
Nickel (Ni)	μg/g	75 ^{α,β}	8.04	4.06	6.22	6.11	1.99	1.15
Phosphorus (P)	μg/g	2,000 ^α	371	223	456	350	118	68
Potassium (K)	μg/g	-	1,080	440	730	750	320	185
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	91	<50	64	68	21	12
Strontium (Sr)	μg/g	-	5.61	3.62	4.92	4.72	1.01	0.583
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.093	<0.050	0.060	0.068	0.023	0.013
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	472	226	362	353	123	71
Uranium (U)	μg/g	-	1.22	0.625	0.922	0.922	0.298	0.172
Vanadium (V)	μg/g	-	20.4	14.0	24.0	19.5	5.06	2.92
Zinc (Zn)	μg/g	315	14.5	5.90	10.6	10.3	4.31	2.49
Zirconium (Zr)	μg/g	-	7.8	3.9	5.6	5.8	2.0	1.1

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQF) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.35: Deposited Sediment Total Organic Carbon and Metal Concentrations at Mary River GO-03 Upstream Stations, Mary River Project CREMP, August 2020

		2	Mary Rive	r GO-03 Upstre	am Station	Study A	rea Summary S	Statistics
Analyte	Units	SQGª	GO-03-B1	GO-03-B3	GO-03-B5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	<0.10	0.12	<0.10	0.11	0.012	0.0067
Aluminum (Al)	μg/g	-	1,480	2,780	1,740	2,000	688	397
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.400	0.470	2.42	1.10	1.15	0.662
Barium (Ba)	μg/g	-	7.35	12.9	7.92	9.4	3.05	1.76
Beryllium (Be)	μg/g	-	<0.10	0.14	<0.10	<0.10	0	0
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Boron (B)	μg/g	-	<5.0	<5.0	<5.0	<5.0	0	0
Cadmium (Cd)	μg/g	3.5	<0.020	<0.020	<0.020	<0.020	0	0
Calcium (Ca)	μg/g	-	2,350	2,030	1,860	2,080	249	144
Chromium (Cr)	μg/g	90	13.1	17.5	10.6	13.7	3.49	2.02
Cobalt (Co)	μg/g	-	1.67	2.50	1.71	1.96	0.468	0.270
Copper (Cu)	μg/g	197	2.07	3.93	2.34	2.78	1.01	0.580
Iron (Fe)	μg/g	40,000 ^α	13,000	17,000	10,900	13,633	3,099	1,789
Lead (Pb)	μg/g	91.3	2.37	3.39	2.45	2.74	0.567	0.327
Lithium (Li)	μg/g	-	2.7	4.8	2.9	<2.0	1.2	0.67
Magnesium (Mg)	μg/g	-	1,610	2,240	1,530	1,793	389	225
Manganese (Mn)	μg/g	1,100 ^{α,β}	47.7	74.8	53.3	58.6	14.3	8.26
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	0.0051	<0.0050	0	0
Molybdenum (Mo)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Nickel (Ni)	μg/g	75 ^{α,β}	4.22	6.12	4.15	4.83	1.12	0.645
Phosphorus (P)	μg/g	2,000 ^α	458	369	372	400	51	29
Potassium (K)	μg/g	-	360	720	440	507	189	109
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	<50	65	50	55	8.7	5.0
Strontium (Sr)	μg/g	-	3.78	4.13	4.05	3.99	0.183	0.106
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	<0.050	0.060	<0.050	<0.050	0	0
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	241	320	228	263	50	29
Uranium (U)	μg/g	-	0.732	1.05	0.684	0.822	0.199	0.115
Vanadium (V)	μg/g	-	22.8	29.2	19.5	23.8	4.93	2.85
Zinc (Zn)	μg/g	315	6.1	10.4	6.8	7.8	2.3	1.3
Zirconium (Zr)	μg/g	-	3.4	6.0	3.7	4.4	1.4	0.82

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.36: Magnitude of Elevation in Deposited Sediment Metal Concentrations at Mary River Upper and Mine-Exposed Study Areas Compared to Reference Area Data, Mary River Project CREMP, August 2020

Parameter	Units	Mary River Reference (GO-09)	Upstream (GO-03)	Upper Mine- Exposed (EO-01)	Middle Mine- Exposed (EO-20)	Lower Mine- Exposed (CO-05)
Total Organic Carbon	%	0.11	0.9	1.0	1.6	1.0
Aluminum (Al)	μg/g	2,757	0.7	0.9	1.5	0.9
Antimony (Sb)	µg/g	<0.10	1.0	1.0	1.0	1.0
Arsenic (As)	μg/g	0.38	2.9	1.1	1.6	1.0
Barium (Ba)	μg/g	12.6	0.7	0.9	1.6	0.8
Beryllium (Be)	μg/g	0.14	0.8	0.8	1.7	1.0
Bismuth (Bi)	μg/g	<0.20	1.0	1.2	1.5	1.0
Boron (B)	μg/g	5.4	0.9	0.9	1.2	0.9
Cadmium (Cd)	μg/g	<0.020	1.0	1.3	1.9	1.0
Calcium (Ca)	μg/g	2,750	0.8	0.9	1.0	0.7
Chromium (Cr)	μg/g	13.6	1.0	1.4	1.9	1.0
Cobalt (Co)	μg/g	2.40	0.8	1.1	1.6	1.0
Copper (Cu)	μg/g	4.45	0.6	0.9	1.7	0.7
Iron (Fe)	μg/g	11,063	1.2	1.5	1.7	0.6
Lead (Pb)	μg/g	3.07	0.9	0.9	1.4	0.7
Lithium (Li)	μg/g	5.0	0.7	0.7	1.3	1.0
Magnesium (Mg)	μg/g	2,810	0.6	0.9	1.6	1.2
Manganese (Mn)	μg/g	75.7	0.8	1.1	1.8	1.0
Mercury (Hg)	μg/g	<0.0050	1.0	1.0	1.0	1.0
Molybdenum (Mo)	μg/g	0.11	0.9	1.8	3.2	1.1
Nickel (Ni)	μg/g	6.11	0.8	1.4	2.7	2.3
Phosphorus (P)	μg/g	350	1.1	1.1	1.1	0.8
Potassium (K)	μg/g	750	0.7	0.8	1.6	0.7
Selenium (Se)	μg/g	<0.20	1.0	1.0	1.0	1.0
Silver (Ag)	μg/g	<0.10	1.0	1.0	1.3	1.0
Sodium (Na)	μg/g	68	0.8	0.7	1.0	0.8
Strontium (Sr)	μg/g	4.72	0.8	0.8	1.0	0.7
Sulphur (S)	μg/g	<1,000	1.0	1.0	1.0	1.0
Thallium (TI)	μg/g	0.068	0.8	0.7	1.3	0.8
Tin (Sn)	μg/g	<2.0	1.0	1.0	1.0	1.0
Titanium (Ti)	μg/g	353	0.7	0.8	1.1	0.7
Uranium (U)	μg/g	0.922	0.9	0.9	1.2	0.8
Vanadium (V)	µg/g	19.5	1.2	1.2	1.3	0.5
Zinc (Zn)	µg/g	10.3	0.8	1.0	1.6	0.9
Zirconium (Zr)	µg/g	5.8	0.8	0.7	1.0	0.5

Table D.37: Deposited Sediment Total Organic Carbon and Metal Concentrations at Mary River EO-01 Mine-Exposed Stations, Mary River Project CREMP, August 2020

			Mary River	Mine-Exposed	Area Station	Study A	Area Summary S	statistics
Analyte	Units	SQG ^a	EO-01-B1	EO-01-B3	EO-01-B5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.11	0.12	0.10	0.11	0.010	0.0058
Aluminum (AI)	μg/g	-	2,500	1,930	2,790	2,407	438	253
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.48	0.39	0.37	0.41	0.059	0.034
Barium (Ba)	μg/g	-	12.1	9.12	12.7	11.3	1.92	1.11
Beryllium (Be)	μg/g	-	0.12	<0.10	0.11	0.11	0.010	0.006
Bismuth (Bi)	μg/g	-	<0.20	0.33	<0.20	<0.20	0	0
Boron (B)	μg/g	-	<5.0	<5.0	<5.0	<5.0	0	0
Cadmium (Cd)	μg/g	3.5	<0.020	0.030	0.028	<0.020	0	0
Calcium (Ca)	μg/g	-	2,250	2,850	1,960	2,353	454	262
Chromium (Cr)	μg/g	90	31.1	11.0	14.1	18.7	10.8	6.25
Cobalt (Co)	μg/g	-	3.49	1.81	2.43	2.58	0.850	0.490
Copper (Cu)	μg/g	197	3.88	3.97	4.29	4.05	0.215	0.124
Iron (Fe)	μg/g	40,000 ^α	33,000	7,880	9,970	16,950	13,939	8,048
Lead (Pb)	μg/g	91.3	3.30	2.36	2.69	2.78	0.477	0.275
Lithium (Li)	μg/g	-	3.6	2.8	3.9	3.4	0.57	0.33
Magnesium (Mg)	μg/g	-	2,650	2,370	2,870	2,630	251	145
Manganese (Mn)	μg/g	1,100 ^{α,β}	113	62.9	80.2	85.4	25.4	14.7
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0
Molybdenum (Mo)	μg/g	-	0.29	0.12	0.20	0.20	0.085	0.049
Nickel (Ni)	μg/g	75 ^{α,β}	10.3	6.24	8.28	8.27	2.03	1.17
Phosphorus (P)	μg/g	2,000 ^α	336	537	277	383	136	79
Potassium (K)	μg/g	-	670	470	710	617	129	74
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	<50	<50	<50	<50	0	0
Strontium (Sr)	μg/g	-	3.83	4.08	3.34	3.75	0.376	0.217
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	<0.050	<0.050	<0.050	0.050	0	0
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	317	276	290	294	21	12
Uranium (U)	μg/g	-	0.999	0.638	0.719	0.785	0.189	0.109
Vanadium (V)	μg/g	-	43.8	10.9	13.3	22.7	18.3	10.6
Zinc (Zn)	μg/g	315	11.1	9.10	10.6	10.3	1.04	0.601
Zirconium (Zr)	μg/g	-	4.1	3.2	4.0	3.8	0.49	0.28

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.38: Deposited Sediment Total Organic Carbon and Metal Concentrations at Mary River EO-20 Mine-Exposed Stations, Mary River Project CREMP, August 2020

		2	Mary River	Mine-Exposed	Area Station	Study A	Area Summary S	Statistics
Analyte	Units	SQGª	EO-20-B1	EO-20-B3	EO-20-B5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.30	<0.10	0.16	0.19	0.10	0.059
Aluminum (AI)	μg/g	-	6,940	2,170	3,540	4,217	2,456	1,418
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.75	0.58	0.52	0.62	0.12	0.069
Barium (Ba)	μg/g	-	30.5	11.1	20.4	20.7	9.70	5.60
Beryllium (Be)	μg/g	-	0.46	0.11	0.14	0.24	0.19	0.11
Bismuth (Bi)	μg/g	-	0.51	<0.20	<0.20	0.30	0.18	0.10
Boron (B)	μg/g	-	10.0	<5.0	<5.0	6.67	2.89	1.67
Cadmium (Cd)	μg/g	3.5	0.061	0.030	0.023	0.038	0.020	0.012
Calcium (Ca)	μg/g	-	4,210	2,270	2,180	2,887	1,147	662
Chromium (Cr)	μg/g	90	27.6	30.5	20.1	26.1	5.37	3.10
Cobalt (Co)	μg/g	-	5.26	3.04	3.33	3.88	1.21	0.697
Copper (Cu)	μg/g	197	9.65	7.44	5.11	7.40	2.27	1.31
Iron (Fe)	μg/g	40,000 ^α	12,900	25,700	19,100	19,233	6,401	3,696
Lead (Pb)	μg/g	91.3	5.89	2.98	3.94	4.27	1.48	0.856
Lithium (Li)	μg/g	-	11.4	3.10	4.50	6.33	4.44	2.57
Magnesium (Mg)	μg/g	-	7,380	2,170	3,770	4,440	2,669	1,541
Manganese (Mn)	μg/g	1,100 ^{α,β}	180	105	125	137	39	22
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0
Molybdenum (Mo)	μg/g	-	0.54	0.15	0.39	0.36	0.20	0.11
Nickel (Ni)	μg/g	75 ^{α,β}	23.9	12.2	14.0	16.7	6.30	3.64
Phosphorus (P)	μg/g	2,000 ^α	376	452	300	376	76	44
Potassium (K)	μg/g	-	1,820	520	1,160	1,167	650	375
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	0.18	<0.10	<0.10	0.13	0.046	0.027
Sodium (Na)	μg/g	-	100	<50	<50	67	29	17
Strontium (Sr)	μg/g	-	6.54	4.31	3.22	4.69	1.69	0.98
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.140	<0.050	0.068	0.086	0.048	0.027
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	549	309	330	396	133	77
Uranium (U)	μg/g	-	1.45	0.805	1.02	1.09	0.328	0.190
Vanadium (V)	μg/g	-	18.7	37.1	21.9	25.9	9.83	5.68
Zinc (Zn)	μg/g	315	25.4	9.70	15.9	17.0	7.91	4.57
Zirconium (Zr)	μg/g	-	9.2	4.9	3.1	5.7	3.1	1.8

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.39: Deposited Sediment Total Organic Carbon and Metal Concentrations at Mary River Downstream (CO-05) Stations, Mary River Project CREMP, August 2020

Analyte	Units	SQG ^a	Mary River Do	wnstream Mine Station	-Exposed Area	Study A	Area Summary S	Statistics
Allaryte	Onits	300	CO-05-B1	CO-05-B3	CO-05-B5	Mean	Standard Deviation	Standard Error
Total Organic Carbon	%	10 ^α	0.12	<0.10	0.13	<0.10	0	0
Aluminum (Al)	μg/g	-	2,810	964	3,630	2,468	1,366	788
Antimony (Sb)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Arsenic (As)	μg/g	17	0.33	0.12	0.66	0.37	0.27	0.16
Barium (Ba)	μg/g	-	12.9	3.90	13.9	10.2	5.51	3.18
Beryllium (Be)	μg/g	-	0.11	<0.10	0.18	0.13	0.044	0.025
Bismuth (Bi)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Boron (B)	μg/g	-	<5.0	<5.0	<5.0	<5.0	0	0
Cadmium (Cd)	μg/g	3.5	<0.020	<0.020	<0.020	<0.020	0	0
Calcium (Ca)	μg/g	-	2,340	539	3,260	2,046	1,384	799
Chromium (Cr)	μg/g	90	12.0	4.41	25.9	14.1	10.9	6.29
Cobalt (Co)	μg/g	-	2.44	0.81	3.70	2.32	1.45	0.84
Copper (Cu)	μg/g	197	3.27	1.24	4.91	3.14	1.84	1.06
Iron (Fe)	μg/g	40,000 ^α	7,270	1,960	10,100	6,443	4,132	2,386
Lead (Pb)	μg/g	91.3	2.45	1.23	3.21	2.30	1.00	0.577
Lithium (Li)	μg/g	-	4.7	<2.0	7.7	4.80	2.85	1.65
Magnesium (Mg)	μg/g	-	3,380	1,010	5,750	3,380	2,370	1,368
Manganese (Mn)	μg/g	1,100 ^{α,β}	83.5	27.1	107	72.5	41.1	23.7
Mercury (Hg)	μg/g	0.486	<0.0050	<0.0050	<0.0050	<0.0050	0	0
Molybdenum (Mo)	μg/g	-	0.12	<0.10	0.15	<0.10	0	0
Nickel (Ni)	μg/g	75 ^{α,β}	9.68	4.22	28.7	14.2	12.9	7.42
Phosphorus (P)	μg/g	2,000 ^α	271	103	436	270	167	96
Potassium (K)	μg/g	-	630	180	740	517	297	171
Selenium (Se)	μg/g	-	<0.20	<0.20	<0.20	<0.20	0	0
Silver (Ag)	μg/g	-	<0.10	<0.10	<0.10	<0.10	0	0
Sodium (Na)	μg/g	-	<50	<50	71	<50	12	7
Strontium (Sr)	μg/g	-	3.36	1.94	4.54	3.28	1.30	0.752
Sulphur (S)	μg/g	-	<1,000	<1,000	<1,000	<1,000	0	0
Thallium (TI)	μg/g	-	0.054	<0.050	0.062	0.055	0.0061	0.0035
Tin (Sn)	μg/g	-	<2.0	<2.0	<2.0	<2.0	0	0
Titanium (Ti)	μg/g	-	321	93.2	350	255	141	81.2
Uranium (U)	μg/g	-	0.577	0.227	1.37	0.725	0.586	0.338
Vanadium (V)	μg/g	-	10.5	3.19	14.1	9.26	5.56	3.21
Zinc (Zn)	μg/g	315	10.1	3.30	14.1	9.17	5.46	3.15
Zirconium (Zr)	μg/g	-	3.2	1.5	4.5	3.1	1.5	0.87

^a Canadian SQG for the protection of aquatic life probable effects level (PEL; CCME 2020) except α = Ontario Provincial Sediment Quality Guideline (PSQG) severe effect level (SEL; OMOE 1993) and β = British Columbia Working SQG PEL (BC ENV 2020).

Table D.40: Field Observations of Sediment Properties at Mary Lake (BLO) Benthic Stations^a, Mary River Project CREMP, August 2020

Station	Station Depth (m)	Colour and Texture Observations	Evidence of Anoxia ^b	Plant or Algal Presence
BLO-01	10.0	brown silt on top of grey silt, some sand intermixed	none detected	none observed
BLO-11	9.3	grey-brown silt with sand intermixed	none detected	none observed
BLO-7	12.8	brown silt	none detected	none observed
BLO-6	6.7	brown silt	none detected	none observed
BLO-3	16.4	red-brown oxidized surface layer over grey-brown silty-sand	none detected	none observed
BLO-15	29.1	red-brown oxidized surface layer over grey-brown silt	none detected	none observed
BLO-14	20.0	brown silt, some sand intermixed	none detected	none observed
BLO-13	22.0	brown silt	none detected	none observed
BLO-4	22.0	brown silt	none detected	none observed
BLO-5	21.5	brown silt	none detected	none observed

^a Sediment particle size and benthic invertebrate community samples were collected using a petite-Ponar.

^b Evidence of anoxic sediments assessed visually as the presence of blackened substrate, and by smell based on presence/strength of hydrogen sulphide odour.

Table D.41: Observations from Sediment Cores Collected at Mary Lake (BLO), Mary River Project CREMP, August 2020

Sample Station	Station Depth (m)	Station Type	Core Number	Core Length (cm)	Surficial Substrate Texture Description
			1	7.0	
DI O 04	10.0	Littoral	2	12.0	brown silt floc overlying grey silt intermixed with
BLO-01	10.0	Lillorai	3	9.5	sand; black streaking in upper layer
			4	11.5	1
			1	31.0	
BLO-16	30.5	Profundal	2	36.0	reddish oxidized silt overlying medium brown silt that becomes more consolidated with depth; no
BLO-16	30.5	Profundal	3	25.0	Inal becomes more consolidated with depth, no black streaking
			4	33.0	
			1	16.0	
DI O 03	16.0	Drofundal	2	19.0	reddish brown silty sand overlying medium brown
BLO-03	16.0	Profundal	3	21.0	sandy silt; possible redox boundary between layers but no black streaking
			4	20.5	
			1	26.0	
DI O 44	00.0	Duefendel	2	22.0	reddish brown silt overlying medium brown silt
BLO-14	20.0	Profundal	3	23.0	with fine sand intermixed; black streaking present
			4	19.0	
			1	14.0	
DI O 40	00.0	Duefendel	2	10.0	reddish brown silt overlying medium brown silt,
BLO-12	20.0	Profundal	3	22.0	possibly reduced between layers; some black streaking present
			4	11.5	Duranting process
			1	15.0	
DI O 04	40 F	Duefundel	2	23.5	reddish brown silt overlying grey-brown silt that
BLO-04	19.5	Profundal	3	18.5	becomes more consolidated with depth; some black streaking present
			4	7.0	Black streaking present
			1	11.0	
DI 0 40	40.0		2	11.0	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
BLO-10	19.0	Profundal	3	12.0	light brown silt floc overlying grey-brown silt
			4	11.5	1
			1	11.0	
DI C 22	20.0	Duaf: -	2	6.5	red-brown silt floc overlying grey-brown silt; black
BLO-09	29.0	Profundal	3	10.0	streaking in upper layer
			4	16.5	1
			1	10.5	
DI C 22	20.0	Duaf: -	2	12.5	light brown silt floc overlying consolidated grey-
BLO-08	26.0	Profundal	3	11.5	brown silt.
			4	9.0	1
			1	10.0	
DI O 00	6.0		2	9.5	limba busaansa sila
BLO-06	6.0	Littoral	3	7.5	light brown silt
			4	10.5	1

Table D.42: Sediment Particle Size, Total Organic Carbon, and Metal Concentrations at Mary Lake (BLO) Sediment Stations, Mary River Project CREMP, August 2020

			Sediment						Mary Lak	Stations					Su	mmary Statist	ics
	Analyte	Units	Quality Guideline	AEMP	BLO-01	BLO-16	BLO-03	BLO-14	BLO-12	BLO-04	BLO-10	BLO-09	BLO-08	BLO-06		Standard	Standard
	·		(SQG) ^a	Benchmark ^b	(littoral)	(profundal)	(littoral)	Mean	Deviation	Error							
S	Sand	%	-	-	21.6	22.2	91.9	21.2	24.3	23.6	4.5	5.6	2.3	6.8	22.4	26.0	8.22
Non-metals	Silt	%	-	-	69.9	46.7	6.0	45.5	61.7	55.5	62.7	65.1	64.8	63.8	54.2	18.7	5.92
Ĕ	Clay	%	-	-	8.5	31.1	2.1	33.2	14.0	20.9	32.8	29.4	32.9	29.4	23.4	11.43	3.62
lo	Moisture	%	-	-	40.9	57.5	16.6	66.8	37.8	51.3	43.5	51.1	53.5	67.3	48.6	15.0	4.74
	Total Organic Carbon	%	10 ^α	-	1.31	1.49	0.22	0.93	0.68	0.54	0.46	0.38	0.65	0.68	0.73	0.40	0.13
	Aluminum (AI)	mg/kg	-	-	15,000	24,200	9,230	30,100	20,700	20,600	25,500	22,600	28,000	29,600	22,553	6,578	2,080
	Antimony (Sb)	mg/kg	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0	0
	Arsenic (As)	mg/kg	17	5.9	4.82	4.01	1.47	4.04	2.33	2.63	3.18	3.67	3.42	3.47	3.30	0.960	0.304
	Barium (Ba)	mg/kg	-	-	79.2	99.9	36.7	110	74.8	74.5	96.4	102	96.3	104	87.4	21.8	6.90
	Beryllium (Be)	mg/kg	-	-	0.72	1.17	0.42	1.38	0.91	0.86	1.14	1.03	1.25	1.33	1.02	0.299	0.0945
	Bismuth (Bi)	mg/kg	-	-	<0.20	0.25	<0.20	0.25	0.26	0.21	0.23	0.23	0.26	0.23	0.23	0.023	0.0073
	Boron (B)	mg/kg	-	-	18.9	31.8	15.5	45.2	24.2	25.7	31.0	25.6	42.0	43.9	30.4	10.4	3.29
	Cadmium (Cd)	mg/kg	3.5	1.5	0.108	0.156	0.066	0.186	0.128	0.109	0.151	0.144	0.162	0.145	0.136	0.0340	0.0108
	Calcium (Ca)	mg/kg	-	-	7,720	3,950	1,890	4,810	4,460	4,350	4,710	4,490	5,040	5,310	4,673	1,426	451
	Chromium (Cr)	mg/kg	90	98	60.6	83.4	31.1	93.0	75.5	82.1	86.3	87.8	97.7	94.1	79.2	19.9	6.31
	Cobalt (Co)	mg/kg	-	-	14.0	16.1	6.93	19.9	14.8	14.7	17.4	17.7	18.7	18.7	15.9	3.71	1.17
	Copper (Cu)	mg/kg	110	50	27.8	37.4	11.8	39.2	28.2	28.7	35.0	32.7	37.0	36.0	31.4	8.02	2.54
	Iron (Fe)	mg/kg	$40,000^{\alpha}$	52,400	34,500	41,000	18,800	47,000	40,000	35,200	42,300	43,400	44,400	46,600	39,320	8,352	2,641
	Lead (Pb)	mg/kg	91.3	35	14.5	23.8	8.25	26.5	17.1	18.7	24.6	21.6	24.2	25.5	20.5	5.82	1.84
	Lithium (Li)	mg/kg	-	-	29.2	45.8	15.8	51.5	33.6	35.5	46.8	39.8	47.0	50.7	39.6	11.2	3.55
	Magnesium (Mg)	mg/kg	-	-	14,500	16,500	5,870	18,800	15,400	14,900	17,200	16,200	18,500	18,700	15,657	3,777	1,194
Metals	Manganese (Mn)	mg/kg	$1,100^{\alpha,\beta}$	4,370	1,350	407	1,490	955	835	617	2,490	4,980	1,770	778	1,567	1,349	427
Me	Mercury (Hg)	mg/kg	0.486	0.17	0.0293	0.0823	0.0264	0.0814	0.0344	0.0393	0.0539	0.0430	0.0612	0.0541	0.0505	0.0199	0.00630
	Molybdenum (Mo)	mg/kg	-	-	0.52	0.70	0.51	0.80	1.31	0.73	1.37	1.29	1.12	0.92	0.927	0.326	0.103
	Nickel (Ni)	mg/kg	$75^{\alpha,\beta}$	72	51.7	63.4	23.8	66.3	54.8	58.8	60.0	66.4	69.0	62.0	57.6	13.03	4.12
	Phosphorus (P)	mg/kg	$2,000^{\alpha}$	1,580	1,100	1,050	449	917	876	857	791	1,020	876	849	879	181	57
	Potassium (K)	mg/kg	-	-	3,470	6,180	2,150	7,780	5,020	5,120	6,410	5,590	7,230	7,650	5,660	1,813	573
	Selenium (Se)	mg/kg	-	-	<0.20	0.26	<0.20	0.34	<0.20	<0.20	0.21	0.23	0.24	0.26	0.23	0.045	0.014
	Silver (Ag)	mg/kg	-	-	<0.10	0.17	<0.10	0.17	0.14	0.14	0.16	0.15	0.17	0.16	0.15	0.027	0.008
	Sodium (Na)	mg/kg	-	-	238	393	147	434	290	335	405	383	448	453	353	100	32
	Strontium (Sr)	mg/kg	-	-	11.1	16.5	6.70	17.1	11.2	12.4	14.3	13.4	16.4	16.7	13.6	3.33	1.052
	Sulphur (S)	mg/kg	-	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	0	0
	Thallium (TI)	mg/kg	-	-	0.298	0.484	0.194	0.609	0.392	0.417	0.571	0.484	0.539	0.603	0.459	0.136	0.0429
	Tin (Sn)	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0	0
	Titanium (Ti)	mg/kg	-	-	978	1,340	608	1,760	1,470	1,470	1,710	1,500	1,870	1,970	1,468	416	131
	Uranium (U)	mg/kg	-	-	3.35	7.96	3.43	9.89	6.22	6.29	8.49	6.55	8.19	8.48	6.89	2.17	0.686
	Vanadium (V)	mg/kg	-	-	48.0	68.0	26.0	80.0	55.0	57.1	69.6	63.5	74.4	78.6	62.0	16.4	5.18
1	Zinc (Zn)	mg/kg	315	135	48.1	73.1	27.6	85.4	63.8	62.0	78.6	69.1	79.9	86.2	67.4	18.2	5.77
	Zirconium (Zr)	mg/kg	-	-	10.4	23.5	6.4	23.0	16.9	22.1	25.1	20.4	25.5	25.9	19.9	6.70	2.12

Indicates parameter concentration above Sediment Quality Guideline (SQG).

BOLD Indicates parameter concentration above the AEMP Benchmark.

Note: "-" indicates no SQG applicable.

^a Canadian Sediment Quality Guideline for the protection of aquatic life probable effects level (PEL; CCME 2015) except α (Ontario Provincial Sediment Quality Guideline [PSQG] severe effect level [SEL]; OMOE 1993) and β (British Columbia Working Sediment Quality Guideline [BCSQG] probable effects level [PEL; BCMOE 2015]).

^b AEMP Sediment Quality Benchmarks developed by Intrinsik (2013) using sediment quality guidelines, background sediment quality data, and method detection limits. The indicated values are specific to Mary Lake.

Table D.43: Statistical Comparison of Sediment Physical Properties Between Mary Lake and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Tes	t Results		Summary Statistics							
Lake Zone	Sediment Variable	Statistical Analysis ^a	Transform- ation	Significant Difference Between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum	
	Sand-Sized Material	tequal	log10	NO	0.310	Reference	5	29.6	7.5	3.4	23.4	40.4	
ջ	(%)		Ū		0.459	Mary	4	28.1	34.5	17.2	5.2	78.6	
Stations	Silt-Sized Material	tegual	none	NO		Reference	5	62.2	6.3	2.8	53.4	68.4	
	(%)	toquai	110110	110	0.100	Mary	4	53.6	24.0	12.0	18.0	69.9	
0 <u>w</u>	Clay-Sized Material	tunegual	none	NO	0.258	Reference	5	8.2	3.0	1.3	6.2	13.4	
lpal	(%)	turiequai	Tione	NO	0.230	Mary	4	18.3	14.5	7.2	3.4	32.0	
al (S	Moisture (%)	tunequal	none	YES	0.031	Reference	5	87.9	4.6	2.1	80.2	92.3	
Littoral (Shallow)			none	TES	0.031	Mary	4	50.7	19.9	10.0	27.3	67.3	
=	Total Organic Carbon (TOC) Content (%)	tequal	none	YES	0.005	Reference	5	4.8	2.0	0.9	2.3	7.0	
			Tione	TES		Mary	4	0.8	0.5	0.2	0.2	1.3	
	Sand-Sized Material	tequal	log10	NO	0.239	Reference	5	31.6	22.3	10.0	13.9	56.6	
	(%)	tequal	10910	NO	0.239	Mary	11	21.6	24.7	7.4	2.3	91.9	
ions	Silt-Sized Material	M-W	rank	NO	0.743	Reference	5	57.4	18.1	8.1	36.9	71.9	
Stat	(%)	IVI-VV	Idilk	NO	0.743	Mary	11	54.9	18.6	5.6	6.0	73.4	
(des	Clay-Sized Material	tagual	none	YES	0.025	Reference	5	11.0	4.3	1.9	6.3	15.1	
<u>ğ</u>	(%)	tequal	none	TES	0.025	Mary	11	23.5	10.6	3.2	2.1	33.2	
nda	Moisture	tagual	none	YES	0.001	Reference	5	82.6	3.6	1.6	78.3	86.6	
Profundal (Deep) Stations	(%)	tequal	none	TES	0.001	Mary	11	49.2	14.3	4.3	16.6	68.4	
"	Total Organic Carbon	tunoquol	nono	YES	0.004	Reference	5	3.4	1.1	0.5	2.2	4.5	
	(TOC) Content (%)	tunequal none	none	123	0.004	Mary	11	0.7	0.3	0.1	0.2	1.5	

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table D.44: Magnitude of Elevation in Sediment Metal Concentrations between Mary Lake and Reference Lake 3 2020 Data, and between Mary Lake 2020 and Baseline Data, Mary River Project CREMP, 2020

	Mary Lak	e versus Re	ference Lake 3 in	2020	Mary Lake 2020 versus Baseline Period						
Parameter	Littoral St	ations	Profundal S	tations	Littoral Sta	ations	Profundal Stations				
Farameter	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Reference Lake Concentration (µg/g)	Magnitude of Elevation	Mary Lake Baseline Concentration (mg/kg)	Magnitude of Elevation	Mary Lake Baseline Concentration (mg/kg)	Magnitude of Elevation			
Aluminum (Al)	16,880	1.3	21,800	1.0	18,267	1.2	17,000	1.3			
Antimony (Sb)	<0.10	1.0	<0.10	1.0	1.0	0.1	1.0	0.1			
Arsenic (As)	3.53	1.2	4.07	0.8	2.80	1.5	3.70	0.8			
Barium (Ba)	117	0.8	122	0.7	105	0.9	75.9	1.1			
Beryllium (Be)	0.65	1.6	0.80	1.3	1.0	1.0	1.0	1.0			
Bismuth (Bi)	<0.20	1.1	<0.20	1.2	-	-	-	-			
Boron (B)	12.2	2.6	14.7	2.1	0.733	42.8	2.09	14.4			
Cadmium (Cd)	0.173	0.7	0.148	0.9	0.500	0.3	0.500	0.3			
Calcium (Ca)	5,608	1.2	5,010	0.8	3,130	2.1	2,934	1.4			
Chromium (Cr)	54.3	1.4	65.0	1.2	81.0	1.0	76.3	1.0			
Cobalt (Co)	10.8	1.5	15.2	1.0	18.3	0.9	17.8	0.9			
Copper (Cu)	71.4	0.4	83.8	0.4	45.0	0.7	43.9	0.7			
Iron (Fe)	50,600	0.8	45,080	0.9	36,133	1.1	35,654	1.1			
Lead (Pb)	13.8	1.5	16.7	1.2	18.0	1.1	21.3	1.0			
Lithium (Li)	26.0	1.5	33.7	1.2	-	-	-	-			
Magnesium (Mg)	11,440	1.5	14,180	1.1	13,967	1.2	10,903	1.4			
Manganese (Mn)	579	1.8	1,230	1.4	699	1.5	991	1.7			
Mercury (Hg)	0.0500	0.8	0.0583	0.9	0.100	0.4	0.100	0.5			
Molybdenum (Mo	4.44	0.2	2.52	0.4	1.0	0.7	1.0	1.0			
Nickel (Ni)	40.0	1.4	45.0	1.3	67.0	0.8	65.4	0.9			
Phosphorus (P)	1,167	0.8	956	0.9	800	1.2	1,325	0.6			
Potassium (K)	4,100	1.4	5,338	1.1	3,450	1.6	4,287	1.3			
Selenium (Se)	0.728	0.3	0.614	0.4	1.0	0.2	1.0	0.2			
Silver (Ag)	0.142	0.9	0.202	0.7	0.273	0.5	0.365	0.4			
Sodium (Na)	304	1.1	369	1.0	279	1.2	284	1.2			
Strontium (Sr)	11.6	1.2	12.3	1.1	9.3	1.5	13.3	1.0			
Sulphur (S)	1,400	0.7	1,140	0.9	-	-	-	-			
Thallium (TI)	0.379	1.2	0.594	0.8	1.0	0.5	1.0	0.5			
Tin (Sn)	<2.0	1.0	<2.0	1.0	-	-	-	-			
Titanium (Ti)	1,006	1.5	1,136	1.3	-	-	-	-			
Uranium (U)	11.0	0.5	19.7	0.4	-	-	-	-			
Vanadium (V)	54.1	1.2	63.4	1.0	69.0	0.9	63.3	1.0			
Zinc (Zn)	73.1	0.9	83.8	0.8	67.0	1.0	63.6	1.1			
Zirconium (Zr)	4.5	4.0	3.9	5.2	-	-	-	-			

Note: '-' indicates baseline data not available.

Mary River Project 2020 Core Receiving Environment Monitoring Program Report

Part 3 of 3 (Appendices E to G)

Prepared for: **Baffinland Iron Mines Corporation** Oakville, Ontario

Prepared by: **Minnow Environmental Inc.** Georgetown, Ontario

March 2021

APPENDIX E PHYTOPLANKTON DATA

Table E.1: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at Lotic Reference Stations, Camp Lake Tributaries, Sheardown Lake Tributary 1, and Tom River, Mary River Project 2020 CREMP

			Reference Creek Stations				Camp Lake Tributary 1 (CLT1)						Camp Lake Camp Lake		Sheardown Lake Tributary 1	
	Station		Kelelelice O	ieek Stations		North	North Branch Main Stem					Tributary 2	Outlet		LT1)	Tom River
		CLT-REF4	CLT-REF3	MRY-REF3	MRY-REF2	L1-08	L1-02	L2-03	L1-09	L1-05	L0-01	K0-01	J0-01	D1-05	D1-00	10-01
	Spring	4-Jul-20	4-Jul-20	4-Jul-20	4-Jul-20	4-Jul-20	2-Jul-20	2-Jul-20	2-Jul-20	3-Jul-20	3-Jul-20	3-Jul-20	4-Jul-20	2-Jul-20	2-Jul-20	4-Jul-20
Sample Collection Date	Summer	3-Aug-20	3-Aug-20	3-Aug-20	3-Aug-20	3-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	3-Aug-20	3-Aug-20	3-Aug-20	3-Aug-20
	Fall	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	28-Aug-20	30-Aug-20	29-Aug-20	30-Aug-20	30-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20	29-Aug-20
	Spring	0.35	0.31	0.24	0.34	0.21	0.27	0.66	0.35	0.36	0.32	<0.10	0.79	0.22	0.24	0.24
	Summer	0.62	0.90	0.92	0.52	0.43	0.67	0.83	0.56	0.77	0.64	0.67	2.04	0.41	0.47	0.43
Chlorophyll-a	Fall	0.74	0.31	0.34	0.45	0.21	0.33	0.64	0.39	0.40	0.49	0.66	1.20	0.19	0.32	0.44
(µg/L)	Average	0.57	0.51	0.50	0.44	0.28	0.42	0.71	0.43	0.51	0.48	0.48	1.34	0.27	0.34	0.37
	Standard Deviation	0.20	0.34	0.37	0.09	0.13	0.22	0.10	0.11	0.23	0.16	0.33	0.64	0.12	0.12	0.11
	Standard Error	0.12	0.20	0.21	0.05	0.07	0.12	0.06	0.06	0.13	0.09	0.19	0.37	0.07	0.07	0.07
	Spring	0.40	<0.10	0.37	0.45	0.39	0.51	0.52	0.42	0.42	0.37	0.37	0.57	0.35	0.37	0.32
	Summer	1.17	1.50	1.60	1.36	1.16	1.24	1.37	1.01	1.48	1.17	1.05	1.75	1.23	1.10	0.97
Phaeophytin-a	Fall	0.78	0.46	0.57	0.58	0.69	0.51	0.61	0.54	0.54	0.57	0.63	0.82	0.40	0.43	0.52
(µg/L)	Average	0.78	0.69	0.85	0.80	0.75	0.75	0.83	0.66	0.81	0.70	0.68	1.05	0.66	0.63	0.60
	Standard Deviation	0.39	0.73	0.66	0.49	0.39	0.42	0.47	0.31	0.58	0.42	0.34	0.62	0.49	0.41	0.33
	Standard Error	0.22	0.42	0.38	0.28	0.22	0.24	0.27	0.18	0.34	0.24	0.20	0.36	0.29	0.23	0.19

Table E.2: Chlorophyll-a Concentration (μg/L) Data Summary and Statistical Comparison Results between Camp Lake Tributary 1 Main Stem Stations and Lotic Reference Creek Stations for Spring, Summer and Fall Sampling Events in 2020

	Two-A	Area Compari	son							
Season	Significant Difference between Areas?	P-value	Statistical Test ^a	Study Area	Sample Size	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Spring	NO	0.226	toqual	Reference	4	0.310	0.050	0.025	0.240	0.350
Spring	NO	0.226	tequal	CLT1 Main Stem	4	0.422	0.159	0.080	0.320	0.660
Summer	NO	0.745	togual	Reference	4	0.740	0.201	0.100	0.520	0.920
Summer	NO	0.745	tequal	CLT1 Main Stem	4	0.700	0.122	0.061	0.560	0.830
Fall	F-11 NO			Reference	4	0.460	0.196	0.098	0.310	0.740
Fall	NO	0.866	tequal	CLT1 Main Stem	4	0.480	0.116	0.058	0.390	0.640

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical test was T-test (tequal) for comparisons between Lotic Reference Creek and Camp Lake Tributary 1 Main Stem Stations within a season.

[\]Data analysis included: α - data untransformed, single factor ANOVA test conducted; β - data log-transformed, single factor ANOVA test conducted; γ - data untransformed, Mann-Whitney U-test conducted; ζ - data untransformed, t-test assuming unequal variance conducted; γ - data log-transformed, t-test assuming unequal variance conducted.

Table E.3: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at Reference Lake 3 (REF-03), Mary River Project 2020 CREMP

	Analyte			Chlorophy	yll-a (µg/L)		Phaeophytin-a (μg/L)						
	Station	REF3-01	REF3-02	REF3-03	Average	Standard Deviation	Standard Error	REF3-01	REF3-02	REF3-03	Average	Standard Deviation	Standard Error
Sample	Summer		2-Aug-20		-	-	-		2-Aug-20		-	-	-
Collection Date	Fall		29-Aug-20		-	-	-		29-Aug-20		-	-	-
	Surface	0.62	0.61	0.69	0.64	0.04	0.03	1.29	1.22	1.35	1.29	0.07	0.04
Summer	Bottom	1.06	1.02	0.68	0.92	0.21	0.12	1.65	1.47	1.38	1.50	0.14	0.08
	Average	0.84	0.82	0.69	0.78	0.08	0.05	1.47	1.35	1.37	1.39	0.07	0.04
	Surface	0.59	0.53	0.59	0.57	0.03	0.02	0.56	0.57	0.54	0.56	0.02	0.01
Fall	Bottom	0.62	0.70	0.60	0.64	0.05	0.03	0.58	0.68	0.59	0.62	0.06	0.03
	Average	0.61	0.62	0.60	0.61	0.01	0.01	0.57	0.63	0.57	0.59	0.03	0.02

Table E.4: Statistical Comparisons of Chlorophyll-a Concentrations Among Years at Reference Lake 3, Mary River Project CREMP, 2020

		Overall 5	-group Compa	rison					
Season	Data Transform- ation	Significant Difference Among Years?	P-value	Statistical Treatment ^a	Year	Sample Size (n)	Mean Concentration (mg/L)	Standard Deviation (mg/L)	Pairwise Comparison ^b
					2015	3	0.899	0.146	AB
		YES	0.047	4	2016	3	0.922	0.0845	Α
C	naml.			14.104	2017	3	0.634	0.0899	С
Summer	rank			K-W	2018	3	0.742	0.0660	BC
					2019	3	0.680	0.213	BC
					2020	6	0.780	0.0744	ABC
					2015	3	1.06	0.363	AB
					2016	3	0.738	0.0708	ABC
E-11	naml.	VEC	0.000	14.104	2017	3	0.913	0.0189	Α
Fall	rank	YES	0.003	K-W	2018	3	0.907	0.0388	Α
					2019	3	0.680	0.0695	BC
					2020	6	0.605	0.00894	С

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a The statistical test was A Kruskal Wallis H-test (KW H-test) for differences among 5 years.

^b Annual data sets sharing the same letter do not differ significantly.

Table E.5: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at Camp Lake (JLO), Mary River Project CREMP, 2020

	Analyte	Chlorophyll-a (μg/L)										
	Station	JL0-02	JL0-10	JL0-01	JL0-07	JL0-09	Average	Standard Deviation	Standard Error			
	Winter	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	-	-	-			
Sample Collection Date	Summer	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	-	-	-			
	Fall	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	-	-	-			
	Surface	1.37	0.41	0.99	0.59	0.31	0.73	0.44	0.20			
Winter	Bottom	0.31	0.24	0.14	0.14	0.18	0.20	0.07	0.03			
	Average	0.84	0.33	0.57	0.37	0.25	0.47	0.24	0.11			
	Surface	1.31	1.39	1.07	0.94	0.77	1.10	0.26	0.11			
Summer	Bottom	1.62	2.02	0.96	1.05	0.78	1.29	0.52	0.23			
	Average	1.47	1.71	1.02	1.00	0.78	1.19	0.38	0.17			
	Surface	0.87	0.99	<0.10	1.34	1.16	0.89	0.48	0.21			
Fall	Bottom	1.31	1.46	1.31	0.90	1.13	1.22	0.21	0.10			
	Average	1.09	1.23	0.71	1.12	1.15	1.06	0.20	0.09			

	Analyte	Phaeophytin-a (μg/L)										
	Station	JL0-02	JL0-10	JL0-01	JL0-07	JL0-09	Average	Standard Deviation	Standard Error			
	Winter	12-Apr-20	13-Apr-20	13-Apr-20	13-Apr-20	14-Apr-20	-	-	-			
Sample Collection Date	Summer	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	29-Jul-20	-	-	-			
Conconon Bate	Fall	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	30-Aug-20	-	-	-			
	Surface	0.68	0.42	0.60	0.54	0.41	0.53	0.12	0.05			
Winter	Bottom	0.38	0.35	0.32	0.34	0.41	0.36	0.04	0.02			
	Average	0.53	0.39	0.46	0.44	0.41	0.45	0.06	0.02			
	Surface	1.11	1.03	0.99	1.00	0.88	1.00	0.08	0.04			
Summer	Bottom	1.29	1.47	0.68	0.92	0.78	1.03	0.34	0.15			
	Average	1.20	1.25	0.84	0.96	0.83	1.02	0.20	0.09			
	Surface	0.65	0.73	0.25	0.99	1.02	0.73	0.31	0.14			
Fall	Bottom	0.87	0.90	0.92	0.77	0.81	0.85	0.06	0.03			
	Average	0.76	0.82	0.59	0.88	0.92	0.79	0.13	0.06			

Table E.6: Statistical Comparisons of Chlorophyll-a Concentrations Among Winter, Spring, Summer and/or Fall Sampling Events at Mine-Exposed and Reference Creek and Lake Study Areas, Mary River Project CREMP, 2020

	Overall 3	3-group Compa	rison	P	air-wise, <i>post hoc</i> compa	risons ^a	
Study Area	Significant Difference Among Seasons?	P-value	Statistical Test ^b	(I) Season	(J) Season	Significant Difference Between 3 Seasons?	P-value
Reference Creek				Spring	Summer	YES	0.011
Stations	YES	0.036	K-W	Spring	Fall	NO	0.325
Clations				Summer	Fall	NO	0.115
Mary River GO-09				Spring	Summer	YES	0.007
Reference Stations	YES	0.027	K-W	Spring	Fall	NO	0.180
				Summer	Fall	NO	0.180
				Winter	Summer	YES	0.022
Reference Lake 3	YES	0.022	tequal	Winter	Fall	YES	0.022
				Summer	Fall	YES	0.022
				Winter	Summer	YES	0.004
Camp Lake	YES	0.004	ANOVA	Winter	Fall	YES	0.004
				Summer	Fall	NO	0.743
				Winter	Summer	YES	0.027
Sheardown Lake NW	YES	0.003	K-W	Winter	Fall	YES	<0.001
				Summer	Fall	NO	0.279
				Winter	Summer	YES	<0.001
Sheardown Lake SE	YES	0.002	K-W	Winter	Fall	YES	0.066
				Summer	Fall	NO	0.104
				Winter	Summer	YES	0.002
Mary Lake North Basin	YES	0.002	ANOVA	Winter	Fall	YES	0.033
North Basin				Summer	Fall	YES	0.061
				Winter	Summer	YES	0.001
Mary Lake South Basin	YES	0.003	K-W	Winter	Fall	NO	0.477
Coder Buom				Summer	Fall	YES	0.012

^a Post hoc analysis of 1-way ANOVA among all areas protected for multiple comparisons.

^b Statistical tests include Analysis of Variance (ANOVA), Kruskal Wallis H-test (KW H-test) for differences among three seasons within each station and T-test (tequal) for Reference Lake 3 when only two seasons were sampled.

Table E.7: Summary Data and Statistical Results for Chlorophyll-a Concentration (mg/L) Comparisons between Individual Mine-Exposed Lakes and Reference Lake 3 for Summer Sampling, Mary River Project CREMP, 2020

	Two-Grou	p Comparis	son to Refere	nce	Number of					
Study Lake	Significant Difference between Areas?	P-value	Statistical Test ^a	Magnitude of Difference ^b	Stations (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Reference Lake 03	-	-	-	-	3	0.780	0.0832	0.0480	0.685	0.840
Camp Lake	NO	0.143	M-W	5.4	5	1.19	0.381	0.171	0.775	1.71
Sheardown Lake NW	YES	0.048	M-W	16	6	2.45	2.92	1.19	0.835	8.36
Sheardown Lake SE	YES	0.036	M-W	33	5	1.92	0.306	0.137	1.43	2.19
Mary Lake North	NO	0.100	M-W	29	3	1.67	0.475	0.275	1.12	2.00
Mary Lake South	YES	0.017	M-W	4.0	7	1.01	0.134	0.0506	0.860	1.22

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical Test was Mann-Whitney (M-W) U-test between indvidual mine-exposed lakes and Reference Lake 3.

^b Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

Table E.8: Summary Data and Statistical Results for Chlorophyll-a Concentration (mg/L) Comparisons between Individual Mine-Exposed Lakes and Reference Lake 3 for Fall Sampling, Mary River Project CREMP, 2020

	Two-Grou	up Compariso	on to Referen	се	Number of					
Study Lake	Significant Difference between Areas?	P-value	Statistical Test ^a	Magnitude of Difference ^b		Mean	Standard Deviation	Standard Error	Minimum	Maximum
Reference Lake (-	-	-	-	3	0.605	0.0100	0.00577	0.595	0.615
Camp Lake	YES	0.036	M-W	35	5	1.06	0.203	0.0908	0.705	1.23
Sheardown Lake NW	YES	<0.001	tequal	66	6	1.79	0.129	0.0527	1.67	1.97
Sheardown Lake SE	YES	<0.001	tequal	48	5	1.35	0.0767	0.0343	1.27	1.46
Mary Lake North	NO	0.100	M-W	28	3	1.01	0.0275	0.0159	0.975	1.02
Mary Lake South	NO	0.295	tequal	4.2	7	0.651	0.0690	0.0261	0.580	0.780

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical Test were Mann-Whitney U-test (M-W) or T-test (tequal) between indvidual mine-exposed lakes and Reference Lake 3.

^b Magnitude calculated by comparing the difference between the reference area and mine-exposed area means divided by the reference area standard deviation.

Table E.9: Statistical Comparison of Chlorophyll-a Concentrations at Camp Lake Among Years of Mine Operation (2015 to 2020)

	Data		Overall 7-Year C	omparison		Pair-wis	se, post-hoc	comparisons	s ^b		
Season	Data Transform -ation	Statistical Test ^a	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Pairwise Comparison ^c		
					2014	4	0.275	0.150	С		
					2015	5	0.742	0.152	Α		
					2016	5	0.645	0.120	AB		
Winter	log10	ANOVA	YES	<0.001	2017	5	0.316	0.108	С		
					2018	5	0.384	0.0414	ВС		
					2019	5	0.474	0.123	ABC		
					2020	10	0.468	0.225	ВС		
					2014	2	1.05	1.20	ВС		
					2015	5	1.26	0.163	В		
					2016	5	1.50	0.319	AB		
Summer	rank	K-W	YES	0.004	2017	5	1.24	0.154	ВС		
					2018	5	2.00	0.0351	Α		
					2019	5	0.875	0.288	С		
					2020	10	1.19	0.360	ВС		
					2014	5	1.59	0.726	В		
					2015	5	0.650	0.0696	D		
					2016	5	1.06	0.214	BCD		
Fall	log10	ANOVA	YES	<0.001	2017	5	1.19	0.149	BCD		
					2018	5	2.15	0.0354	Α		
					2019	5	1.28	0.252	BC		
					2020	10	1.59 0.726 B 0.650 0.0696 D 1.06 0.214 BCD 1.19 0.149 BCD 2.15 0.0354 A				
					2014	11	1.01	0.864	Α		
					2015	15	0.884	0.305	Α		
					2016	15	1.07	0.421	А		
Annual	rank	K-W	NO	0.224	2017	15	0.915	0.458	Α		
			NO		2018	15	1.51	0.828	Α		
					2019	15	0.875	0.402	Α		
					2020	30	0.905	0.411	Α		

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical tests include Analysis of Variance (ANOVA) or Kruskal Wallis H-test (KW) for differences among seven years.

^b Post hoc analysis of 1-way ANOVA or Kruskall Waliis H-test (KW) among all years protected for multiple comparisons. ^c Similar letter indicates no significant differences.

Table E.10: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at Sheardown Lake Northwest (DLO-01), Mary River Project CREMP, 2020

	Analyte				Chlo	rophyll-a (µg/L)				
	Station	DD-HAB 9- STN1	DL0-01-5	DL0-01-1	DL0-01-4	DL0-01-2	DL0-01-7	Average	Standard Deviation	Standard Error
Sample	Winter	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20	-	-	-
Collection	Summer	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20	-	-	-
Date	Fall	26-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	-	-	-
	Surface	0.38	0.84	0.30	0.35	1.83	0.69	0.73	0.58	0.24
Winter	Bottom	0.30	0.17	0.18	0.52	0.19	0.19	0.26	0.14	0.06
	Average	0.34	0.51	0.24	0.44	1.01	0.44	0.50	0.27	0.11
	Surface	0.91	1.02	0.98	15.0	0.87	1.47	3.38	5.70	2.33
Summer	Bottom	0.98	0.65	2.08	1.72	1.70	2.04	1.53	0.58	0.24
	Average	0.95	0.84	1.53	8.36	1.29	1.76	2.45	2.92	1.19
	Surface	1.80	1.75	1.81	1.55	2.08	1.73	1.79	0.17	0.07
Fall	Bottom	1.53	2.14	1.73	1.87	1.85	1.69	1.80	0.21	0.08
	Average	1.67	1.95	1.77	1.71	1.97	1.71	1.79	0.13	0.05

	Analyte				Phae	ophytin-a (µg/L))			
	Station	DD-HAB 9- STN1	DL0-01-5	DL0-01-1	DL0-01-4	DL0-01-2	DL0-01-7	Average	Standard Deviation	Standard Error
Sample	Winter	17-Apr-20	17-Apr-20	17-Apr-20	16-Apr-20	17-Apr-20	15-Apr-20	-	-	-
Collection	Summer	28-Jul-20	29-Jul-20	29-Jul-20	28-Jul-20	29-Jul-20	28-Jul-20	-	-	-
Date	Fall	26-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	27-Aug-20	26-Aug-20	-	-	-
	Surface	0.37	0.47	0.36	0.39	0.83	0.56	0.50	0.18	0.07
Winter	Bottom	0.40	0.33	0.34	0.46	0.34	0.33	0.37	0.05	0.02
	Average	0.39	0.40	0.35	0.43	0.59	0.45	0.43	0.08	0.03
	Surface	0.70	1.04	0.92	7.96	0.96	1.52	2.18	2.84	1.16
Summer	Bottom	0.67	0.77	1.54	1.12	1.45	2.00	1.26	0.50	0.21
	Average	0.69	0.91	1.23	4.54	1.21	1.76	1.72	1.43	0.58
	Surface	0.99	1.06	1.18	1.02	1.21	1.20	1.11	0.10	0.04
Fall	Bottom	0.76	1.26	0.94	1.07	1.26	0.96	1.04	0.20	0.08
	Average	0.88	1.16	1.06	1.05	1.24	1.08	1.08	0.12	0.05

Table E.11: Statistical Comparison of Chlorophyll-a Concentrations at Sheardown Lake NW Among Years of Mine Operation (2015 to 2020)

	Dete		Overall 7-Year 0	Comparison		Pair-wis	se, post-hoc	comparisons	s ^b
Season	Data Transform- ation	Statistical Test ^a	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Pairwise Comparison ^c
					2014	6	2.55	1.34	Α
					2015	6	1.10	0.0469	AB
					2016	6	0.874	0.316	В
Winter	rank	K-W	YES	<0.001	2017	6	0.790	0.268	ВС
					2018	6	1.03	0.495	AB
					2019	6	0.463	0.235	С
					2020	12	0.495	0.256	С
					2014	6	2.42	0.821	Α
					2015	6	1.51	0.244	ВС
					2016	6	2.13	0.387	Α
Summer	rank	K-W	YES	0.003	2017	6	1.22	0.126	С
					2018	6	2.01	0.183	Α
					2019	6	1.81	0.246	AB
					2020	12	2.45	2.78	ВС
					2014	6	0.800	0.379	D
					2015	6	1.61	0.44	ВС
					2016	6	1.53	0.183	ВС
Fall	rank	K-W	YES	<0.001	2017	6	1.56	0.222	ВС
					2018	6	1.75	0.136	AB
					2019	6	1.19	0.309	CD
					2020	12	1.79	0.123	Α
					2014	18	1.93	1.20	Α
					2015	18	1.41	0.355	AB
Annual					2016	18	1.51	0.602	AB
	rank	K-W	YES	0.071	2017	18	1.19	0.381	В
					2018	18	1.60	0.519	Α
					2019	18	1.15	0.618	В
					2020	36	1.58	1.77	В

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical tests include Analysis of Variance (ANOVA) or Kruskal Wallis H-test (KW) for differences among seven years.

^b Post hoc analysis of 1-way ANOVA or Kruskall Wallis H-test (KW) among all years protected for multiple comparisons.

^c Similar letter indicates no significant differences.

Table E.12: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at Sheardown Lake SE (DLO-02), Mary River Project CREMP, 2020

	Analyte				Chloroph	yll-a (µg/L)			
	Station	DL0-02-06	DL0-02-07	DL0-02-4	DL0-02-8	DL0-02-03	Average	Standard Deviation	Standard Error
Camania	Winter	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	-	-	-
Sample - Collection Date -	Summer	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	-	-	-
Collection Date	Fall	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	-	-	-
	Surface	0.98	0.95	1.11	1.42	1.81	1.25	0.36	0.16
Winter	Bottom	0.21	0.96	0.64	0.28	0.23	0.46	0.33	0.15
	Average	0.60	0.96	0.88	0.85	1.02	0.86	0.16	0.07
	Surface	0.22	1.45	2.16	3.05	1.60	1.70	1.04	0.46
Summer	Bottom	2.64	2.93	1.91	1.18	2.03	2.14	0.68	0.31
	Average	1.43	2.19	2.04	2.12	1.82	1.92	0.31	0.14
	Surface	1.40	1.39	1.38	1.25	1.41	1.37	0.07	0.03
Fall	Bottom	1.14	1.35	1.36	1.32	1.51	1.34	0.13	0.06
	Average	1.27	1.37	1.37	1.29	1.46	1.35	0.08	0.03

	Analyte				Phaeophy	tin-a (µg/L)			
	Station	DL0-02-06	DL0-02-07	DL0-02-4	DL0-02-8	DL0-02-03	Average	Standard Deviation	Standard Error
0	Winter	15-Apr-20	15-Apr-20	14-Apr-20	14-Apr-20	15-Apr-20	-	-	-
Sample Collection Date	Summer	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	28-Jul-20	-	-	-
Collection Date =	Fall	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	-	-	-
	Surface	0.63	0.69	1.05	1.00	1.01	0.88	0.20	0.09
Winter	Bottom	0.39	0.71	0.68	0.44	0.39	0.52	0.16	0.07
	Average	0.51	0.70	0.87	0.72	0.70	0.70	0.13	0.06
	Surface	0.84	1.89	1.97	2.21	1.93	1.77	0.53	0.24
Summer	Bottom	2.30	3.14	1.77	1.90	1.90	2.20	0.56	0.25
	Average	1.57	2.52	1.87	2.06	1.92	1.99	0.35	0.15
	Surface	0.88	0.81	0.77	0.91	0.86	0.85	0.06	0.03
Fall	Bottom	0.68	0.90	0.89	0.83	0.93	0.85	0.10	0.04
	Average	0.78	0.86	0.83	0.87	0.90	0.85	0.04	0.02

Table E.13: Statistical Comparison of Chlorophyll-a Concentrations at Sheardown Lake SE Among Years of Mine Operation (2015 to 2020)

	5.4		Overall 7-Year C	omparison		Pair-wis	e, post-hoc	comparisons	s ^b
Season	Data Transform- ation	Statistical Test ^a	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Pairwise Comparison ^c
					2014	5	2.67	1.01	Α
					2015	5	1.58	0.525	ВС
					2016	5	1.90	0.648	AB
Winter	log10	ANOVA	YES	<0.001	2017	5	1.36	0.412	ВС
					2018	5	2.23	0.851	AB
					2019	5	1.88	0.386	AB
					2020	10	0.859	0.153	С
					2014	5	0.203	0.00437	D
					2015	5	0.913	0.0705	CD
					2016	5	1.51	0.208	ВС
Summer	rank	K-W	YES	<0.001	2017	5	1.37	0.156	С
					2018	5	2.12	0.0728	Α
					2019	5	2.16	0.242	Α
					2020	10	1.92	0.289	AB
					2014	5	1.54	1.63	CD
					2015	5	0.992	0.103	D
					2016	5	2.87	0.737	Α
Fall	rank	K-W	YES	<0.001	2017	5	1.50	0.0757	ВС
					2018	5	2.03	0.115	AB
					2019	5	2.00	0.446	AB
					2020	10	1.35	0.0723	CD
					2014	15	1.47	1.46	В
					2015	15	1.16	0.420	В
				2016	15	2.09	0.798	А	
Annual	rank	K-W	YES	<0.001	2017	15	1.41	0.248	В
					2018	15	2.13	0.468	А
					2019	15	2.01	0.362	А
					2020	30	1.38	0.478	В

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical tests include Analysis of Variance (ANOVA) or Kruskal Wallis H-test (KW) for differences among seven years.

^b Post hoc analysis of 1-way ANOVA or Kruskall Waliis H-test (KW) among all years protected for multiple comparisons.

^c Similar letter indicates no significant differences.

Table E.14: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at the Mary River, Mary River Project CREMP, 2020

	Station	Upst	ream Refer	ence			Upstre	am Mine-E	xposed			Downsti	ream Mine-	Exposed
	Station	G0-09-A	G0-09	G0-09-B	G0-03	G0-01	F0-01	E0-10	E0-03	E0-21	E0-20	C0-10	C0-05	C0-01
	Spring	4-Jul-20	4-Jul-20	4-Jul-20	3-Jul-20	3-Jul-20								
Sample Collection Date	Summer	3-Aug-20	2-Aug-20	2-Aug-20	2-Aug-20	1-Aug-20	1-Aug-20	1-Aug-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	31-Jul-20	31-Jul-20
	Fall	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20
	Spring	0.24	0.25	0.27	0.51	0.42	0.29	0.28	0.26	0.23	<0.10	0.25	0.54	0.48
	Summer	0.66	0.71	0.93	0.79	0.52	0.41	0.60	0.60	0.56	0.68	0.53	0.69	0.64
Chlorophyll-a	Fall	0.33	0.43	0.34	0.73	0.27	0.33	0.28	0.30	0.34	0.32	0.35	0.38	0.33
(µg/L)	Average	0.41	0.46	0.51	0.68	0.40	0.34	0.39	0.39	0.38	0.37	0.38	0.54	0.48
	Standard Deviation	0.22	0.23	0.36	0.15	0.13	0.06	0.18	0.19	0.17	0.29	0.14	0.16	0.16
	Standard Error	0.13	0.13	0.21	0.09	0.073	0.04	0.11	0.11	0.10	0.17	0.08	0.09	0.09
	Spring	0.35	0.66	0.43	0.44	0.43	0.34	0.39	0.37	0.35	0.39	0.36	0.48	0.48
	Summer	1.34	1.45	1.70	1.70	1.46	1.02	1.59	1.58	1.75	1.69	0.88	1.26	1.03
Phaeophytin-a	Fall	0.85	0.84	0.99	1.01	0.68	0.75	0.71	0.76	0.78	0.78	0.73	0.74	0.66
(µg/L)	Average	0.85	0.98	1.04	1.05	0.86	0.70	0.90	0.90	0.96	0.95	0.66	0.83	0.72
	Standard Deviation	0.50	0.41	0.64	0.63	0.54	0.34	0.62	0.62	0.72	0.67	0.27	0.40	0.28
	Standard Error	0.29	0.24	0.37	0.36	0.31	0.20	0.36	0.357	0.41	0.39	0.15	0.23	0.16

Table E.15: Phytoplankton Monitoring Data (i.e., chlorophyll-a and phaeophytin-a concentrations) Collected at Mary Lake (north and south basins; BLO), Mary River Project CREMP, 2020

	Analyte						Chlorop	hyll-a (μg/L)						
	Station		Mary Lake North	1				Mary Lake South	1				Standard	Standard
	Station	BL0-01A	BL0-01	BL0-01B	BL0-05-A	BL0-05	BL0-05-B	BL0-03	BL0-04	BL0-09	BL0-06	Average	Deviation	Error
Sample	Winter	19-Apr-20	19-Apr-20	19-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	-	-	-
Collection	Summer	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	-	-	-
Date	Fall	27-Aug-20	27-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	-	-	-
	Surface	0.22	0.48	0.25	0.90	0.80	1.27	0.52	0.89	1.54	0.70	0.76	0.42	0.13
Winter	Bottom	<0.10	<0.10	0.26	0.13	0.17	0.72	0.12	0.14	0.18	0.21	0.21	0.19	0.06
	Average	0.16	0.29	0.26	0.52	0.49	1.00	0.32	0.52	0.86	0.46	0.49	0.26	0.08
	Surface	1.46	1.69	1.83	0.93	0.86	1.00	1.69	1.40	1.40	1.25	1.35	0.34	0.11
Summer	Bottom	0.78	2.30	1.93	0.83	0.86	1.08	0.74	0.53	0.48	1.04	1.06	0.59	0.19
	Average	1.12	2.00	1.88	0.88	0.86	1.04	1.22	0.97	0.94	1.15	1.20	0.40	0.13
	Surface	0.99	1.12	1.02	0.49	0.57	0.50	0.72	0.61	0.57	0.69	0.73	0.23	0.07
Fall	Bottom	0.96	0.93	1.02	0.76	0.59	0.83	0.84	0.63	0.62	0.70	0.79	0.15	0.05
	Average	0.98	1.03	1.02	0.63	0.58	0.67	0.78	0.62	0.60	0.70	0.76	0.18	0.06

	Analyte	Phaeophytin-a (μg/L)												
	Otatia		Mary Lake North	ı	Mary Lake South								Standard	Standard
	Station	BL0-01-A	BL0-01	BL0-01-B	BL0-05-A	BL0-05	BL0-05-B	BL0-03	BL0-04	BL0-09	BL0-06	Average	Deviation	Error
Sample Collection	Winter	19-Apr-20	19-Apr-20	19-Apr-20	21-Apr-20	21-Apr-20	21-Apr-20	19-Apr-20	20-Apr-20	20-Apr-20	20-Apr-20	-	-	-
	Summer	30-Jul-20	30-Jul-20	30-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	31-Jul-20	1-Aug-20	1-Aug-20	1-Aug-20	-	-	-
Date	Fall	27-Aug-20	27-Aug-20	27-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	28-Aug-20	-	-	-
	Surface	0.29	0.43	0.30	0.61	0.55	0.75	0.38	0.58	0.77	0.60	0.53	0.17	0.05
Winter	Bottom	0.29	0.27	0.34	0.35	0.39	0.62	0.29	0.32	0.35	0.41	0.36	0.10	0.03
	Average	0.29	0.35	0.32	0.48	0.47	0.69	0.34	0.45	0.56	0.51	0.44	0.12	0.04
	Surface	1.15	1.09	1.32	1.40	1.31	1.57	1.48	1.65	1.67	1.42	1.41	0.20	0.06
Summer	Bottom	1.14	1.70	2.00	1.24	1.33	1.47	0.89	1.23	1.10	1.64	1.37	0.33	0.10
	Average	1.15	1.40	1.66	1.32	1.32	1.52	1.19	1.44	1.39	1.53	1.39	0.16	0.05
	Surface	0.76	0.79	0.82	0.80	0.96	0.76	0.87	0.93	0.82	0.92	0.84	0.07	0.02
Fall	Bottom	0.85	0.73	0.84	1.05	0.92	0.99	1.30	0.90	0.99	0.87	0.94	0.15	0.05
	Average	0.81	0.76	0.83	0.93	0.94	0.88	1.09	0.92	0.91	0.90	0.89	0.09	0.03

Table E.16: Statistical Comparison of Chlorophyll-a Concentrations at the Mary Lake North Basin Among Years of Mine Operation (2015 to 2020)

			Overall 7-Year C	Pair-wise, post-hoc comparisons ^b					
Season	Data Transform- ation	Statistical Test ^a	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Pairwise Comparison ^c
		K-W	NO	0.216	2014	3	0.585	0.663	Α
					2015	3	0.652	0.684	Α
Winter					2016	2	0.182	0.0247	Α
	rank				2017	3	0.178	0.0553	Α
					2018	3	0.197	0.0425	Α
					2019	3	0.498	0.422	Α
					2020	6	0.235	0.0602	Α
		K-W	YES	0.010	2014	3	0.917	0.725	BC
					2015	3	0.827	0.246	BC
					2016	3	1.16	0.0961	AB
Summer	rank				2017	3	0.266	0.0166	С
					2018	3	0.504	0.187	С
					2019	3	0.737	0.118	ВС
					2020	6	1.67	0.425	Α
	rank	K-W	YES	0.008	2014	3	0.517	0.252	В
					2015	3	0.623	0.0718	В
					2016	3	0.997	0.0909	Α
Fall					2017	3	0.905	0.136	Α
					2018	3	0.860	0.0661	AB
					2019	3	0.850	0.0757	AB
					2020	6	1.01	0.0246	Α
	rank	K-W	NO	0.147	2014	9	0.673	0.54	Α
					2015	9	0.701	0.378	Α
					2016	8	0.854	0.427	А
Annual					2017	9	0.450	0.351	А
					2018	9	0.520	0.305	Α
					2019	9	0.695	0.271	А
					2020	18	0.969	0.645	Α

Indicates a statistically significant difference for respective comparison (p-value \leq 0.1).

^a Statistical tests include Analysis of Variance (ANOVA) or Kruskal Wallis H-test (KW) for differences among seven years

b Post hoc analysis of 1-way ANOVA or Kruskall Waliis H-test (KW) among all years protected for multiple comparisons. Similar letter indicates no significant differences.

Table E.17: Statistical Comparison of Chlorophyll-a Concentrations at the Mary Lake South Basin Among Years of Mine Operation (2015 to 2020)

	Data Transform- ation	Statistical Test ^a	Overall 7-Year C	Pair-wise, post-hoc comparisons ^b					
Season			Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Pairwise Comparison ^c
		K-W	YES	0.061	2014	7	0.879	1.46	ВС
					2015	7	0.646	0.340	Α
Winter					2016	7	0.306	0.197	С
	rank				2017	7	0.351	0.209	ВС
					2018	7	0.532	0.337	ABC
					2019	7	0.482	0.168	AB
					2020	14	0.592	0.232	Α
		K-W		<0.001	2014	7	0.864	0.594	AB
			YES		2015	7	0.789	0.116	В
	rank				2016	7	1.08	0.172	Α
Summer					2017	7	0.802	0.0827	В
					2018	7	0.848	0.218	AB
					2019	7	0.521	0.0254	С
					2020	14	1.01	0.129	Α
	rank	K-W	YES	<0.001	2014	7	0.75	0.294	Α
					2015	7	0.895	0.120	AB
					2016	7	0.752	0.231	Α
Fall					2017	7	0.75	0.0773	AC
					2018	7	0.904	0.0252	AB
					2019	7	0.934	0.0415	В
					2020	14	0.651	0.0663	С
	rank	K-W	NO	0.515	2014	21	0.831	0.878	Α
					2015	21	0.777	0.232	А
Annual					2016	21	0.711	0.376	Α
					2017	21	0.634	0.244	Α
					2018	21	0.762	0.277	А
					2019	21	0.645	0.230	А
					2020	42	0.75	0.241	А

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

^a Statistical tests include Analysis of Variance (ANOVA) or Kruskal Wallis H-test (KW) for differences among seven years.

^b Post hoc analysis of 1-way ANOVA or Kruskall Waliis H-test (KW) among all years protected for multiple comparisons. ^c Similar letter indicates no significant differences.

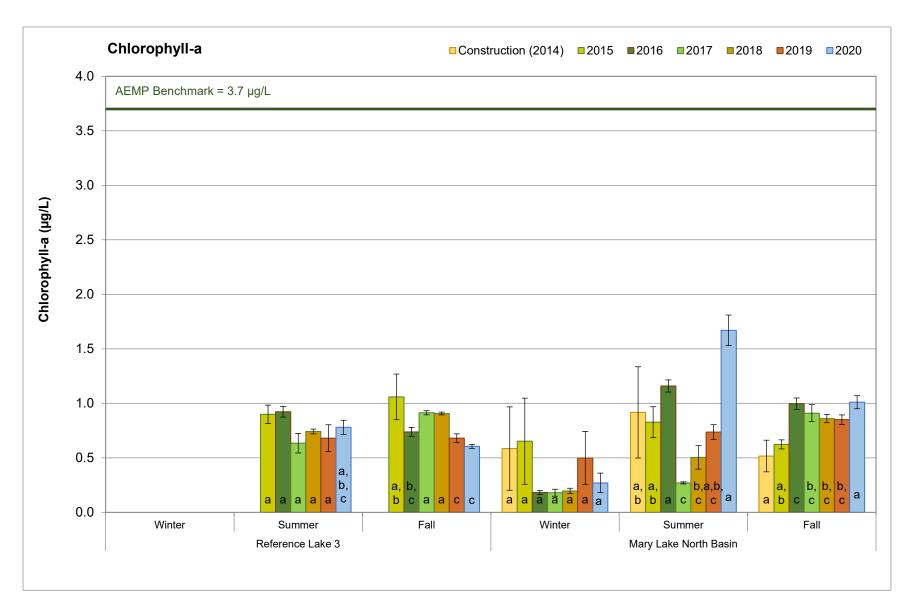


Figure E.1: Temporal Comparison of Chlorophyll-a Concentrations Among Seasons between the Mary Lake North Basin and Reference Lake 3 for Mine Construction (2014) and Operational (2015 to 2020) Periods (mean ± SE)

Note: Bars with the same letter at the base do not differ significantly between years for the applicable season.

APPENDIX F BENTHIC INVERTEBRATE COMMUNITY DATA

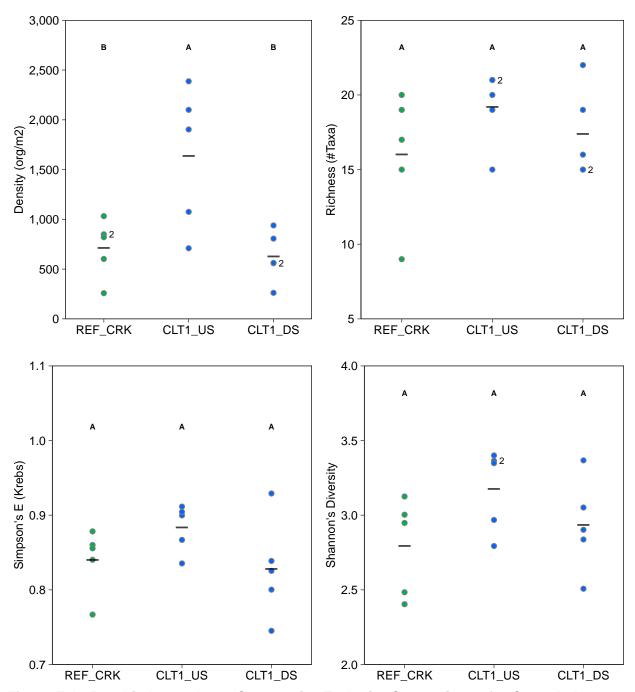


Figure F.1: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

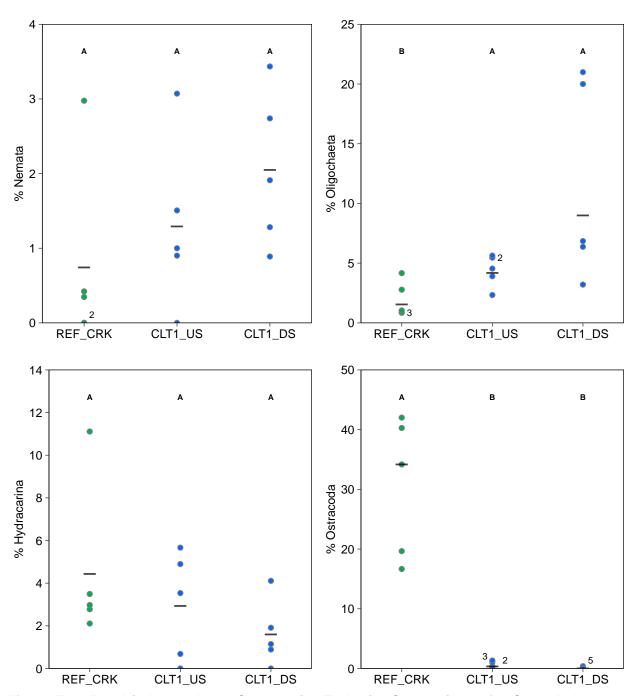


Figure F.1: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

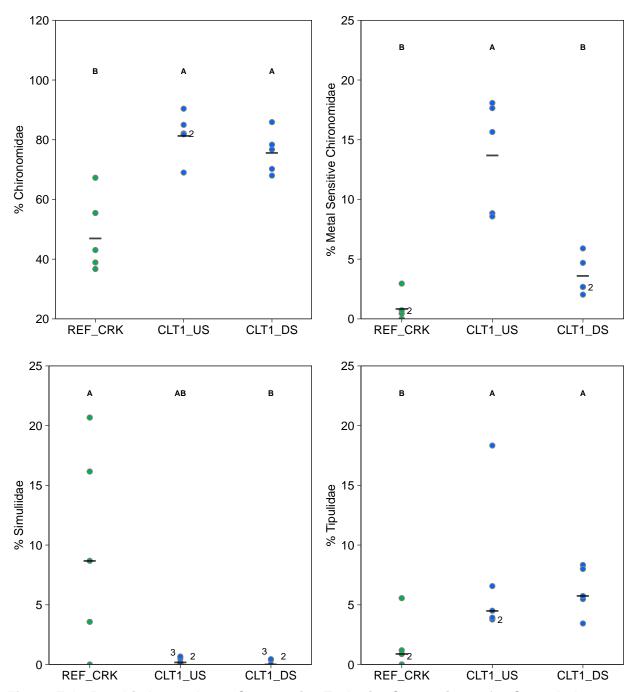


Figure F.1: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

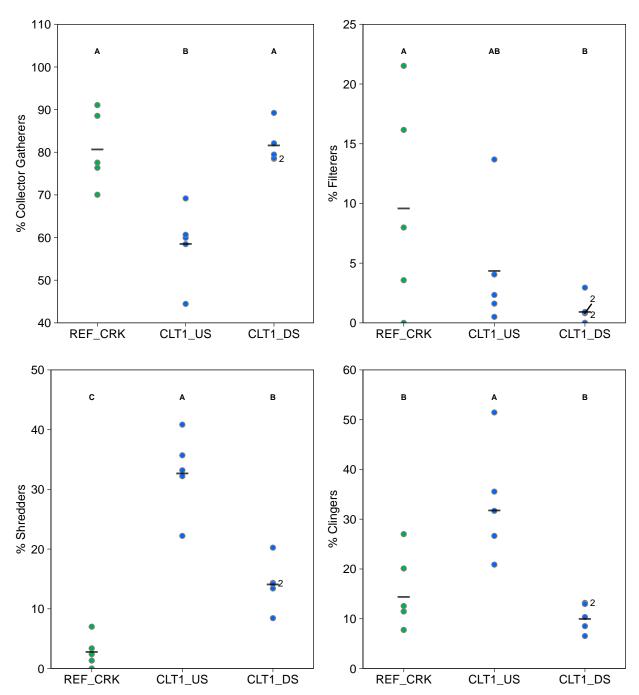


Figure F.1: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

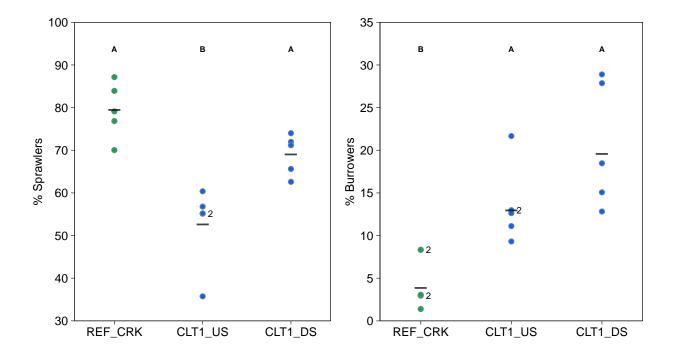


Figure F.1: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

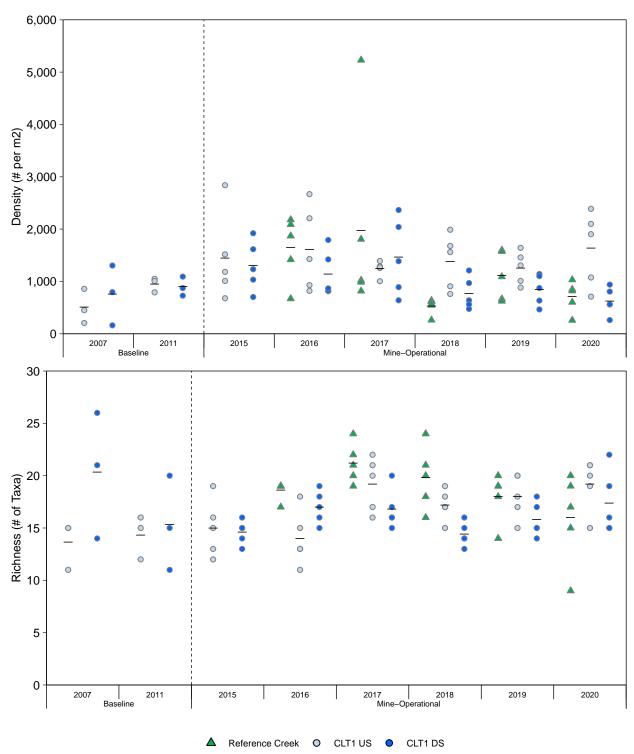


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

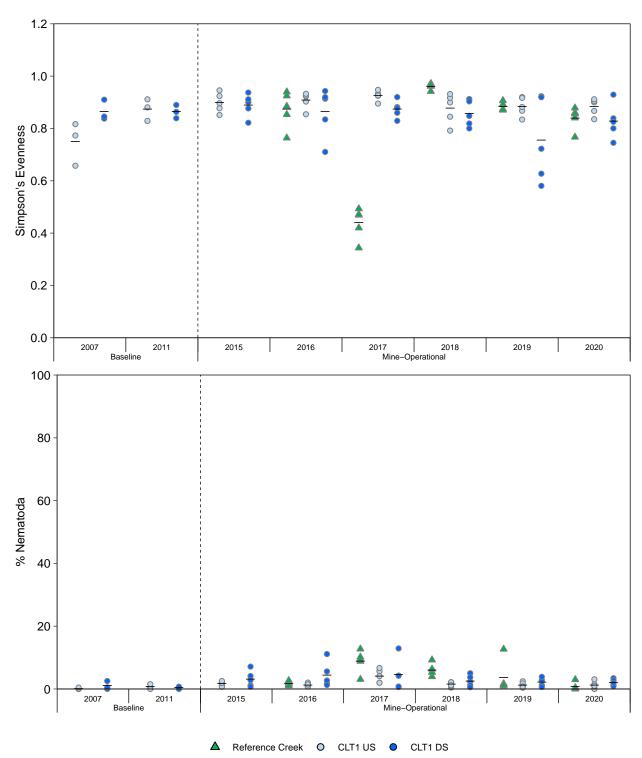


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

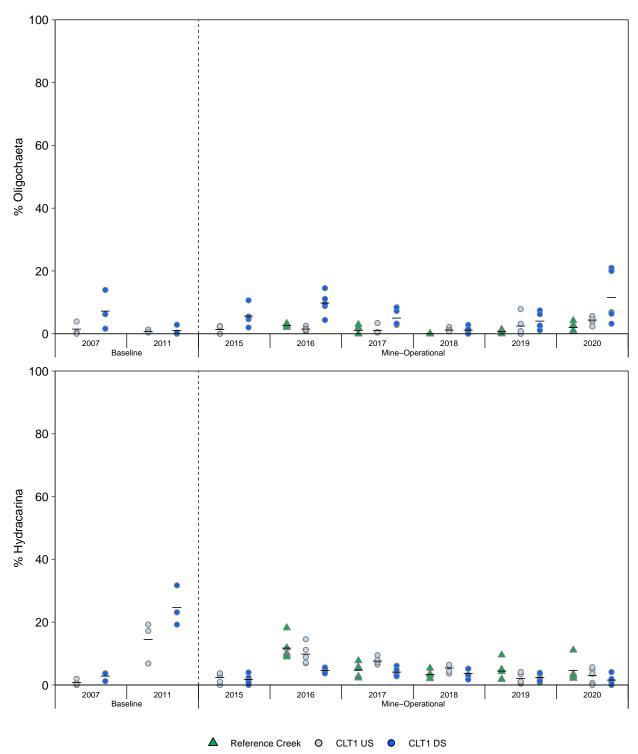


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

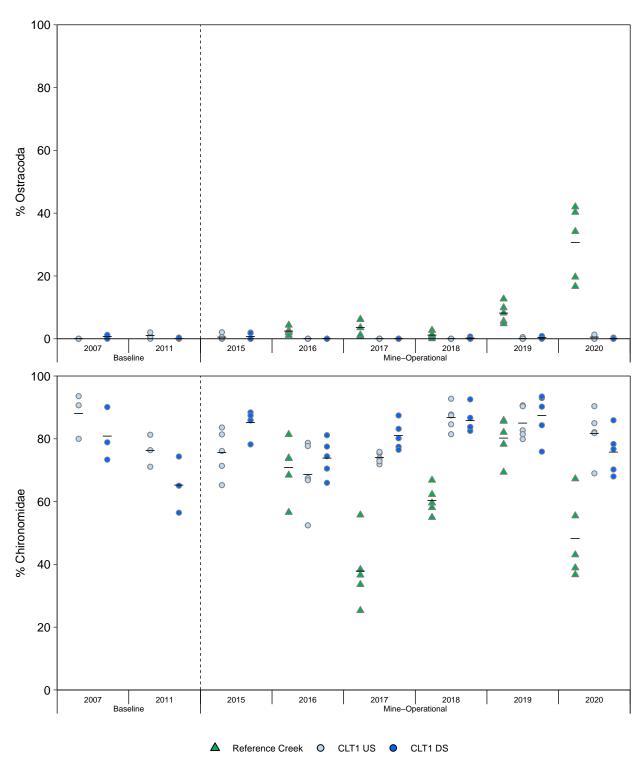


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

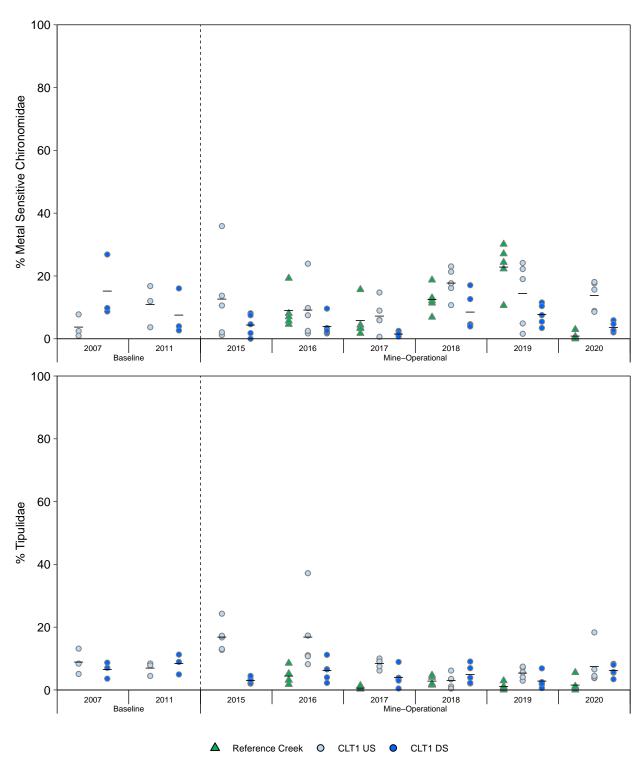


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

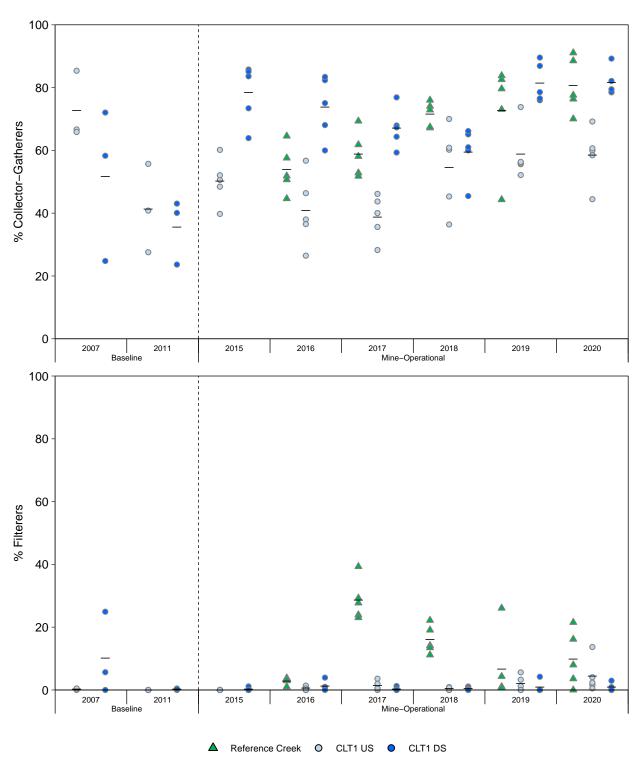


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

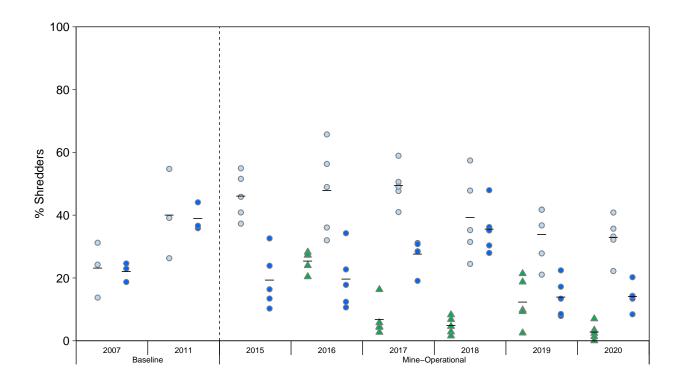


Figure F.2: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 1 Upstream (CLT1 US) and Downstream (CLT1 DS) Stations among Mine Baseline (2007 to 2011) and Operational (2015 to 2020) Periods

▲ Reference Creek O CLT1 US O CLT1 DS

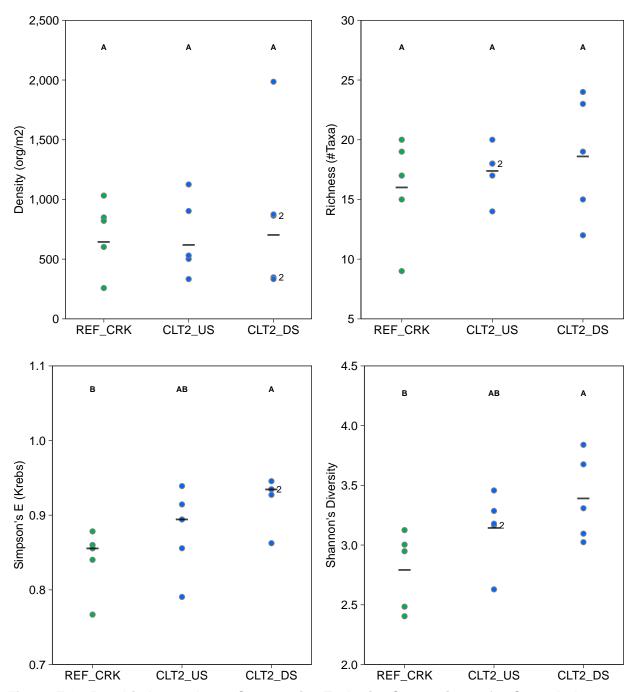


Figure F.3: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

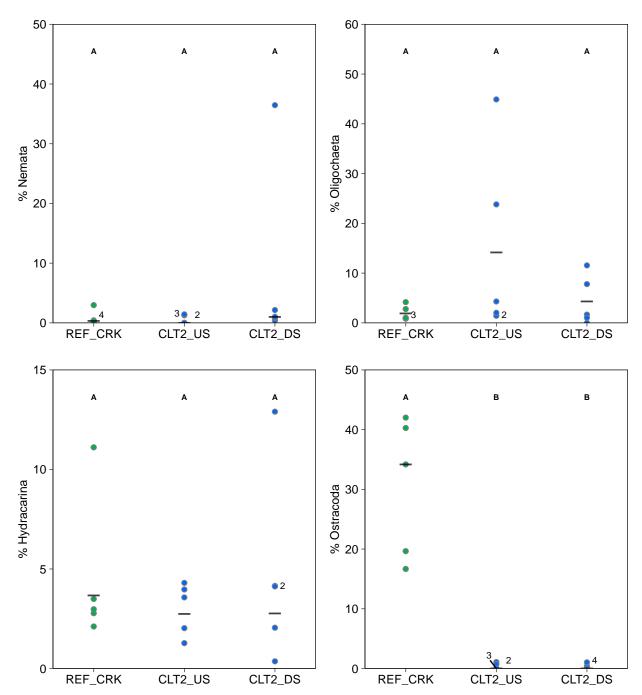


Figure F.3: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

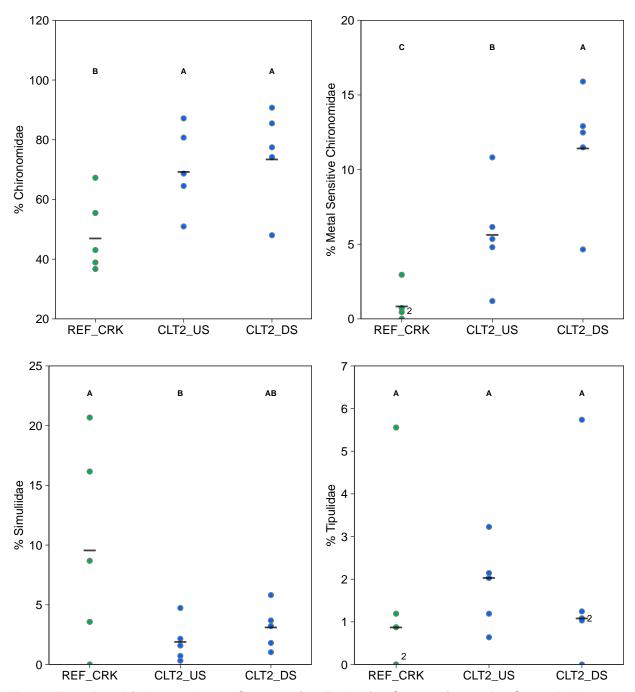


Figure F.3: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

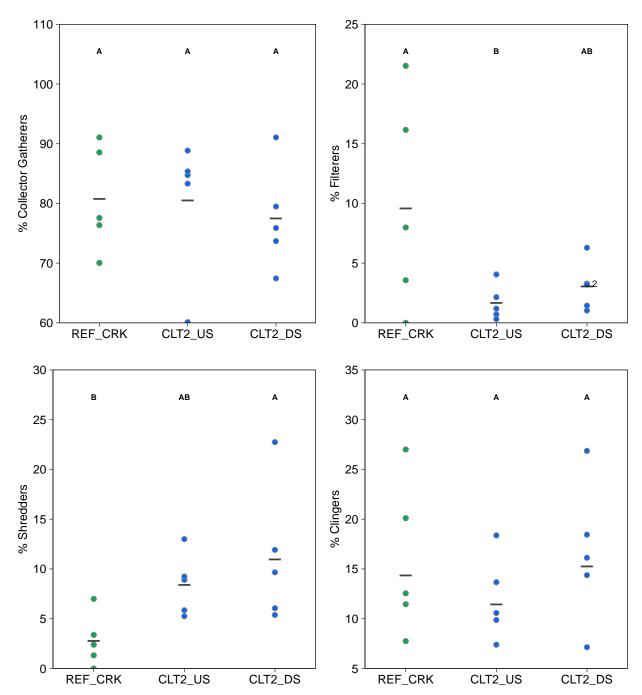


Figure F.3: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

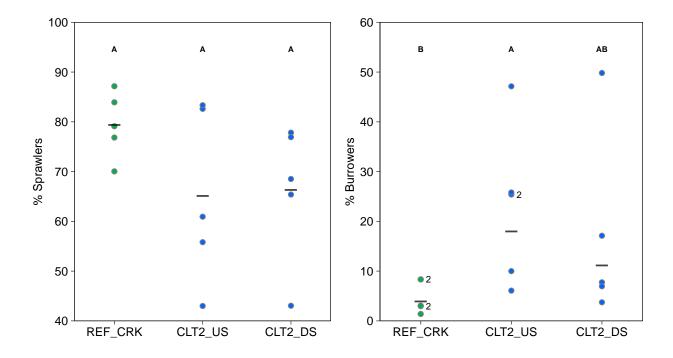


Figure F.3: Benthic Invertebrate Community Endpoint Comparisons for Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

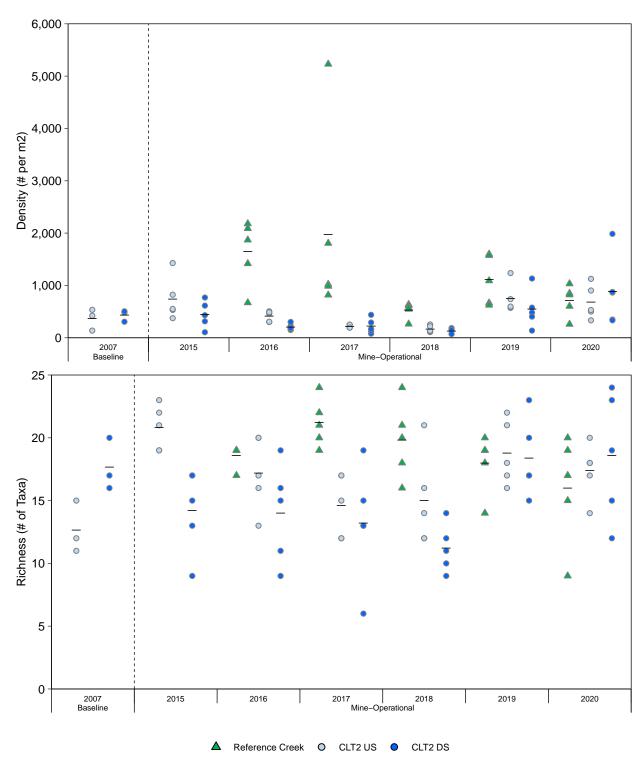


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

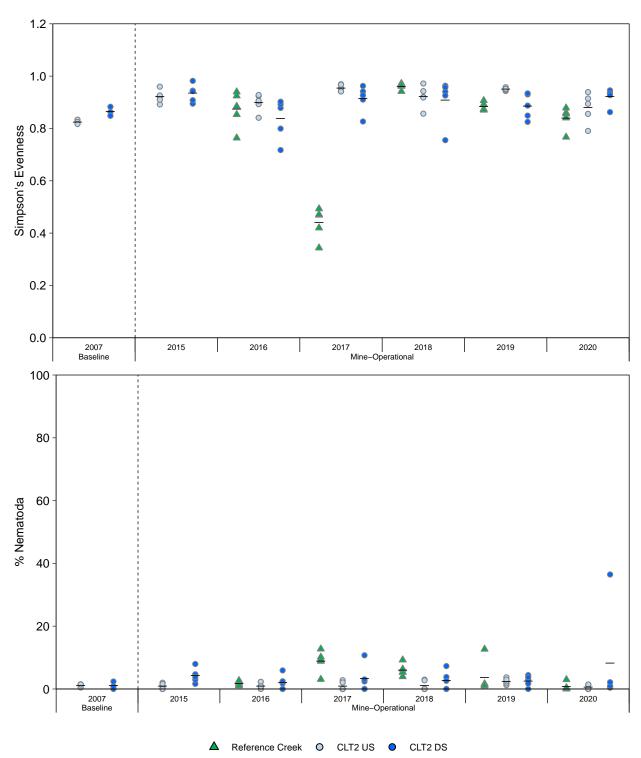


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

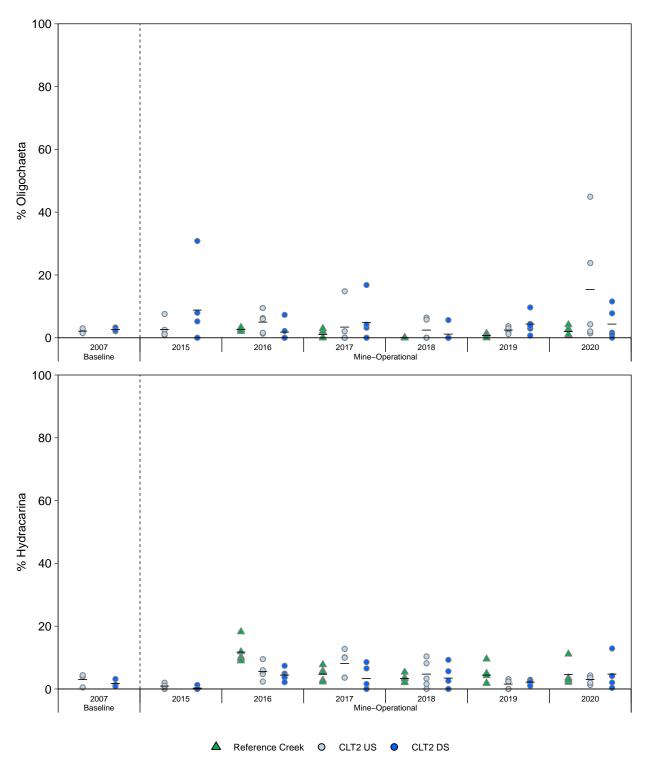


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

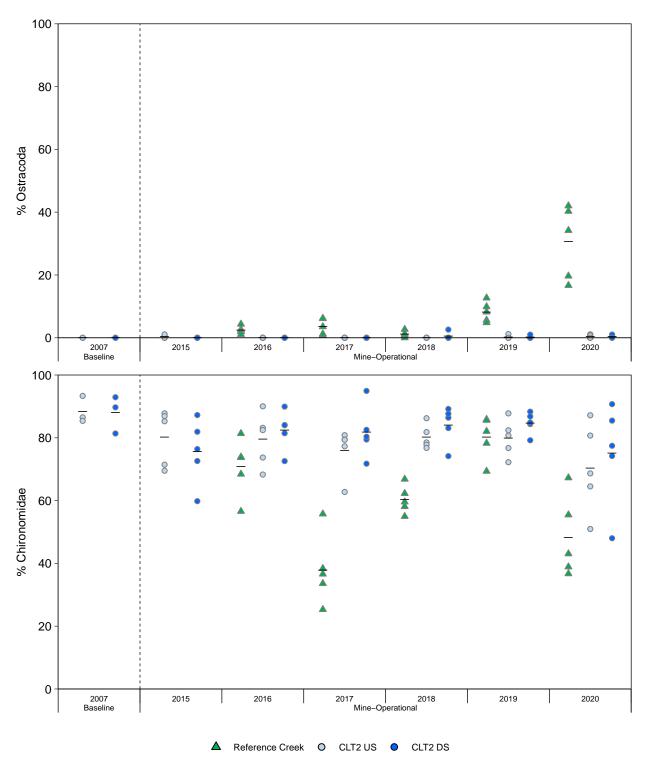


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

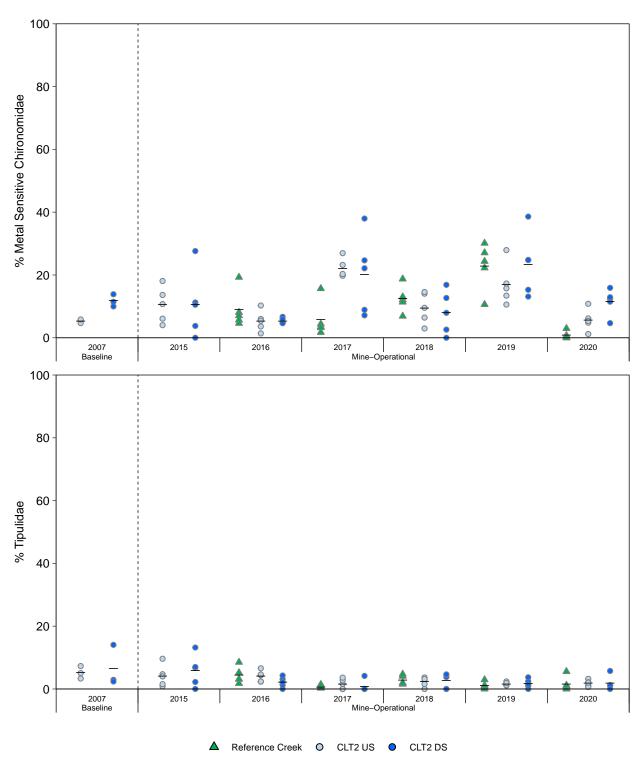


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

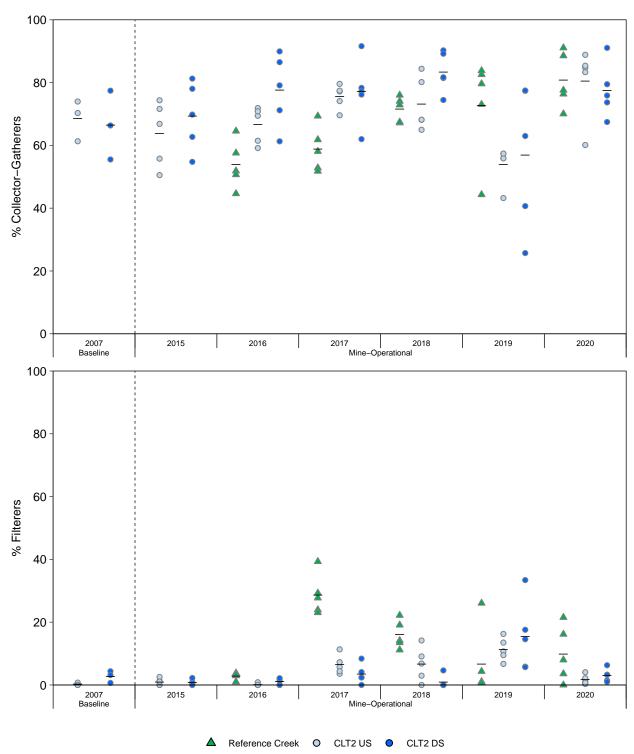


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

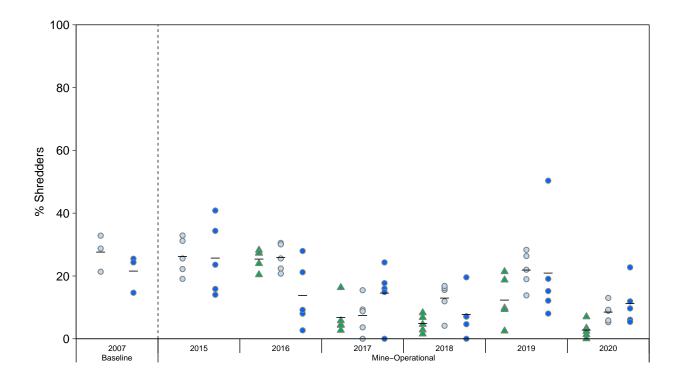


Figure F.4: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) and Downstream (CLT2 DS) Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

▲ Reference Creek O CLT2 US O CLT2 DS

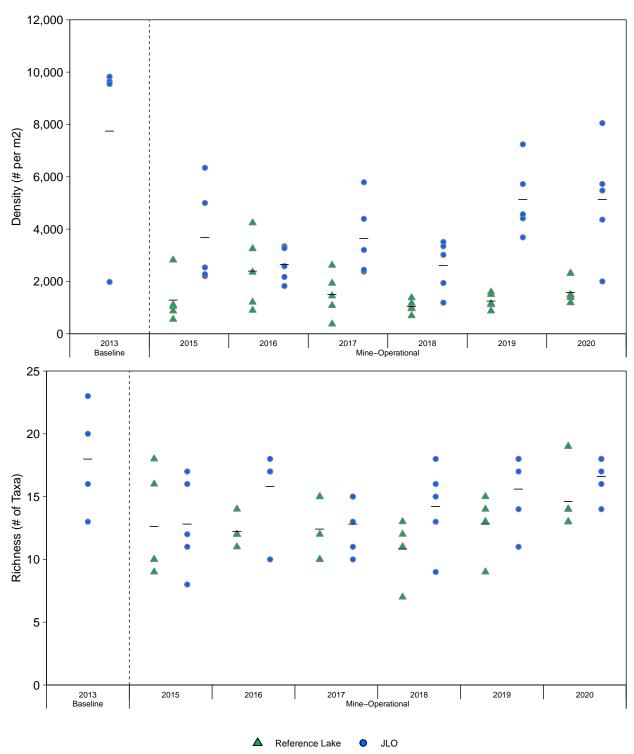


Figure F.5: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

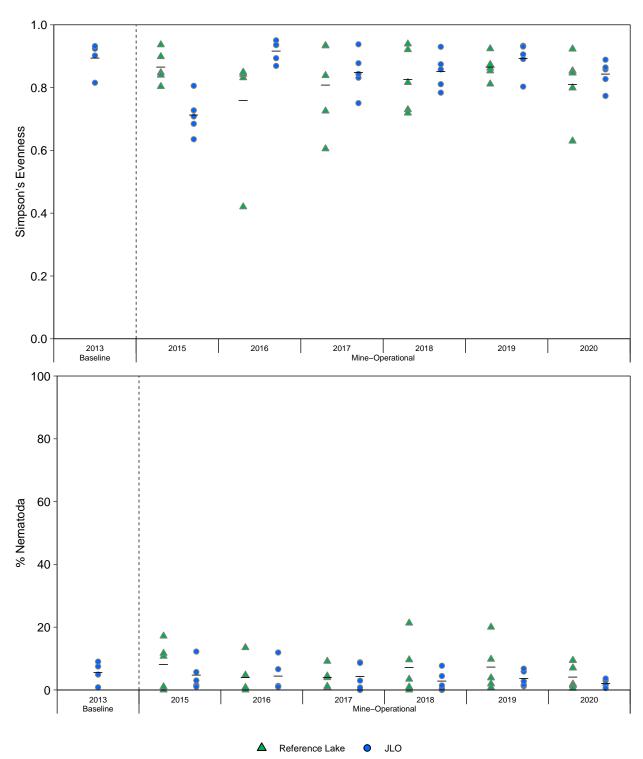


Figure F.5: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

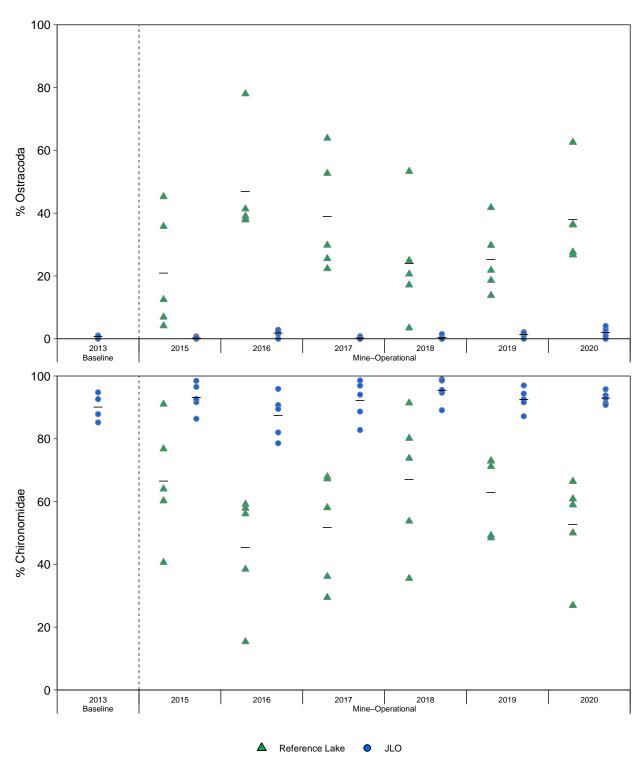


Figure F.5: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

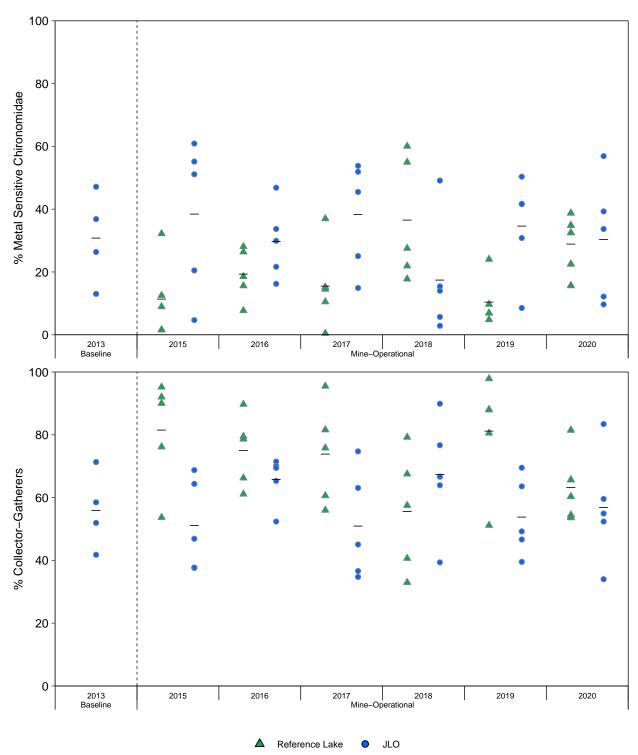


Figure F.5: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

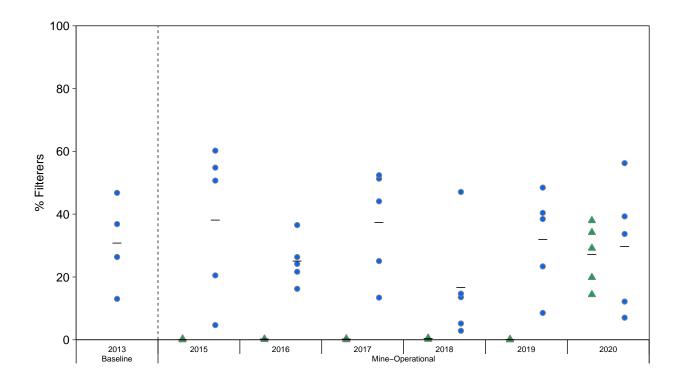


Figure F.5: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

A Reference Lake

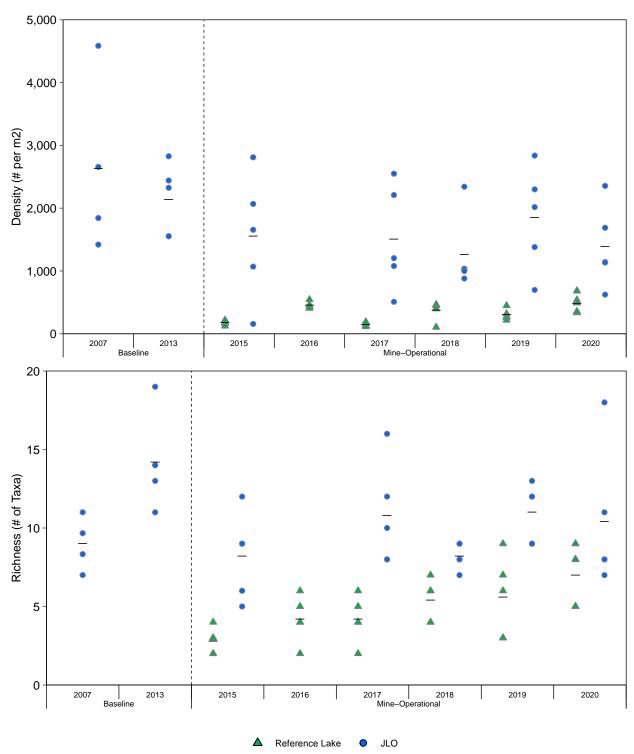


Figure F.6: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

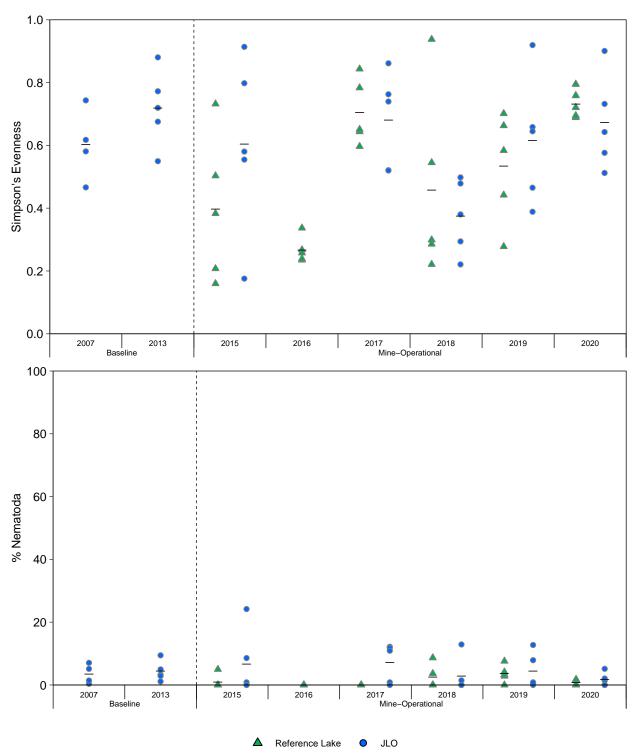


Figure F.6: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

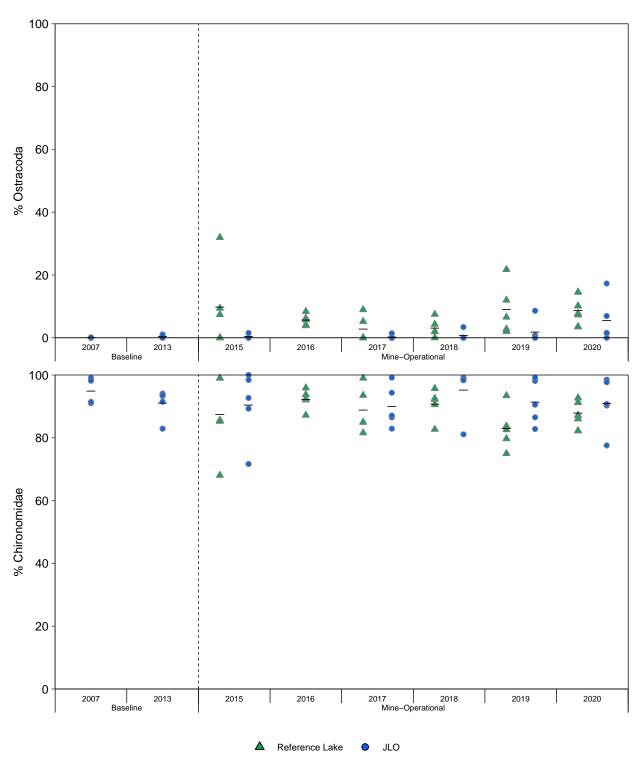


Figure F.6: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

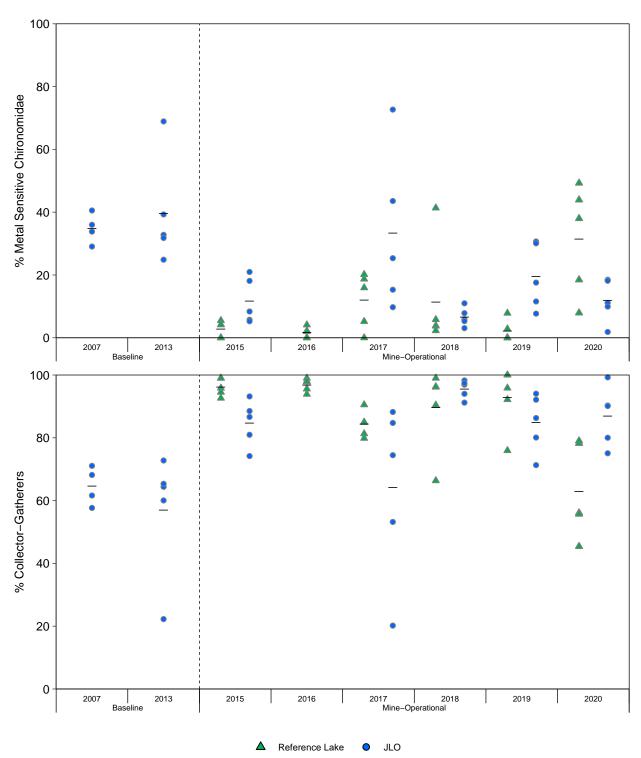


Figure F.6: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

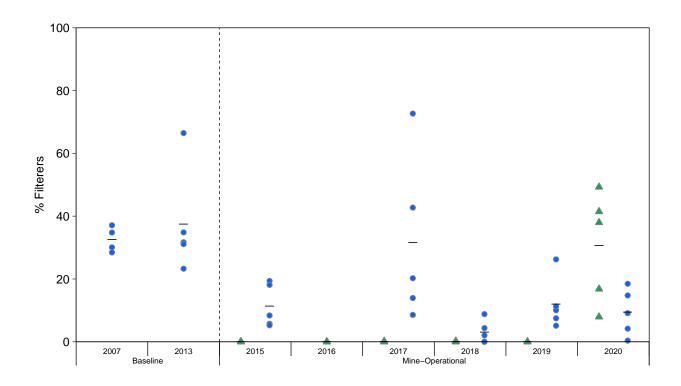


Figure F.6: Comparison of Key Benthic Invertebrate Community Metrics at Camp Lake (JL0) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

A Reference Lake

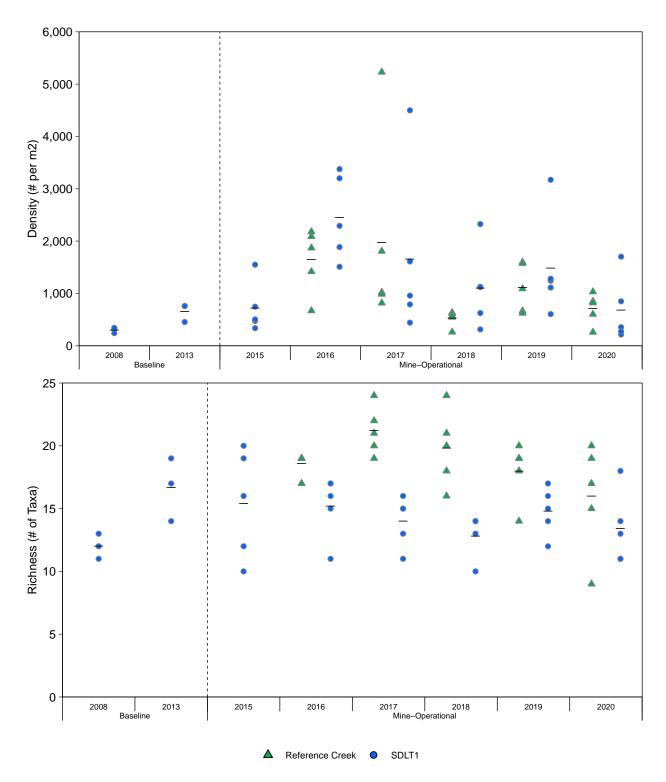


Figure F.7: Temporal Comparison of Benthic Endpoints at SDLT1 Over Mine Baseline (2008 to 2013) and Operations (2015 to 2020) Periods

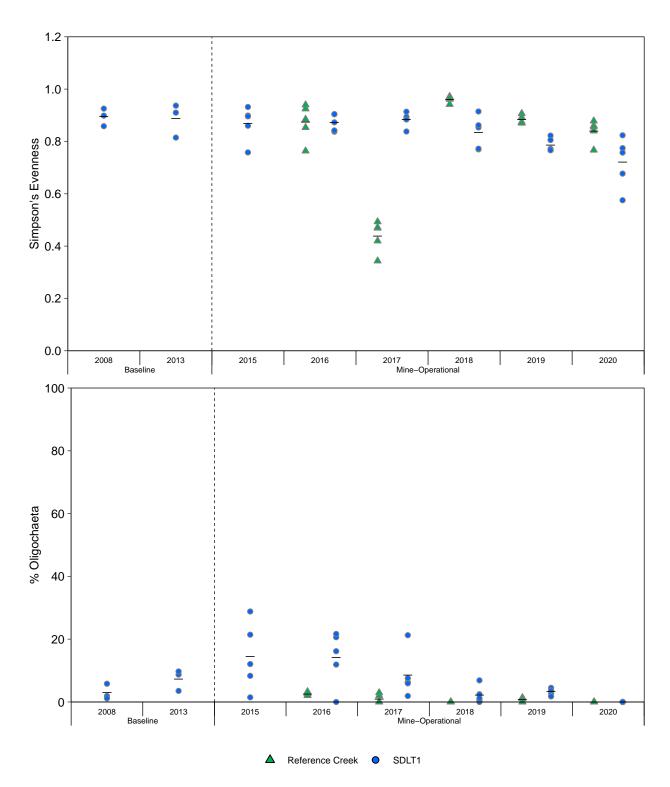


Figure F.7: Temporal Comparison of Benthic Endpoints at SDLT1 Over Mine Baseline (2008 to 2013) and Operations (2015 to 2020) Periods

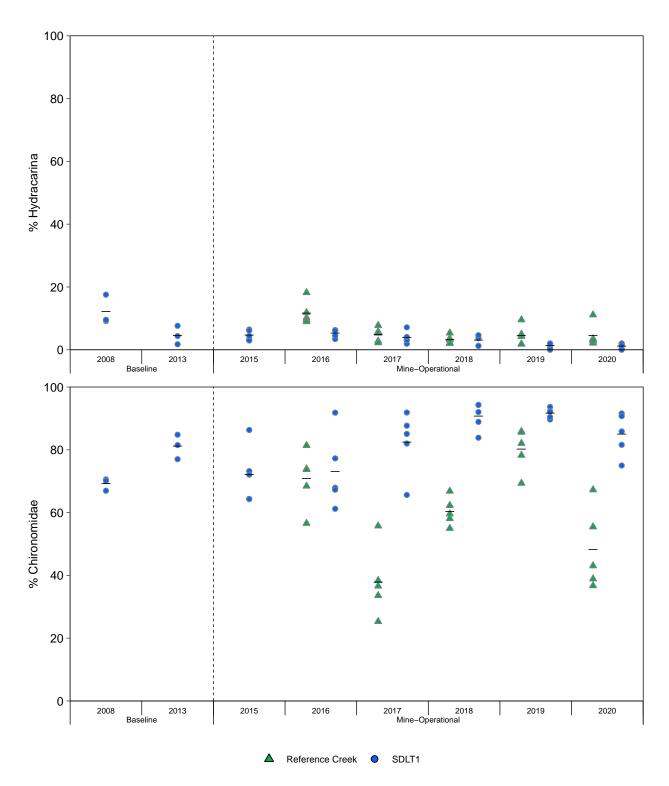


Figure F.7: Temporal Comparison of Benthic Endpoints at SDLT1 Over Mine Baseline (2008 to 2013) and Operations (2015 to 2020) Periods

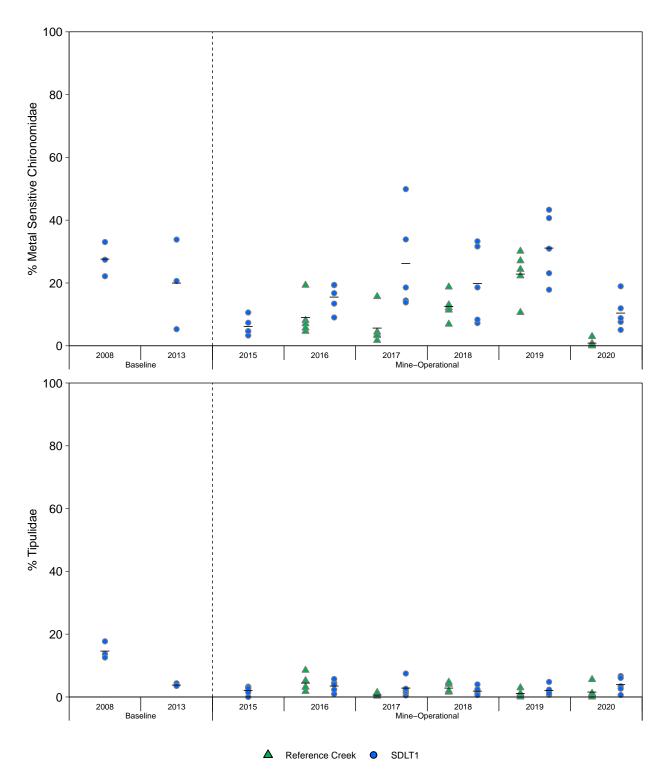


Figure F.7: Temporal Comparison of Benthic Endpoints at SDLT1 Over Mine Baseline (2008 to 2013) and Operations (2015 to 2020) Periods

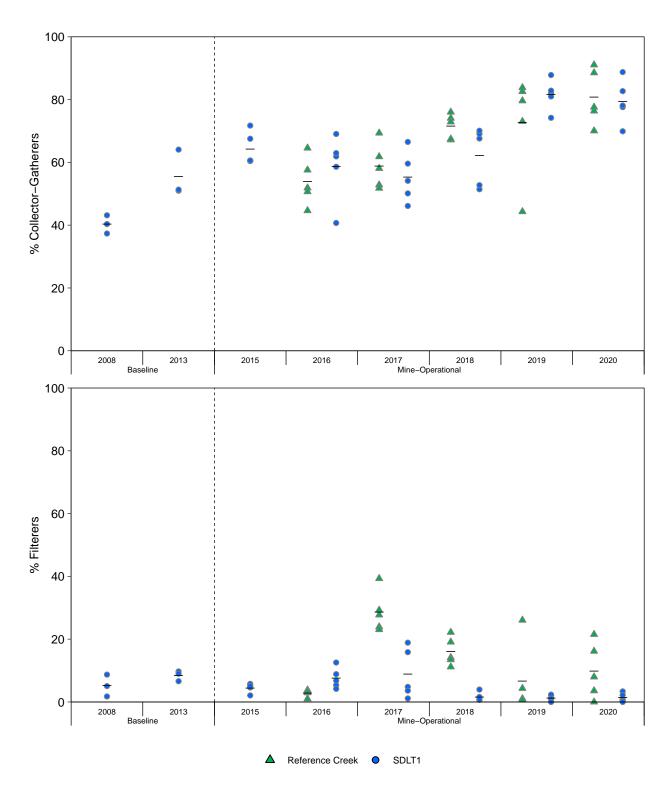
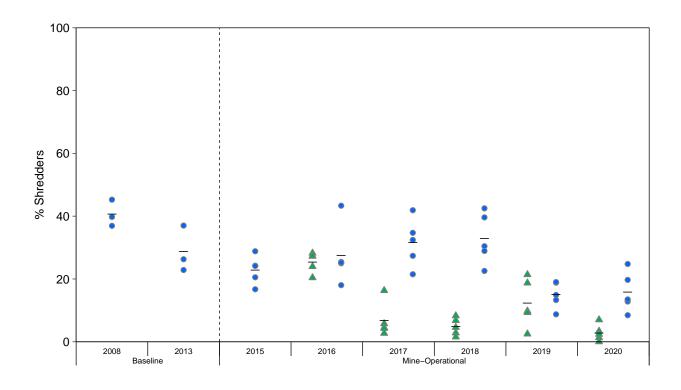



Figure F.7: Temporal Comparison of Benthic Endpoints at SDLT1 Over Mine Baseline (2008 to 2013) and Operations (2015 to 2020) Periods

▲ Reference Creek ● SDLT1

Figure F.7: Temporal Comparison of Benthic Endpoints at SDLT1 Over Mine Baseline (2008 to 2013) and Operations (2015 to 2020) Periods

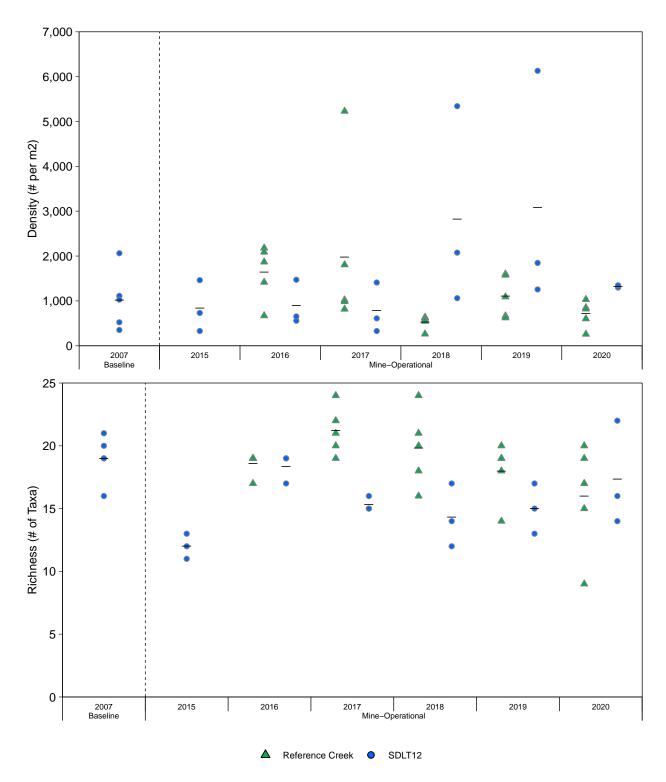


Figure F.8: Temporal Comparison of Benthic Endpoints at SDLT12 Over Mine Baseline (2007) and Operations (2015 to 2020) Periods

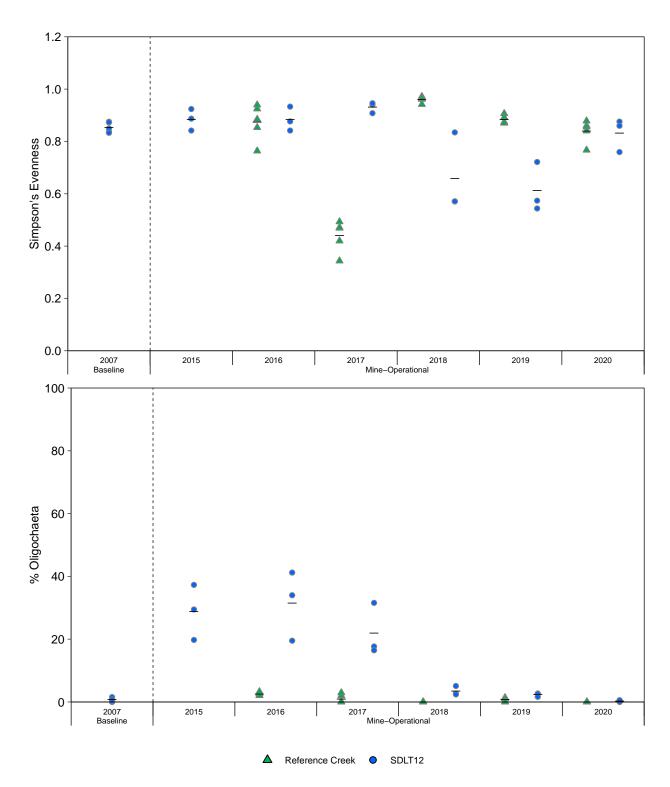


Figure F.8: Temporal Comparison of Benthic Endpoints at SDLT12 Over Mine Baseline (2007) and Operations (2015 to 2020) Periods

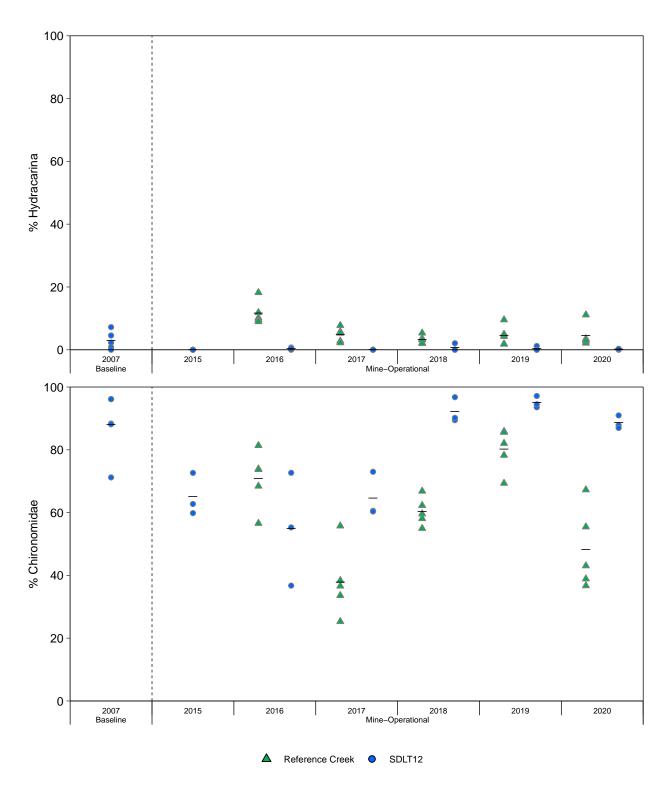


Figure F.8: Temporal Comparison of Benthic Endpoints at SDLT12 Over Mine Baseline (2007) and Operations (2015 to 2020) Periods

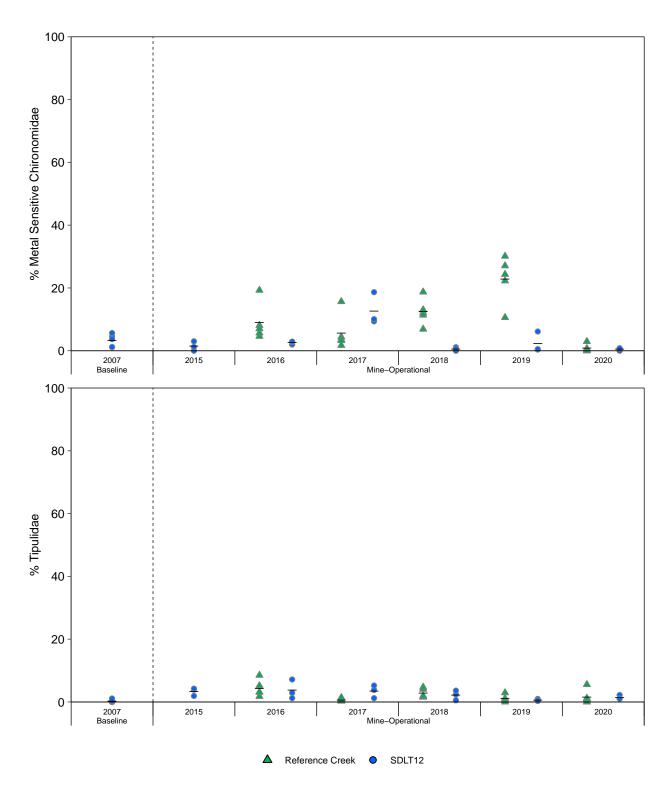


Figure F.8: Temporal Comparison of Benthic Endpoints at SDLT12 Over Mine Baseline (2007) and Operations (2015 to 2020) Periods

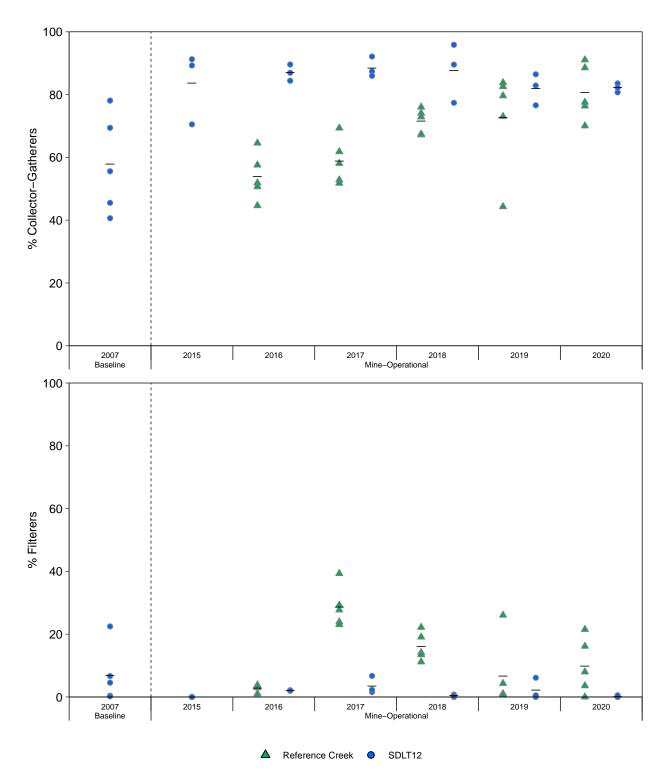
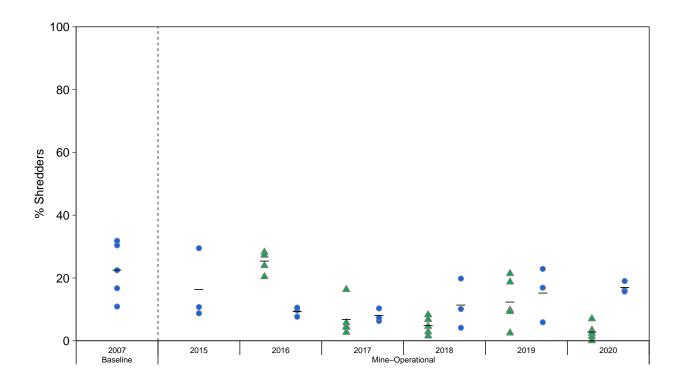



Figure F.8: Temporal Comparison of Benthic Endpoints at SDLT12 Over Mine Baseline (2007) and Operations (2015 to 2020) Periods

▲ Reference Creek ● SDLT12

Figure F.8: Temporal Comparison of Benthic Endpoints at SDLT12 Over Mine Baseline (2007) and Operations (2015 to 2020) Periods

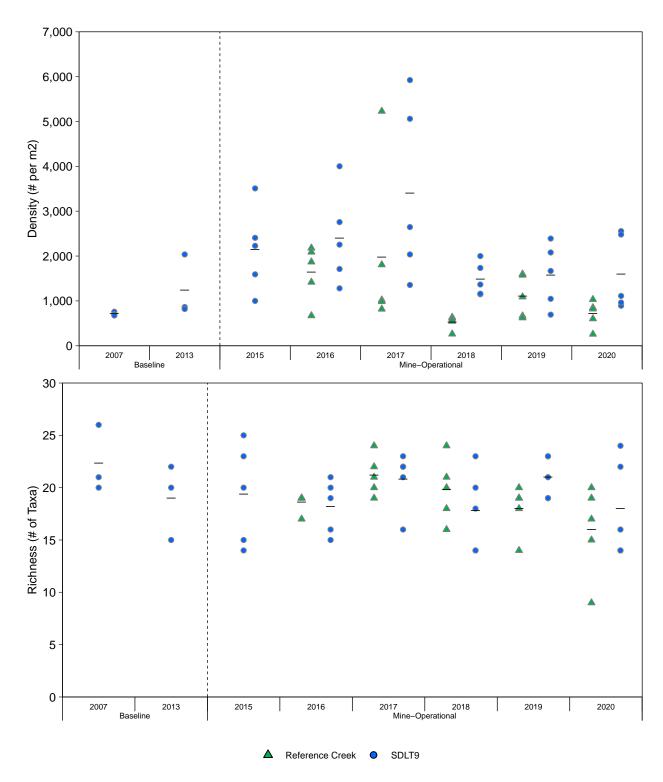


Figure F.9: Temporal Comparison of Benthic Endpoints at SDLT9 Over Mine Baseline (2007 to 2013) and Operations (2015 to 2020) Periods

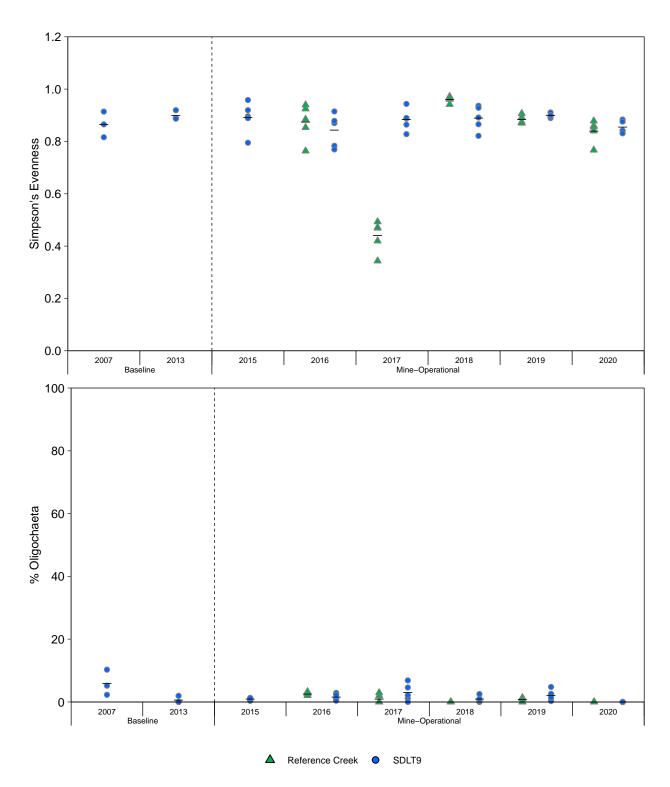


Figure F.9: Temporal Comparison of Benthic Endpoints at SDLT9 Over Mine Baseline (2007 to 2013) and Operations (2015 to 2020) Periods

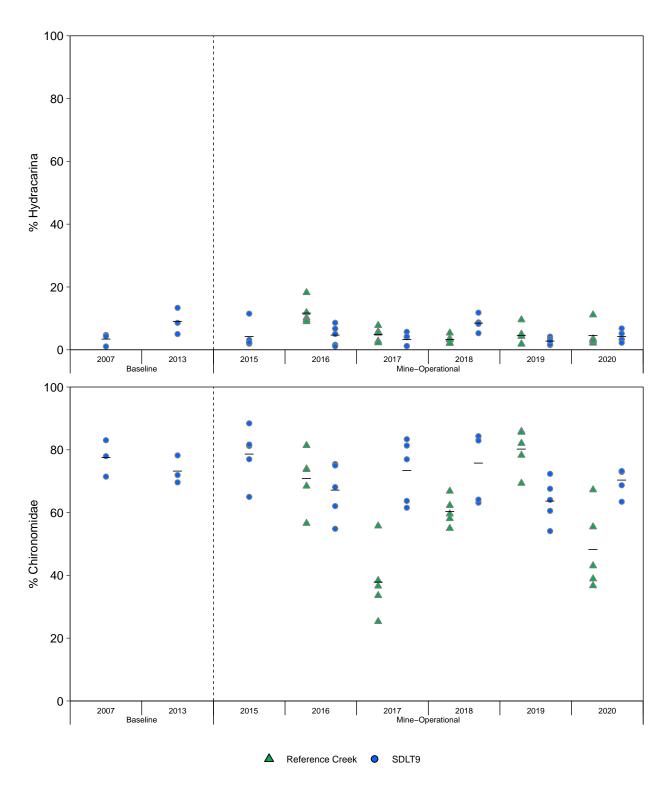


Figure F.9: Temporal Comparison of Benthic Endpoints at SDLT9 Over Mine Baseline (2007 to 2013) and Operations (2015 to 2020) Periods

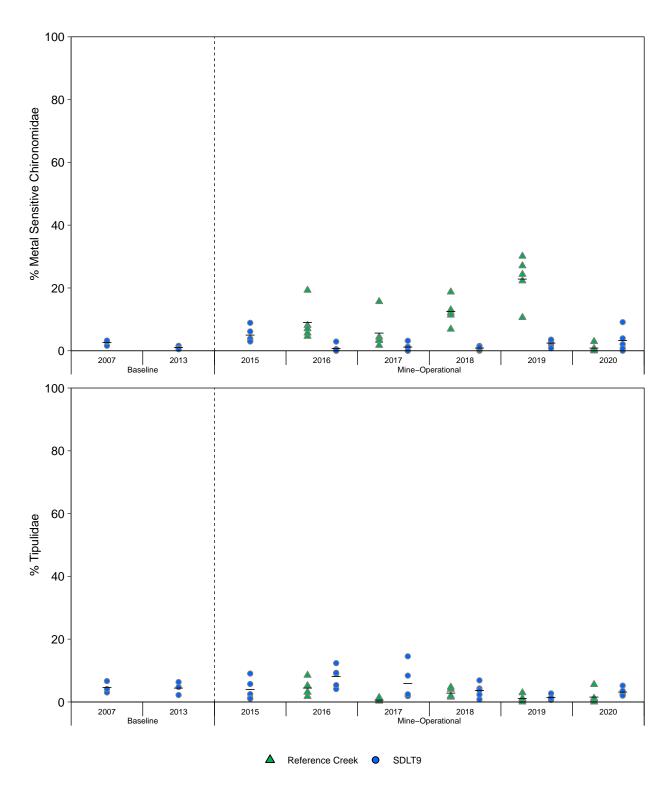


Figure F.9: Temporal Comparison of Benthic Endpoints at SDLT9 Over Mine Baseline (2007 to 2013) and Operations (2015 to 2020) Periods

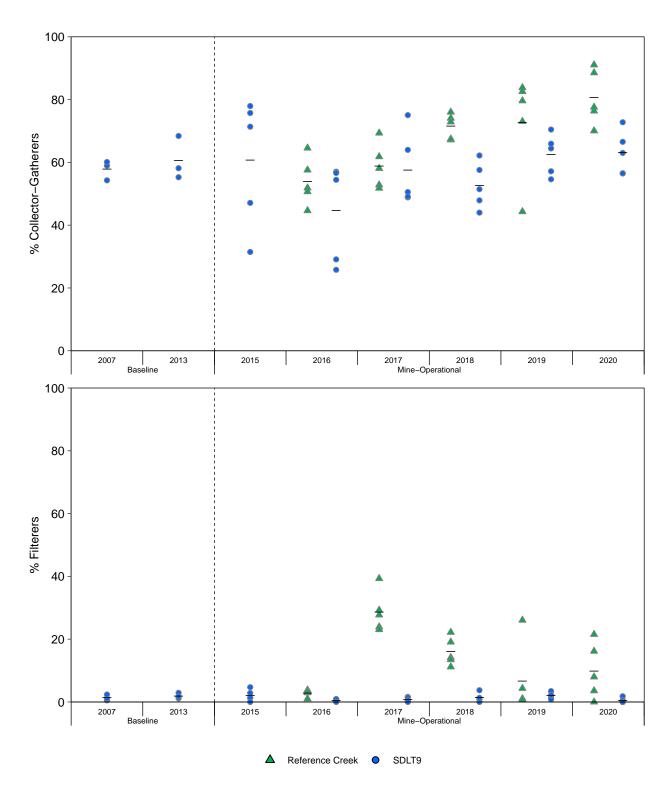
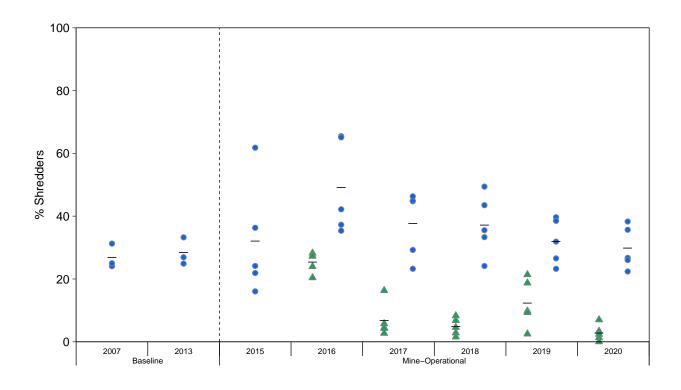



Figure F.9: Temporal Comparison of Benthic Endpoints at SDLT9 Over Mine Baseline (2007 to 2013) and Operations (2015 to 2020) Periods

▲ Reference Creek ● SDLT9

Figure F.9: Temporal Comparison of Benthic Endpoints at SDLT9 Over Mine Baseline (2007 to 2013) and Operations (2015 to 2020) Periods

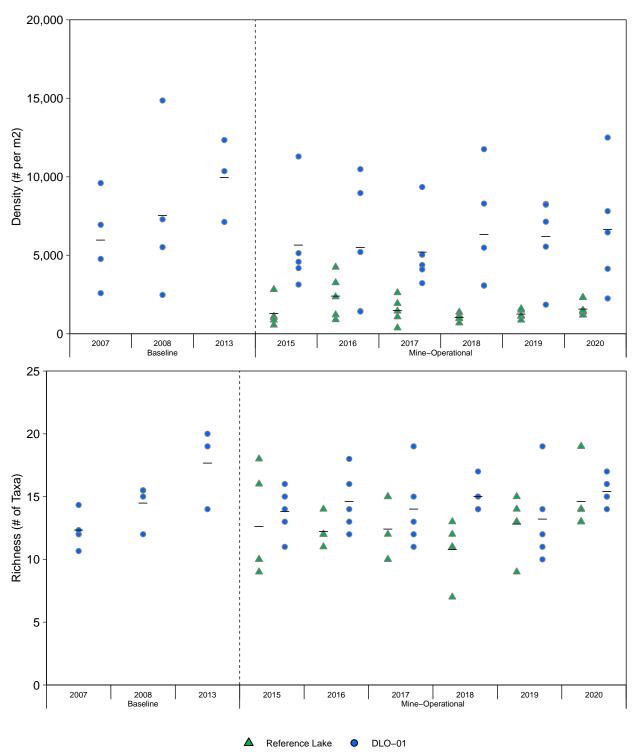


Figure F.10: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Littoral Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

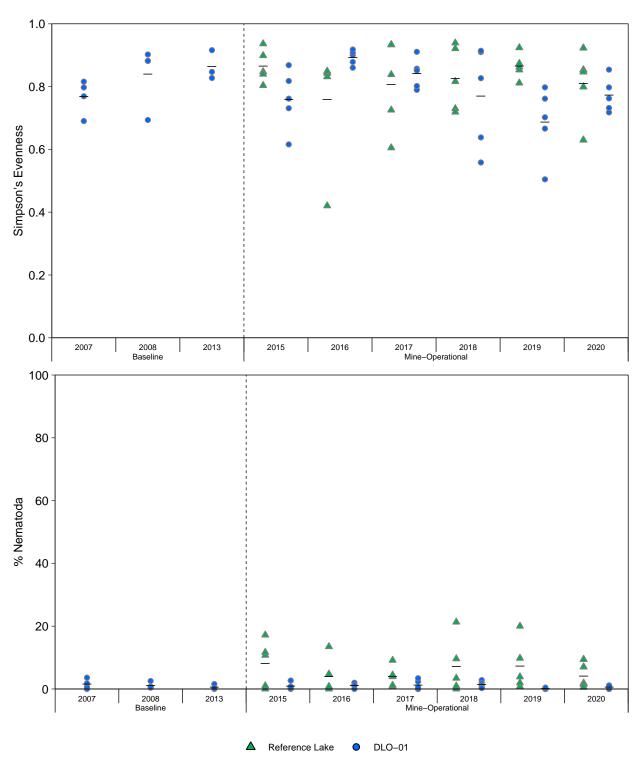


Figure F.10: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Littoral Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

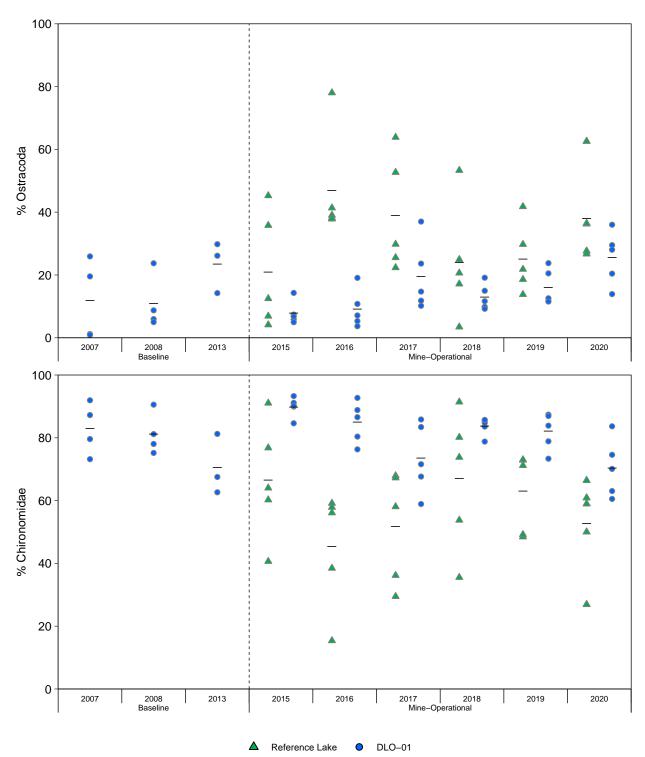


Figure F.10: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0-1) Littoral Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

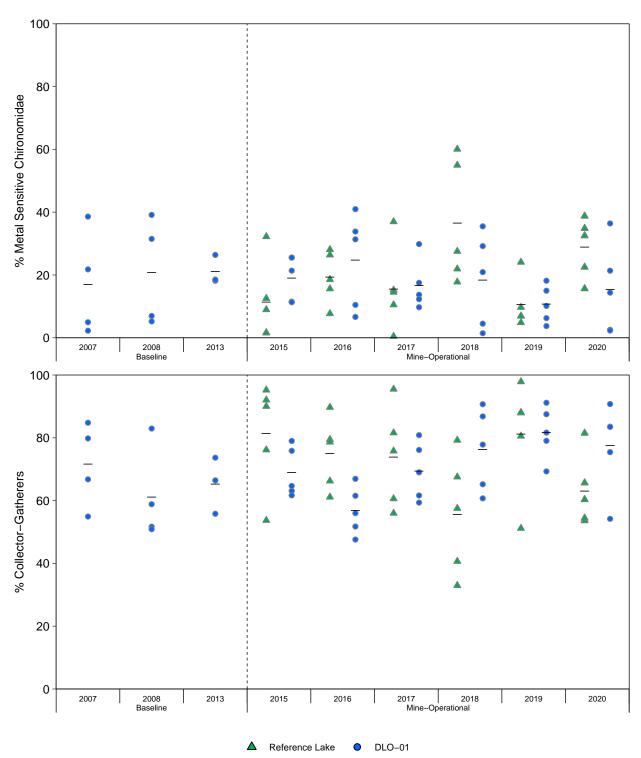


Figure F.10: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Littoral Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

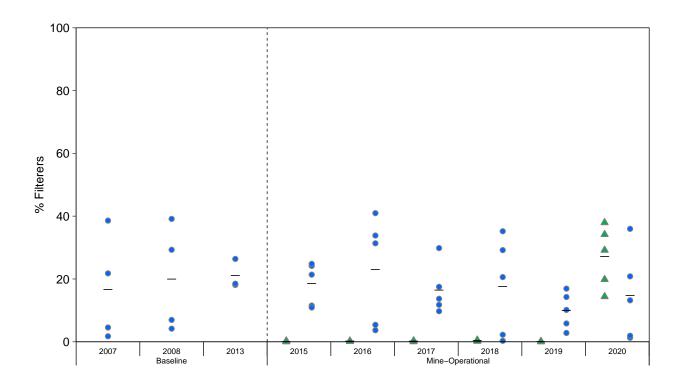


Figure F.10: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Littoral Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

O DLO-01

A Reference Lake

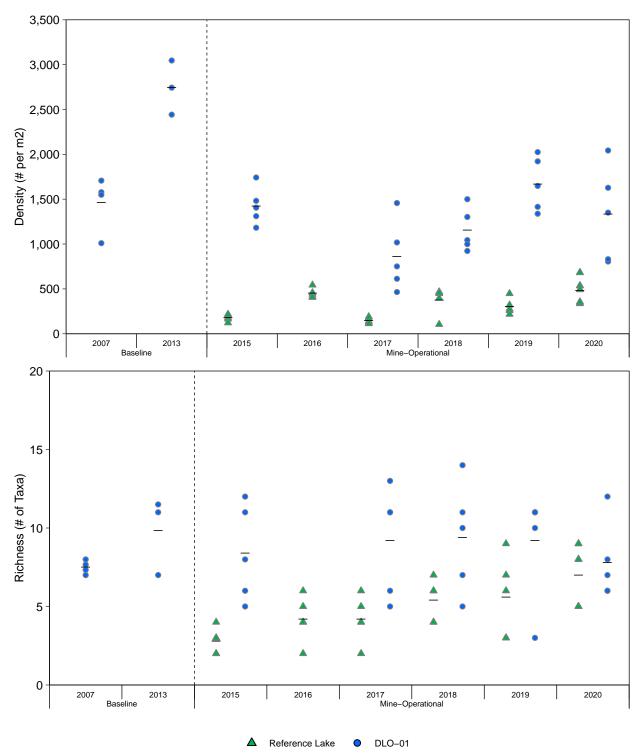


Figure F.11: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

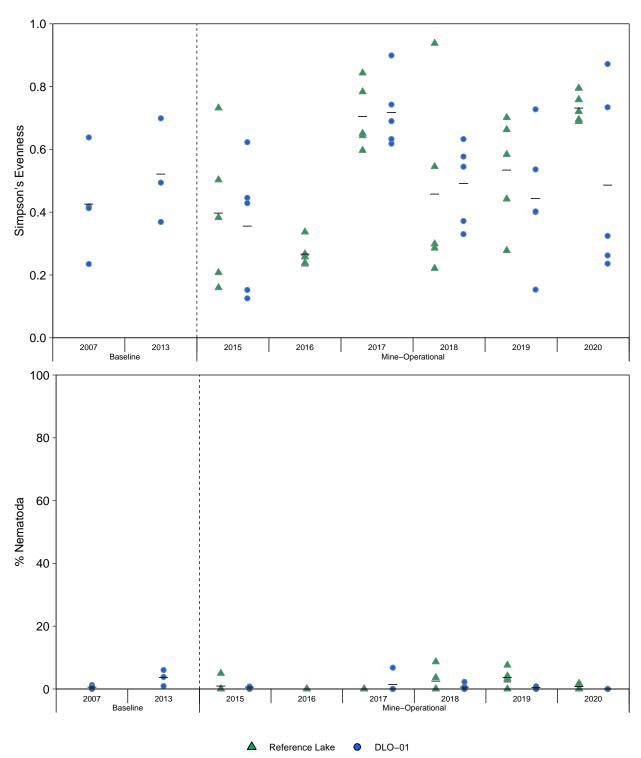


Figure F.11: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

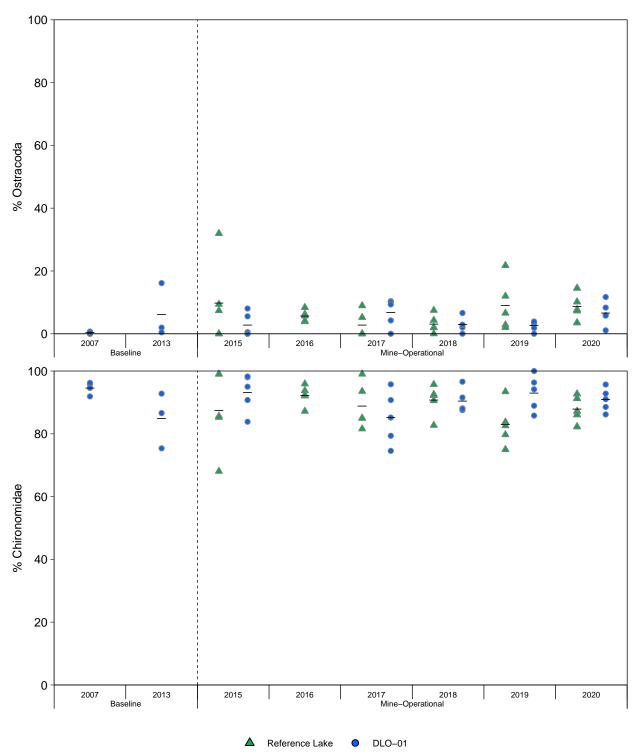


Figure F.11: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

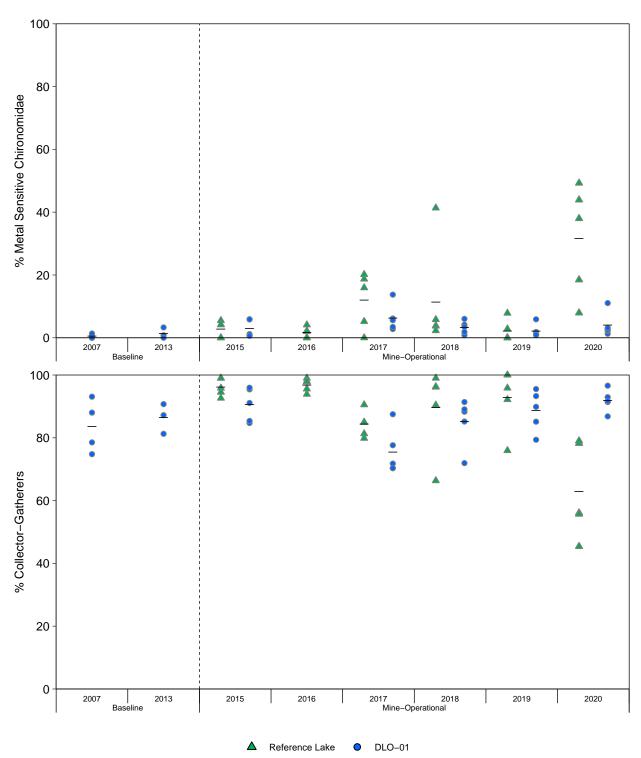


Figure F.11: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

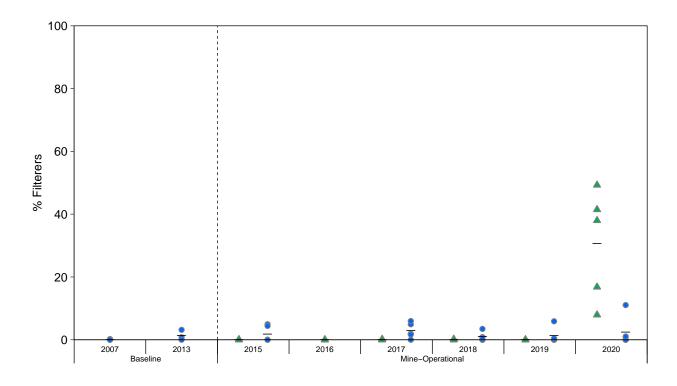


Figure F.11: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake NW (DL0–1) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

▲ Reference Lake

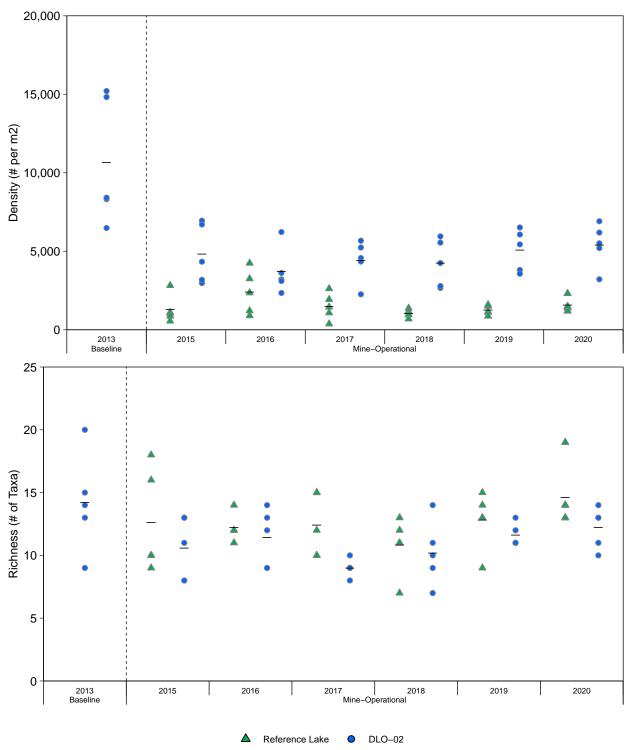


Figure F.12: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

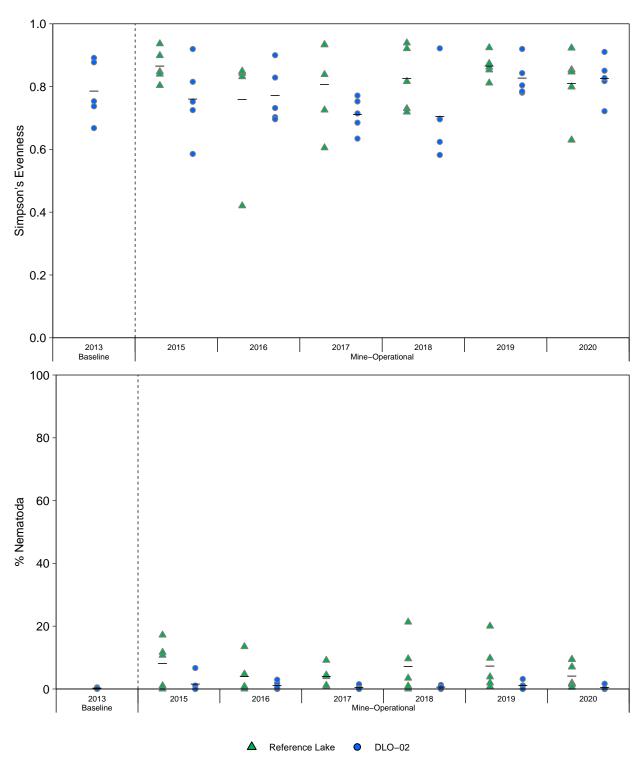


Figure F.12: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

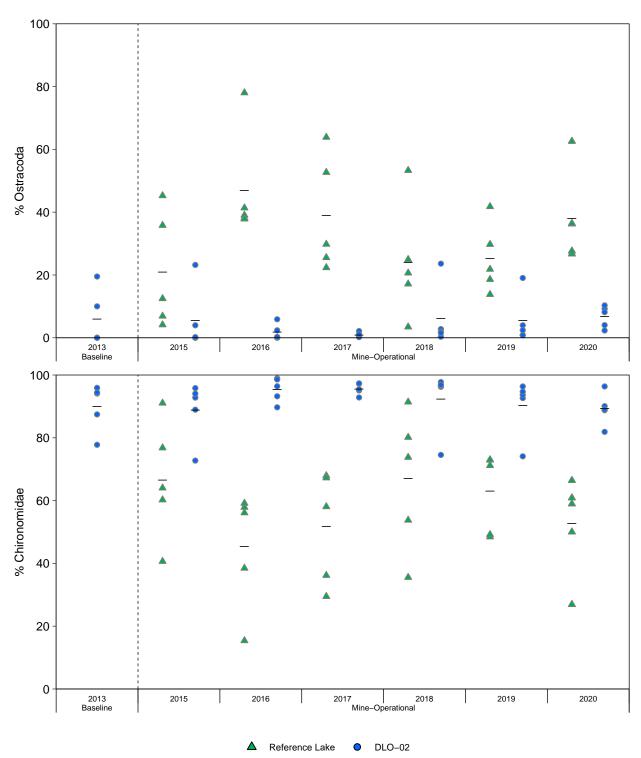


Figure F.12: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

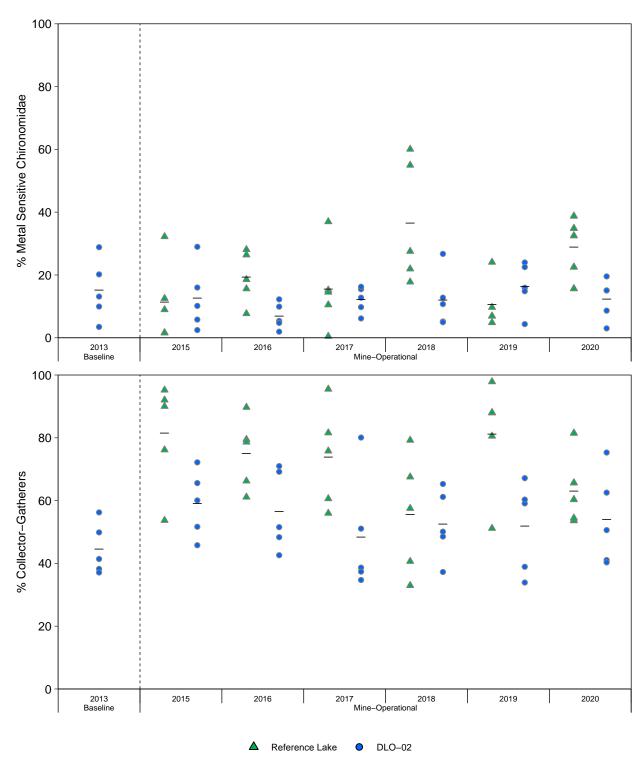


Figure F.12: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

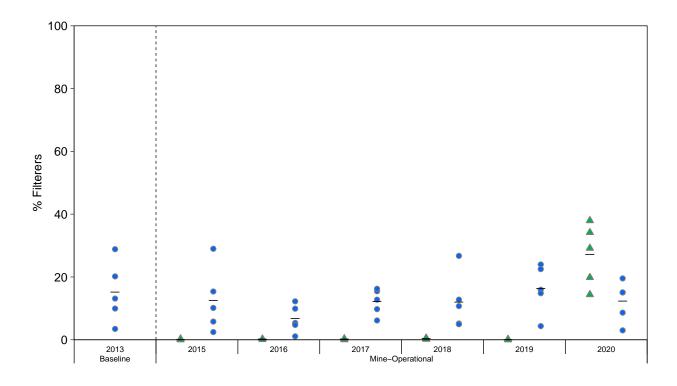


Figure F.12: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Littoral Habitat Stations among Mine Baseline (2013) and Operational (2015 to 2020) Periods

O DLO-02

▲ Reference Lake

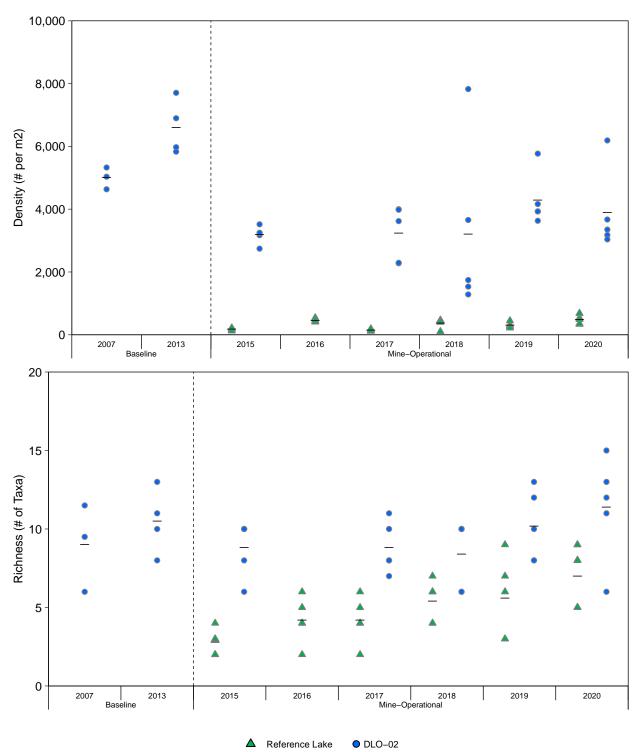


Figure F.13: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

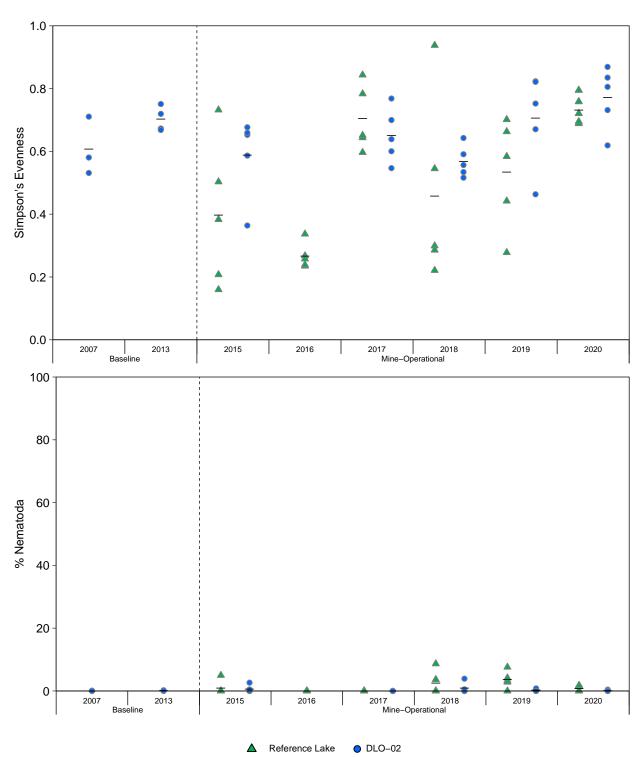


Figure F.13: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

Figure F.13: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0-2) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

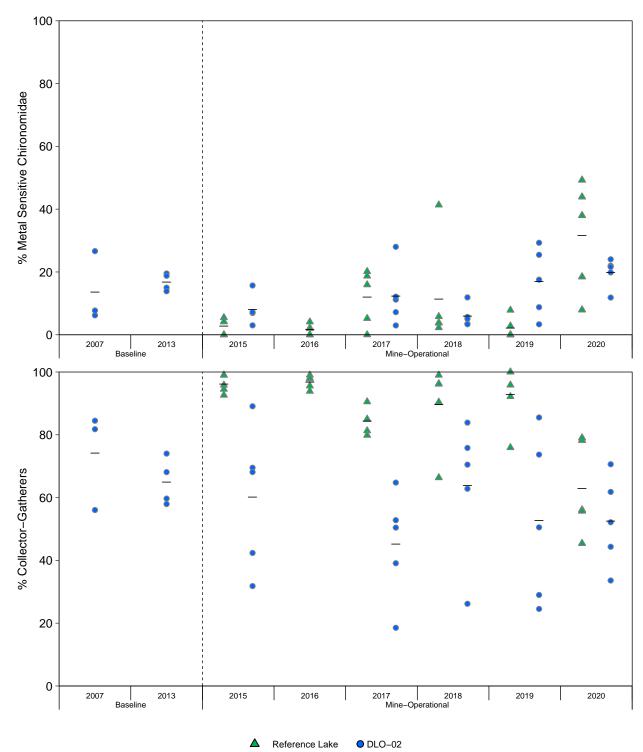


Figure F.13: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

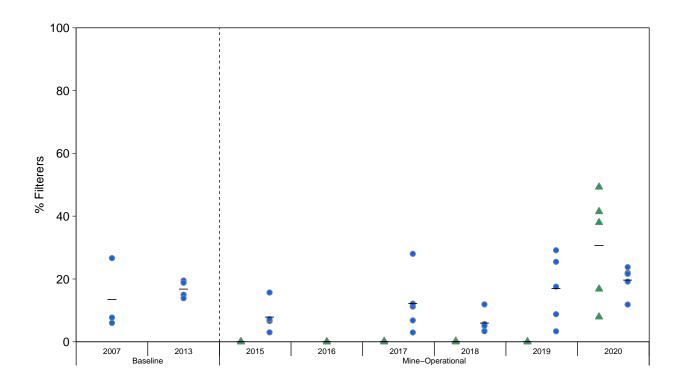


Figure F.13: Comparison of Key Benthic Invertebrate Community Metrics at Sheardown Lake SE (DL0–2) Profundal Habitat Stations among Mine Baseline (2007 to 2013) and Operational (2015 to 2020) Periods

▲ Reference Lake ● DLO-02

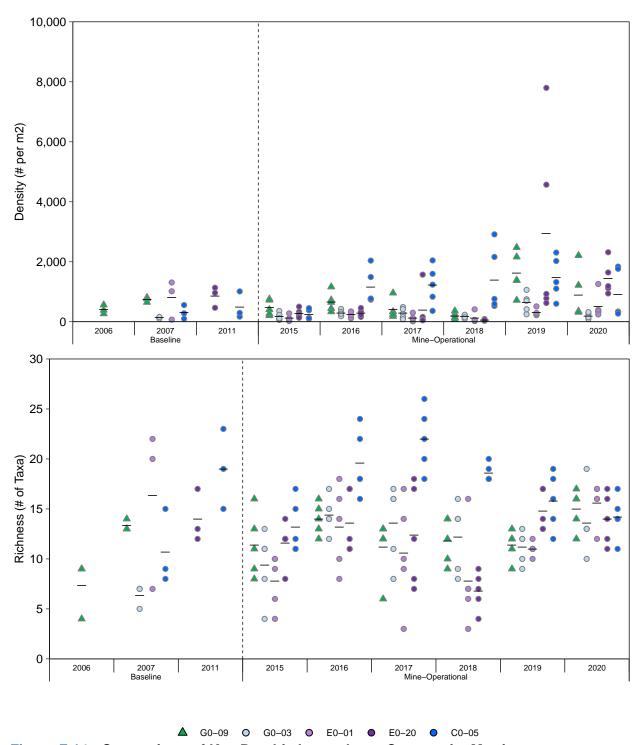


Figure F.14: Comparison of Key Benthic Invertebrate Community Metrics at Mary River Upstream (G0–09) and Downstream (G0–03, E0–01, E0–20, C0–05) Stations among Mine Baseline (2006 to 2011) and Operational (2015 to 2020) Periods

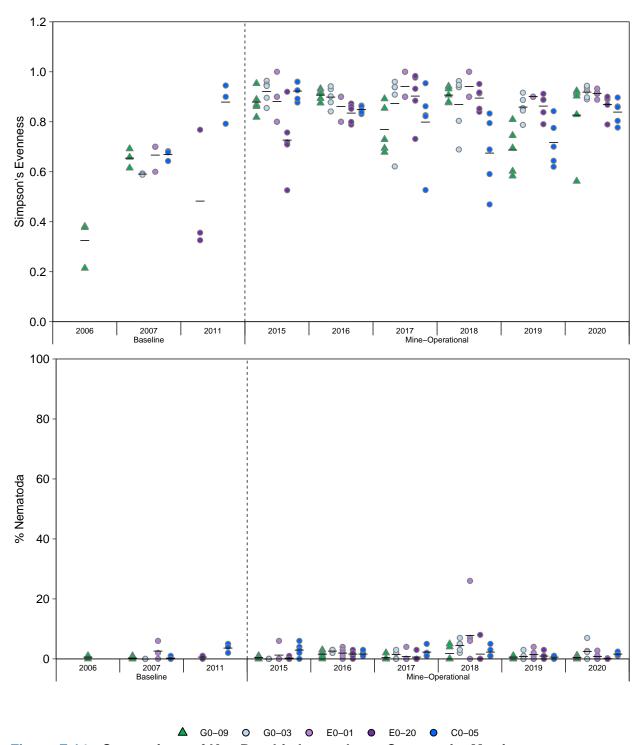


Figure F.14: Comparison of Key Benthic Invertebrate Community Metrics at Mary River Upstream (G0–09) and Downstream (G0–03, E0–01, E0–20, C0–05) Stations among Mine Baseline (2006 to 2011) and Operational (2015 to 2020) Periods

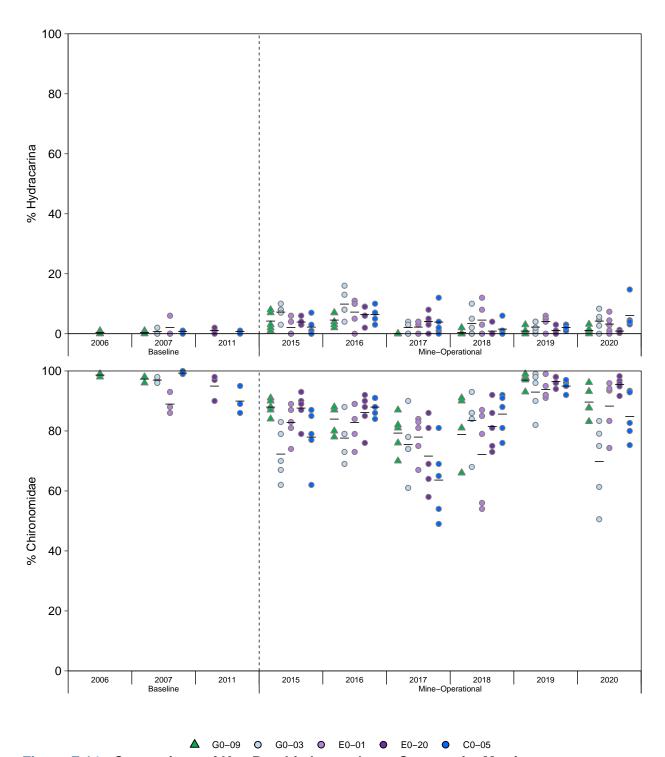


Figure F.14: Comparison of Key Benthic Invertebrate Community Metrics at Mary River Upstream (G0–09) and Downstream (G0–03, E0–01, E0–20, C0–05) Stations among Mine Baseline (2006 to 2011) and Operational (2015 to 2020) Periods

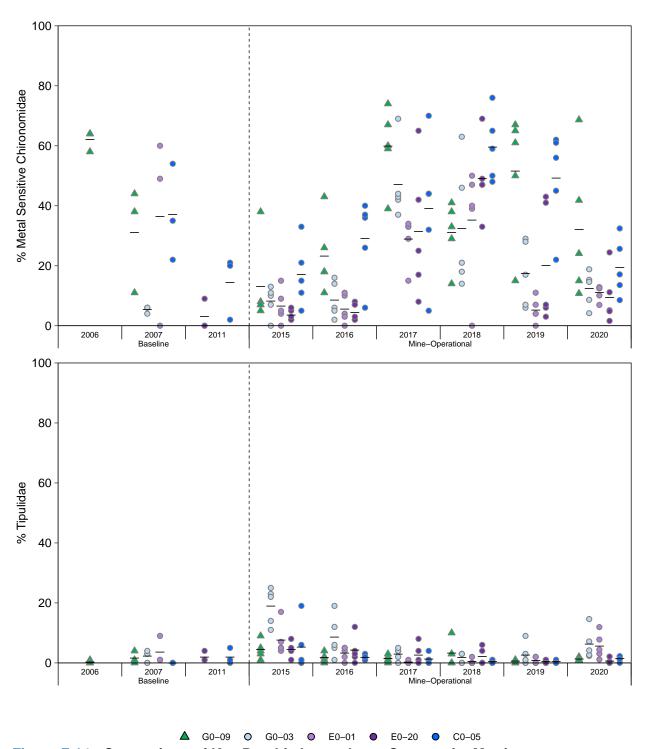


Figure F.14: Comparison of Key Benthic Invertebrate Community Metrics at Mary River Upstream (G0–09) and Downstream (G0–03, E0–01, E0–20, C0–05) Stations among Mine Baseline (2006 to 2011) and Operational (2015 to 2020) Periods

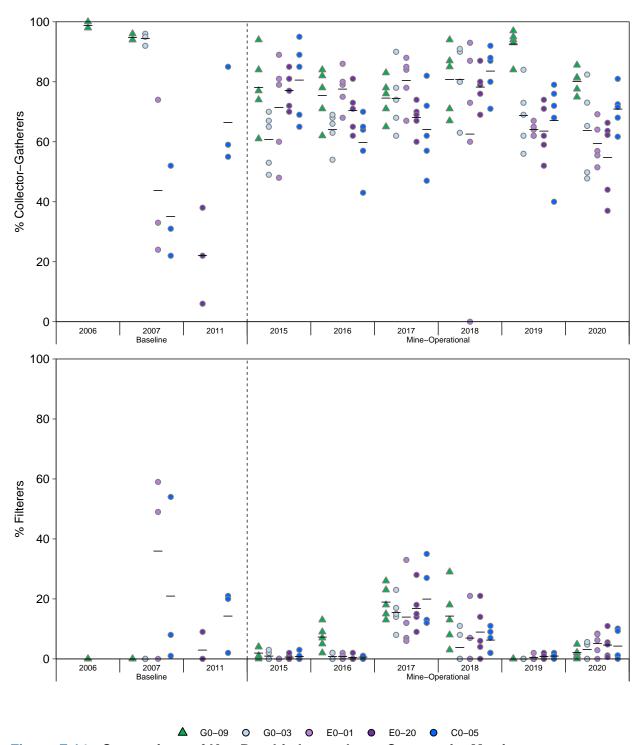


Figure F.14: Comparison of Key Benthic Invertebrate Community Metrics at Mary River Upstream (G0–09) and Downstream (G0–03, E0–01, E0–20, C0–05) Stations among Mine Baseline (2006 to 2011) and Operational (2015 to 2020) Periods

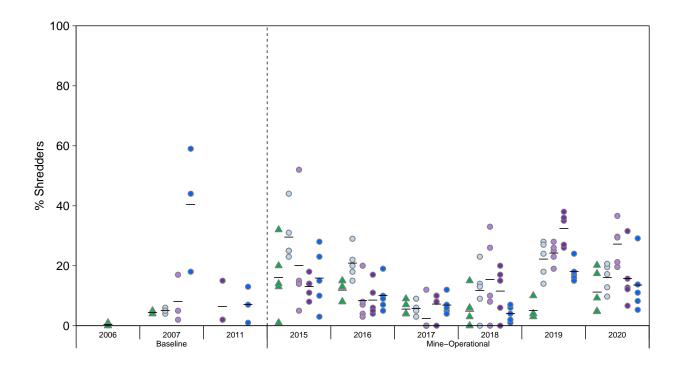


Figure F.14: Comparison of Key Benthic Invertebrate Community Metrics at Mary River Upstream (G0–09) and Downstream (G0–03, E0–01, E0–20, C0–05) Stations among Mine Baseline (2006 to 2011) and Operational (2015 to 2020) Periods

△ G0-09 ○ G0-03 ○ E0-01 ● E0-20 ● C0-05

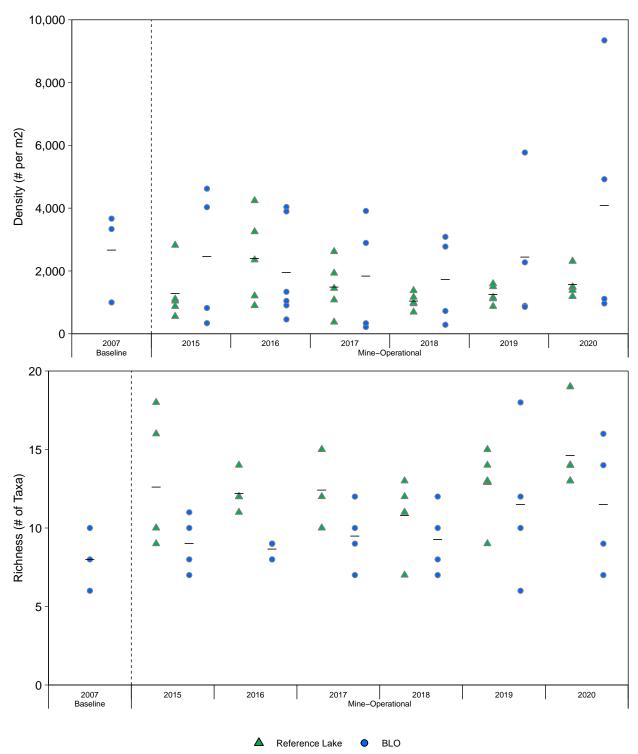


Figure F.15: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Littoral Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

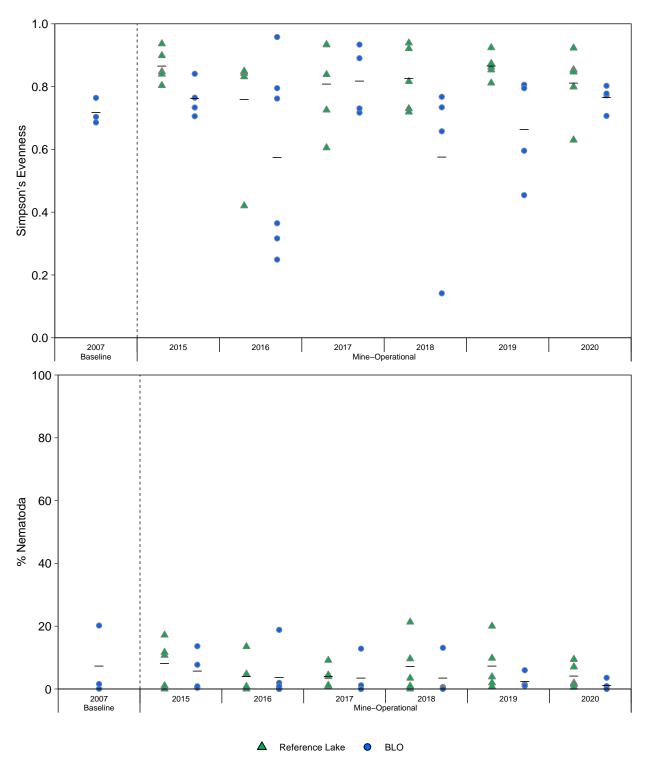


Figure F.15: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Littoral Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

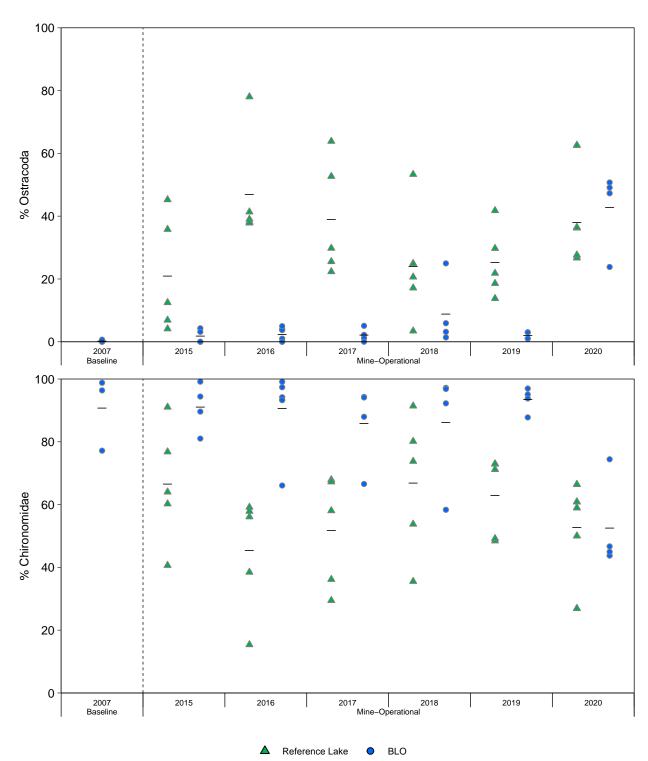


Figure F.15: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Littoral Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

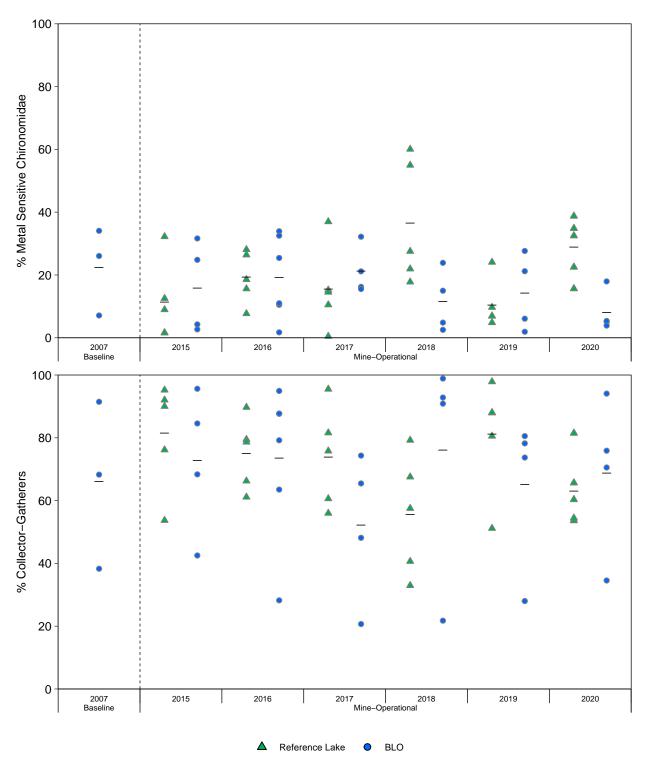


Figure F.15: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Littoral Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

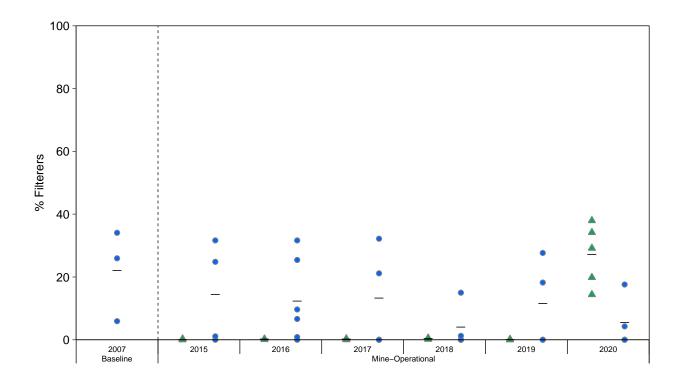


Figure F.15: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Littoral Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

A Reference Lake

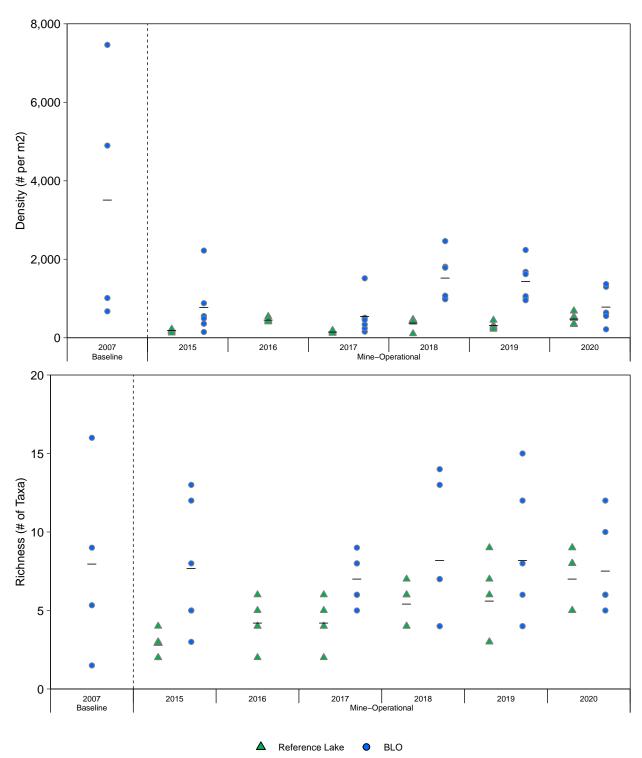


Figure F.16: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Profundal Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

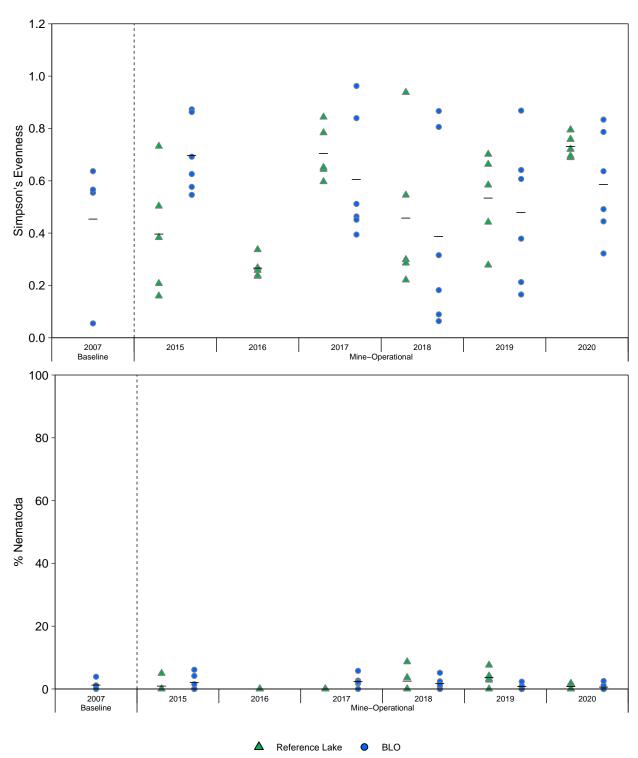


Figure F.16: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Profundal Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

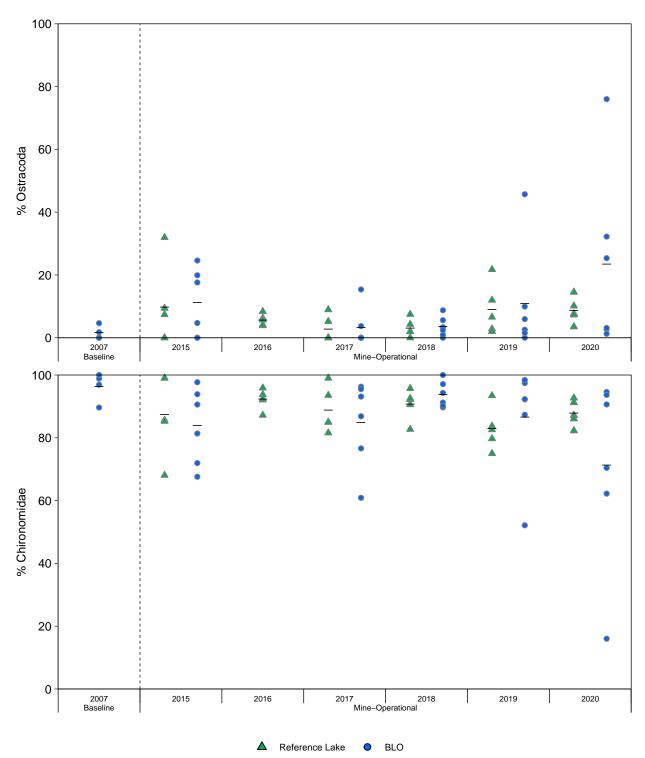


Figure F.16: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Profundal Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

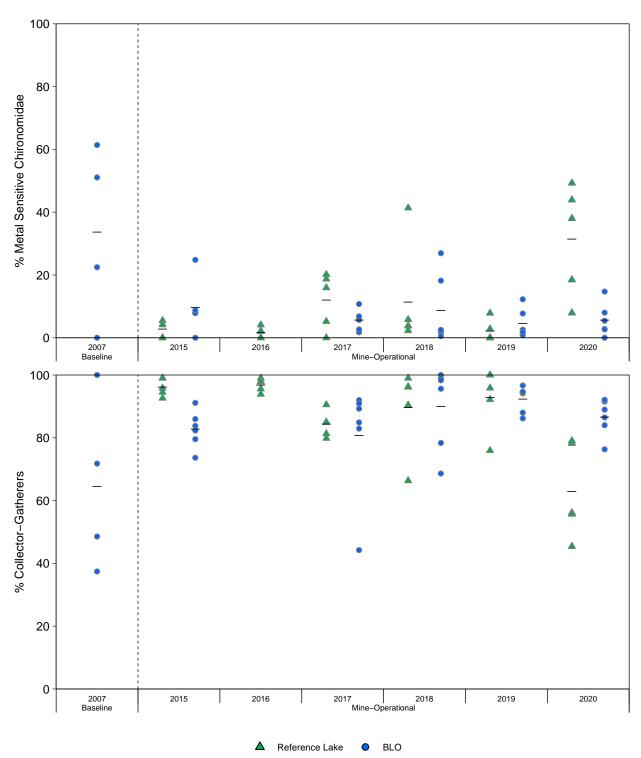


Figure F.16: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Profundal Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

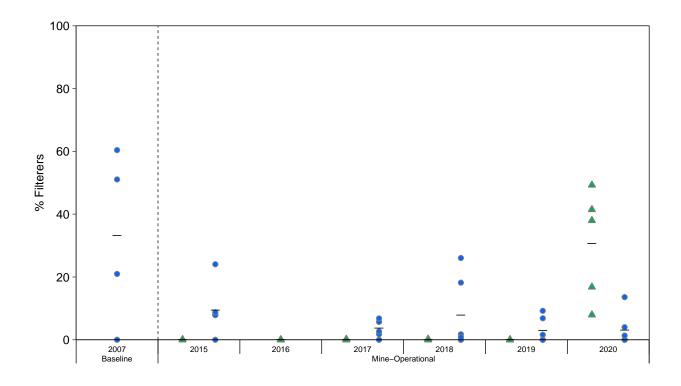


Figure F.16: Comparison of Key Benthic Invertebrate Community Metrics at Mary Lake (BL0) Profundal Habitat Stations among Mine Baseline (2007) and Operational (2015 to 2020) Periods

A Reference Lake

Table F.1: Replicate Grab Data for Benthic Invertebrate Community Samples Collected at the Unnamed Reference Creek and Camp Lake Tributaries, Mary River Project CREMP, August 2020

		W	ater Depth (cr	n)	Wa	ter Velocity (n	n/s)	E	mbeddednes	s	In-S	tream Vegeta	tion	Algae Presence		
Study Area	Station	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3
	REF-CRK-B1	6.0	10	8.0	0.35	0.50	0.33	25%	50%	25%	sparse	none	none	sparse	sparse	sparse
Unnamed Reference Creek	REF-CRK-B2	6.0	8.0	10	0.31	0.37	0.48	25%	25%	25%	none	none	none	sparse	sparse	sparse
	REF-CRK-B3	16	8.0	7.0	0.33	0.37	0.31	50%	50%	50%	none	none	none	sparse	sparse	common
	REF-CRK-B4	10	12	8.0	0.50	0.51	0.42	50%	50%	25%	none	none	none	sparse	sparse	sparse
	REF-CRK-B5	10	8.0	9.0	0.37	0.35	0.38	50%	50%	25%	none	none	none	sparse	sparse	sparse
	CLT-1-US-B1	12	10	12	0.46	0.34	0.45	75%	50%	75%	none	common	none	sparse	sparse	common
Camp Lake	CLT-1-US-B2	9.0	15	13	0.41	0.34	0.32	50%	25%	75%	none	none	none	common	common	common
Tributary 1	CLT-1-US-B3	10	20	8.0	0.38	0.45	0.31	50%	50%	-	sparse	sparse	-	common	common	-
Upstream	CLT-1-US-B4	9.0	18	20	0.33	0.38	0.42	25%	50%	50%	sparse	sparse	sparse	sparse	sparse	common
	CLT-1-US-B5	14	5.0	10	0.38	0.35	0.31	0%	25%	25%	sparse	sparse	sparse	sparse	sparse	sparse
	CLT-1-DS-B1	6.0	6.0	12	0.38	0.44	0.31	25%	25%	25%	none	none	none	sparse	sparse	common
Camp Lake	CLT-1-DS-B2	8.0	10	12	0.45	0.31	0.36	25%	50%	25%	none	none	sparse	sparse	sparse	sparse
Tributary 1	CLT-1-DS-B3	8.0	10	12	0.36	0.32	0.42	25%	25%	25%	sparse	common	sparse	sparse	sparse	sparse
Downstream	CLT-1-DS-B4	12	6.0	6.0	0.54	0.42	0.35	25%	25%	25%	common	sparse	common	sparse	common	sparse
	CLT-1-DS-B5	6.0	7.0	10	0.35	0.32	0.41	25%	25%	50%	sparse	common	sparse	sparse	sparse	sparse
	CLT-2-US-B1	12	8.0	14	0.56	0.34	0.51	50%	25%	50%	sparse	sparse	sparse	common	sparse	common
Camp Lake	CLT-2-US-B2	12	10	14	0.36	0.51	0.38	25%	25%	50%	sparse	sparse	none	sparse	sparse	sparse
Tributary 2	CLT-2-US-B3	11	12	8.0	0.47	0.55	0.37	25%	50%	50%	sparse	sparse	sparse	sparse	sparse	sparse
Upstream	CLT-2-US-B4	12	10	6.0	0.55	0.44	0.31	50%	50%	50%	none	none	none	sparse	sparse	sparse
	CLT-2-US-B5	6.0	10	8.0	0.46	0.31	0.51	25%	50%	50%	none	none	none	sparse	common	sparse
	CLT-2-DS-B1	6.0	10	8.0	0.49	0.31	0.34	25%	50%	25%	none	none	none	sparse	sparse	sparse
Camp Lake	CLT-2-DS-B2	12	12	6.0	0.45	0.35	0.31	25%	25%	50%	none	none	none	sparse	sparse	sparse
Tributary 2	CLT-2-DS-B3	12	10	6.0	0.42	0.55	0.35	25%	25%	25%	none	none	none	sparse	sparse	sparse
Downstream	CLT-2-DS-B4	8.0	10	12	0.48	0.36	0.31	25%	25%	50%	none	none	none	sparse	sparse	sparse
	CLT-2-DS-B5	10	8.0	12	0.42	0.51	0.33	25%	25%	25%	none	none	none	sparse	sparse	sparse

Note: "-" indicates no data available.

Table F.2: Replicate Station Habitat Feature Summary Statistics for the Camp Lake Tributary Benthic Stations, Mary River Project CREMP, August 2020

Metric	Study Area	Sample Size	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Unnamed Reference Creek	5	9.1	1.09	0.49	8.00	10.3
Water Danth	CLT1-US North Branch	5	12.3	2.20	0.98	9.67	15.7
Water Depth (m)	CLT1-DS Lower Main Stem	5	8.7	1.16	0.52	7.67	10.0
(111)	CLT2-US Upstream	5	10.2	1.59	0.71	8.00	12.0
	CLT2-DS Downstream	5	9.5	0.869	0.39	8.00	10.0
	Unnamed Reference Creek	5	0.39	0.052	0.023	0.34	0.48
14/-4 Walasita	CLT1-US North Branch	5	0.38	0.027	0.012	0.35	0.42
Water Velocity (m/s)	CLT1-DS Lower Main Stem	5	0.38	0.031	0.014	0.36	0.44
(111/3)	CLT2-US Upstream	5	0.44	0.023	0.010	0.42	0.47
	CLT2-DS Downstream	5	0.40	0.030	0.013	0.37	0.44
	Unnamed Reference Creek	5	0.38	0.095	0.042	0.25	0.50
Substrate	CLT1-US North Branch	5	0.45	0.183	0.082	0.17	0.67
Embeddedness	CLT1-DS Lower Main Stem	5	0.28	0.046	0.020	0.25	0.33
(%)	CLT2-US Upstream	5	0.42	0.059	0.026	0.33	0.50
	CLT2-DS Downstream	5	0.30	0.046	0.020	0.25	0.33

Note: Five stations were sampled at each study area.

Table F.3: Benthic Station Habitat Feature Statistical Comparisons among Camp Lake Tributary 1 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

	O	verall 3-group	o Comparison	l	Pair-wise, post-hoc comparisons				
Metric	Statistical Transform- Difference Test a ation between		Significant Difference between Areas?	p-value	(I) Area	(J) Area	Significant Difference Between Areas?	P-value	
					Unnamed Reference Creek	CLT1 Upstream	YES	0.019	
Water Depth (cm)	ANOVA	none	YES	0.006	Unnamed Reference Creek	CLT1 Downstream	NO	0.651	
					CLT1 Upstream	CLT1 Downstream	YES	0.026	
				0.792	Unnamed Reference Creek	CLT1 Upstream	NO	0.539	
Water Velocity (cm/s)	ANOVA	none	NO		Unnamed Reference Creek	CLT1 Downstream	NO	0.456	
					CLT1 Upstream	CLT1 Downstream	NO	0.683	
Outratuata				0.135	Unnamed Reference Creek	CLT1 Upstream	NO	0.554	
Substrate Embeddedness	ANOVA	none	NO		Unnamed Reference Creek	CLT1 Downstream	NO	0.145	
(%)					CLT1 Upstream	CLT1 Downstream	NO	0.154	

Highlighted values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.4: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Unnamed Reference Creek Study Area, August 2020

Таха	Study Area	Unnamed Refe	Reference Creek					
Taxa	Replicate Station	B1	B2	В3	B4	B5		
ROUNDWORMS								
P. Nemata		4	-	-	4	18		
ANNELIDS								
P. Annelida								
WORMS								
Cl. Oligochaeta		7	-	-	4.4	0.5		
F. Enchytraeidae		7	7	7	11	25		
ARTHROPODS								
P. Arthropoda								
MITES								
Cl. Arachnida								
O. Acarina								
F. Lebertiidae			4					
Lebertia F. Sperchonidae		-	4	-	-	-		
Sperchon		18	25	29	29	18		
SEED SHRIMPS		10	20	23	23	10		
Cl. Ostracoda		290	161	104	434	100		
SPRINGTAILS		200			10 1	.00		
Cl. Entognatha								
O. Collembola		-	-	-	-	-		
INSECTS								
Cl. Insecta								
MAYFLIES								
O. Ephemeroptera								
F. Baetidae								
Acentrella feropagus		29	18	4	22	7		
STONEFLIES								
O. Plecoptera								
F. Capniidae								
immature		-	-	-	-	-		
TRUE FLIES								
O. Diptera								
BITING-MIDGE								
F. Ceratopogonidae								
Culicoides		14	11	-	-	-		
MIDGES								
F. Chironomidae			4.4	4	4.4			
chironomid pupae		-	14	4	14	4		
S.F. Chironominae Micropsectra								
Paratanytarsus		-	-	-	- -	-		
Rheotanytarsus		7	-	-	-	-		
S.F. Diamesinae		,	-	-	-	-		
Diamesa		7	-	-	4	-		
Pseudokiefferiella		11	4	-	4	-		
S.F. Orthocladiinae								
Cardiocladius		-	-	-	-	-		
Chaetocladius		-	4	-	-	-		
Corynoneura		11	-	-	4	-		
Cricotopus		29	4	4	-	7		
Cricotopus/Orthocladius	3	-	-	-	-	-		
Eukiefferiella		25	36	-	29	57		

Table F.4: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Unnamed Reference Creek Study Area, August 2020

Study Area	unnamed Refer	Unnamed Reference Creek							
Taxa Replicate Station	n B1	B2	В3	B4	B5				
Hydrobaenus	<u>-</u>	-	-	-	-				
Hydrosmittia	14	-	=	=	=				
Krenosmittia	4	4	_	_	_				
Limnophyes	7	7	_	4	4				
Metriocnemus	-	-	-	-	_				
Orthocladius (Euorthocladius)	-	18	-	47	29				
Parakiefferiella ,	=	-	=	=	=				
Paraphaenocladius	-	-	-	4	4				
Psectrocladius	-	-	-	-	_				
Thienemanniella	-	-	-	-	_				
Tokunagaia	47	79	18	32	111				
Tvetenia	140	276	65	305	190				
indeterminate	-	_	-	-	_				
S.F. Podonominae									
Trichotanypus	-	-	_	_	_				
S.F. Tanypodinae									
Thienemannimyia complex	11	11	11	_	_				
F. Empididae	• • •								
Clinocera	_	_	_	_	_				
F. Muscidae	_	_	_	_	_				
F. Simuliidae									
Gymnopais				7					
Metacnephia	29	36	-	, 36	4				
Prosimulium	122	97	<u>-</u>	43	18				
	25	31	-	4	10				
pupae F. Tipulidae	23	-	-	7	_				
Dicranota									
Tipula	-	7	14	-	7				
Number of Organisms (No. organisms per m ²)	849	821	258	1,032	602				
Richness (total number of taxa) ^a	20	19	9	17	15				
Simpson's Evenness (E)	0.860	0.856	0.840	0.767	0.878				
Shannon-Wiener Diversity	3.13	3.00	2.40	2.48	2.95				
Percent Composition									
% Nemata	0.4	0.0	0.0	0.3	3.0				
% Oligochaeta	8.0	0.9	2.8	1.0	4.2				
% Hydracarina	2.1	3.5	11.1	2.8	3.0				
% Ostracods	34.2	19.7	40.3	42.0	16.7				
% Ephemeroptera	3.4	2.2	1.4	2.1	1.2				
% Chironomids	36.7	55.5	38.9	43.1	67.3				
% Metal Sensitive Chironmids	3.0	0.5	0.0	0.7	0.0				
% Simuliidae	20.7	16.2	0.0	8.7	3.6				
% Tipulidae	0.0	0.9	5.6	0.0	1.2				
Functional Feeding Group Composition									
% Collector - Gatherers	70.0	76.4	77.6	88.5	91.1				
% Filterers	21.5	16.2	0.0	8.0	3.6				
% Shredders	3.4	1.3	7.0	0.0	2.4				
labitat Preference Group Composition									
% Clingers	27.0	20.1	12.6	11.5	7.7				
% Sprawlers	70.0	76.8	79.1	87.2	83.9				
% Burrowers	3.0	3.1	8.3	1.4	8.3				

^a Bold entries excluded from taxa count

Table F.5: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 1 Study Areas, August 2020

Таха	Study Area	North Branch U	pstream (CLT1-	US)		
Ιαλα	Replicate Station	B1	B2	В3	B4	B5
ROUNDWORMS						
P. Nemata		29	65	22	-	11
ANNELIDS						
P. Annelida WORMS						
Cl. Oligochaeta						
F. Enchytraeidae		104	118	93	32	25
ARTHROPODS						
P. Arthropoda MITES						
Cl. Arachnida						
O. Acarina						
F. Lebertiidae						
Lebertia		-	_	_	-	-
F. Sperchonidae						
Sperchon		93	14	-	25	61
SEED SHRIMPS						
Cl. Ostracoda		7	22	-	-	14
SPRINGTAILS						
Cl. Entognatha						
O. Collembola		-	4	-	14	7
NSECTS						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus		-	-	-	-	4
STONEFLIES						
O. Plecoptera						
F. Capniidae						
immature		-	4	-	-	-
RUE FLIES						
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae						
Culicoides		-	-	-	-	=
MIDGES						
F. Chironomidae		115	02	79	50	108
chironomid pupae S.F. Chironominae		115	93	79	50	108
Micropsectra		25	272	93		_
Paratanytarsus		-	-	-	-	22
Rheotanytarsus		_	-	_	_	-
S.F. Diamesinae		_	_	_	_	_
Diamesa		7	7	<u>-</u>	-	_
Pseudokiefferiella		244	72	323	57	57
S.F. Orthocladiinae			· -		.	٥.
Cardiocladius		-	_	_	-	-
Chaetocladius		14	_	_	_	-
Corynoneura		7	29	22	7	11
Cricotopus		179	495	523	151	82
Cricotopus/Orthocladio	JS	362	244	330	39	125
Eukiefferiella		-	-	-	29	-

Table F.5: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 1 Study Areas, August 2020

Taxa Study Ar	rea North Branch l	Jpstream (CLT1	-US)		
Replicate Stati	ion B1	B2	В3	B4	B5
Hydrobaenus	-	29	7	7	-
Hydrosmittia	61	409	330	25	32
Krenosmittia	14	36	7	11	14
Limnophyes	47	29	14	4	11
Metriocnemus	39	-	-	-	-
Orthocladius (Euorthocladius)	265	14	366	118	147
Parakiefferiella	-	-	36	-	-
Paraphaenocladius	-	-	-	-	-
Psectrocladius	-	-	-	4	-
Thienemanniella	=	-	-	-	11
Tokunagaia	115	29	-	57	43
Tvetenia	61	22	22	14	79
indeterminate	=	-	7	-	-
S.F. Podonominae					
Trichotanypus	_	7	_	_	-
S.F. Tanypodinae					
Thienemannimyia complex	7	_	_	7	-
F. Empididae					
Clinocera	32	7	7	7	7
F. Muscidae	<u>-</u>	_	_	_	-
F. Simuliidae					
Gymnopais	_	_	_	_	7
Metacnephia	_	_	_	_	-
Prosimulium	4	_	_	4	_
pupae	· -	_	_		_
F. Tipulidae					
Dicranota	_	_	_	_	_
Tipula	72	82	108	47	197
•					
Number of Organisms (No. organisms per m ²		2,100	2,387	710	1,075
Richness (total number of taxa) ^a	21	21	15	19	20
Simpson's Evenness (E)	0.900	0.835	0.867	0.905	0.912
Shannon-Wiener Diversity	3.364	2.968	2.793	3.348	3.400
Percent Composition					
% Nemata	1.5	3.1	0.9	0.0	1.0
% Oligochaeta	5.5	5.6	3.9	4.5	2.3
% Hydracarina	4.9	0.7	0.0	3.5	5.7
% Ostracods	0.4	1.0	0.0	0.0	1.3
% Ephemeroptera	0.0	0.0	0.0	0.0	0.3
% Chironomids	82.1	85.0	90.4	81.8	69.0
% Metal Sensitive Chironmids	15.6	17.6	18.1	8.8	8.6
% Simuliidae	0.2	0.0	0.0	0.5	0.7
% Tipulidae	3.8	3.9	4.5	6.6	18.3
Functional Feeding Group Composition					
% Collector - Gatherers	69.2	44.5	59.9	60.7	58.5
% Filterers	1.6	13.7	4.1	0.5	2.3
% Shredders	22.2	40.8	35.7	33.2	32.2
Habitat Preference Group Composition					
% Clingers	26.6	51.5	35.5	31.7	20.9
% Sprawlers	60.4	35.7	55.1	55.2	56.8
% Burrowers	13.0	12.6	9.3	11.1	21.7

^a Bold entries excluded from taxa count

Table F.5: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 1 Study Areas, August 2020

Tava	Study Area	Lower Main Stem	n (CLT1-DS)			
Таха	Replicate Station	B1	B2	В3	В4	B5
ROUNDWORMS						
P. Nemata		32	7	7	7	11
ANNELIDS						
P. Annelida WORMS						
Cl. Oligochaeta		407	40	40	404	
F. Enchytraeidae		197	18	18	161	36
ARTHROPODS						
P. Arthropoda MITES						
Cl. Arachnida						
O. Acarina						
F. Lebertiidae						
Lebertia F. Sperchonidae		-	-	-	-	-
Sperchon		11	-	11	7	11
SEED SHRIMPS						
Cl. Ostracoda		4	-	-	-	-
SPRINGTAILS						
Cl. Entognatha O. Collembola		-	-	-	-	-
INSECTS						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus		-	-	11	-	7
STONEFLIES O Pleasenters						
O. Plecoptera F. Capniidae						
immature		-	_	-	-	_
TRUE FLIES						
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae					4	0.5
Culicoides MIDGES		-	-	-	4	25
F. Chironomidae						
chironomid pupae		39	18	14	29	22
S.F. Chironominae						
Micropsectra		-	-	-	-	-
Paratanytarsus		7	-	7	4	-
Rheotanytarsus		-	-	-	-	-
S.F. Diamesinae				_		
Diamesa Pseudokiefferiella		- 11	4 11	7	11 22	- 14
S.F. Orthocladiinae		11	11	-	22	14
Cardiocladius		_	_	_	_	_
Chaetocladius		-	-	-	-	-
Corynoneura		4	4	-	-	-
Cricotopus		36	47	14	32	22
Cricotopus/Orthocladi	ius	11	22	11	18	39
Eukiefferiella		-	-	-	7	-

Table F.5: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 1 Study Areas, August 2020

Таха	Study Area	Lower Main Ster	n (CLT1-DS)			
Repl	icate Station	B1	B2	В3	В4	B5
Hydrobaenus		11	7	4	14	4
Hydrosmittia		380	276	57	283	237
Krenosmittia		25	4	14	11	4
Limnophyes		7	7	4	-	11
Metriocnemus		=	-	=	-	-
Orthocladius (Euorthocladiu	ıs)	11	11	7	14	14
Parakiefferiella	,	29	4	=	4	-
Paraphaenocladius		7	-	=	4	-
Psectrocladius		-	-	_	-	_
Thienemanniella		_	4	_	_	_
Tokunagaia		25	-	7	18	18
Tvetenia		32	65	54	75	57
indeterminate		25	_	_	-	_
S.F. Podonominae						
Trichotanypus		_	_	_	_	_
S.F. Tanypodinae						
Thienemannimyia complex		_	_	_	4	_
F. Empididae					•	
Clinocera		_	7	_	11	_
F. Muscidae		_	<u>-</u>	_	-	_
F. Simuliidae						
Gymnopais		4	_	_	_	_
Metacnephia		· -	_	_	4	_
Prosimulium		_	_	_		_
pupae		_	_	_	_	_
F. Tipulidae						
Dicranota		_	_	_	4	_
Tipula		32	47	14	61	32
Number of Organisms (No. organism	ns per m²)	939	559	262	806	563
Richness (total number of taxa) ^a	. ,	19	16	15	22	15
Simpson's Evenness (E)		0.800	0.745	0.929	0.839	0.825
Shannon-Wiener Diversity		2.837	2.507	3.367	3.051	2.902
Percent Composition						
% Nemata		3.4	1.3	2.7	0.9	1.9
% Oligochaeta		21.0	3.2	6.8	20.0	6.4
% Hydracarina		1.1	0.0	4.1	0.9	1.9
% Ostracods		0.4	0.0	0.0	0.0	0.0
% Ephemeroptera		0.0	0.0	4.1	0.0	1.3
% Chironomids		70.2	85.9	76.7	68.0	78.3
% Metal Sensitive Chironmids		2.0	2.7	5.9	4.7	2.7
% Simuliidae		0.4	0.0	0.0	0.4	0.0
% Tipulidae		3.4	8.3	5.5	8.0	5.7
Functional Feeding Group Composit	tion					
% Collector - Gatherers		89.2	78.5	78.6	82.1	79.5
% Filterers		8.0	0.0	3.0	0.9	0.0
% Shredders		8.4	20.2	14.3	13.4	14.2
Habitat Preference Group Compositi	on					
% Clingers		6.5	13.2	13.0	8.5	10.3
% Sprawlers		65.6	74.0	72.0	62.6	71.2
% Burrowers		27.9	12.8	15.1	28.9	18.5

^a Bold entries excluded from taxa count

Table F.6: Benthic Invertebrate Community Summary Statistics for Camp Lake Tributary 1 Study Areas, Mary River Project CREMP, August 2020

Metric	Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
Donoity	Unnamed Reference Creek	713	296	133	258	821	1,032
Density (no. organisms / m²)	CLT1 Upstream	1,635	711	318	710	1,903	2,387
(CLT1 Downstream	626	261	117	262	563	939
	Unnamed Reference Creek	16.0	4.36	1.95	9	17	20
Richness (Number of Taxa)	CLT1 Upstream	19.2	2.49	1.11	15	20	21
(Common or Cana)	CLT1 Downstream	17.4	3.05	1.36	15	16	22
	Unnamed Reference Creek	0.840	0.0432	0.0193	0.767	0.856	0.878
Simpson's Evenness	CLT1 Upstream	0.884	0.0319	0.0143	0.835	0.9	0.912
	CLT1 Downstream	0.828	0.0671	0.03	0.745	0.825	0.929
	Unnamed Reference Creek	0.7%	1.3%	0.6%	0.0%	0.3%	3.0%
Nemata (% of community)	CLT1 Upstream	1.3%	1.1%	0.5%	0.0%	1.0%	3.1%
(% or community)	CLT1 Downstream	2.1%	1.0%	0.5%	0.9%	1.9%	3.4%
	Unnamed Reference Creek	1.9%	1.5%	0.7%	0.8%	1.0%	4.2%
Oligochaeta	CLT1 Upstream	4.4%	1.3%	0.6%	2.3%	4.6%	5.6%
(% of community)	CLT1 Downstream	11.5%	8.4%	3.7%	3.2%	6.9%	21.0%
	Unnamed Reference Creek	4.5%	3.7%	1.7%	2.1%	3.0%	11.1%
Hydracarina	CLT1 Upstream	3.0%	2.5%	1.1%	0.0%	3.5%	5.7%
(% of community)	CLT1 Downstream	1.6%	1.6%	0.7%	0.0%	1.2%	4.1%
	Unnamed Reference Creek	30.6%	11.7%	5.3%	16.7%	34.2%	42.0%
Ostracoda	CLT1 Upstream	0.5%	0.6%	0.3%	0.0%	0.4%	1.3%
(% of community)		0.5%	0.0%	0.5%	0.0%		0.4%
	CLT1 Downstream					0.0%	
Chironomidae (% of community)	Unnamed Reference Creek	48.3%	12.9%	5.8%	36.7%	43.1%	67.3%
	CLT1 Upstream	81.7%	7.9%	3.5%	69.0%	82.1%	90.4%
	CLT1 Downstream	75.8%	7.1%	3.2%	68.0%	76.7%	85.9%
Metal-Sensitive	Unnamed Reference Creek	22.9%	7.5%	3.3%	10.6%	10.6%	30.1%
Chironomidae (% of community)	CLT1 Upstream	14.4%	10.4%	4.6%	1.6%	1.6%	24.1%
(70 01 00111111111111)	CLT1 Downstream	7.7%	3.4%	1.5%	3.4%	3.4%	11.6%
Simuliidae	Unnamed Reference Creek	0.3%	0.5%	0.2%	0.0%	0.0%	1.0%
(% of community)	CLT1 Upstream	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CLT1 Downstream	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tipulidae	Unnamed Reference Creek	1.0%	1.1%	0.5%	0.0%	0.0%	2.9%
(% of community)	CLT1 Upstream	5.4%	1.9%	0.9%	2.9%	2.9%	7.4%
,	CLT1 Downstream	2.7%	2.4%	1.1%	0.6%	0.6%	6.9%
Collector-Gatherer	Unnamed Reference Creek	72.7%	16.4%	7.3%	44.3%	44.3%	83.8%
FFG	CLT1 Upstream	58.8%	8.6%	3.8%	52.1%	52.1%	73.8%
(% of community)	CLT1 Downstream	81.5%	6.3%	2.8%	76.0%	76.0%	89.6%
	Unnamed Reference Creek	6.6%	11.0%	4.9%	0.6%	0.6%	26.1%
Filterer FFG (% of community)	CLT1 Upstream	2.0%	2.4%	1.1%	0.0%	0.0%	5.6%
(70 01 00111111111111)	CLT1 Downstream	0.8%	1.9%	0.8%	0.0%	0.0%	4.2%
	Unnamed Reference Creek	12.3%	7.7%	3.4%	2.5%	2.5%	21.4%
Shredder FFG (% of community)	CLT1 Upstream	33.8%	9.1%	4.1%	21.1%	21.1%	41.8%
(% of community)	CLT1 Downstream	13.9%	6.1%	2.7%	7.9%	7.9%	22.4%
	Unnamed Reference Creek	21.8%	18.3%	8.2%	7.3%	7.3%	52.0%
Clinger HPG	CLT1 Upstream	34.1%	7.6%	3.4%	21.7%	21.7%	40.2%
(% of community)	CLT1 Downstream	14.9%	5.9%	2.7%	7.8%	7.8%	21.5%
	Unnamed Reference Creek	69.4%	16.1%	7.2%	42.8%	42.8%	83.1%
Sprawler HPG	CLT1 Upstream	55.8%	11.0%	4.9%	46.0%	46.0%	74.3%
(% of community)	CLT1 Downstream	75.0%	9.4%	4.2%	65.2%	65.2%	86.3%
	Unnamed Reference Creek	5.7%	4.6%	2.1%	2.7%	2.7%	13.8%
Burrower HPG	CLT1 Upstream	9.3%	5.1%	2.1%	3.9%	3.9%	17.1%
(% of community)	·						
	CLT1 Downstream	9.0%	5.5%	2.5%	4.4%	4.4%	17.0%

Note: Sample size equals five for all study areas.

Table F.7: Statistical Comparison of Bray-Curtis Index for Camp Lake Tributary 1 and 2 Compared to Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

Mine-Exposed	Comparison	n		Betadisper	Mantel Test			dbRDA			
Area	Comparison	Reference	Mine- Exposed	P-Value	r	R ²	P-Value	F-Value	R ²	R ² adj	P-Value
Camp Lake	CLT1-US vs REF-CRK	5	5	0.661	0.822	0.676	0.008	11.17	0.583	0.530	0.006
Tributary 1	CLT1-DS vs REF-CRK	5	5	0.435	0.835	0.697	0.008	10.34	0.564	0.509	0.007
Camp Lake	CLT2-US vs REF-CRK	5	5	0.435	0.741	0.549	0.008	8.69	0.521	0.461	0.008
Tributary 2	CLT2-DS vs REF-CRK	5	5	0.846	0.570	0.324	0.008	5.31	0.399	0.324	0.007

Highlighted values indicate significant difference between study areas based on statistical test p-value less than 0.10.

Table F.8: Statistical Comparison of Primary and Percent Compositional Benthic Metrics at Camp Lake Tributary 1 North Branch (CLT1 US) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2011) for the Mary River Project CREMP

		Overall 8-Yea	ar Comparison		ļ			Pair-wise,	post-hoc comparis	ons	
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	t Size vs. Baseline Year 2011	Pairwise Comparison
					2007	3	505	330	-	-3.2	а
					2011	3	949	139	1.3	-	a,b
					2015	5	1,446	836	2.9	3.6	b
ensity No. per m²)	ANOVA	log10	YES	0.023	2016	5	1,610	806 143	2.2	4.8 2.1	b b
to. por ,					2017	5	1,379	524	2.6	3.1	b
					2019	5	1,260	313	2.3	2.2	b
					2020	5	1,635	711	3.4	4.9	b
					2007	3	13.7	2.3	-	-0.3	а
					2011	3	14.3	2.1	0.3	-	a,b
					2015	5	15.0	2.7	0.6	0.3	a,b
Richness No. of Taxa)	ANOVA	none	YES	0.002	2016	5	14.0	2.7	0.1	-0.1	a
NO. OI Taxa)					2017	5	19.2	2.6	2.4	2.4	b
					2018	5	17.2	1.5 2.1	1.5	1.4 1.8	a,b a,b
					2019	5	19.2	2.5	2.4	2.4	b
					2007	3	0.749	0.082	-	-3.0	a
					2011	3	0.874	0.042	1.5	-	b
					2015	5	0.899	0.037	1.8	0.6	b
Simpson's	ANOVA	none	YES	<0.001	2016	5	0.908	0.032	1.9	0.8	b
venness	7	none	120	-0.001	2017	5	0.925	0.019	2.1	1.2	b
					2018	5	0.877	0.058	1.6	0.1	b
					2019	5	0.884	0.036	1.6	0.2	b
					2020	5	0.884	0.032	1.6	0.2 -0.7	b a
					2007	3	0.1	0.8	2.1	-0.7	a
					2015	5	1.7	0.7	6.0	1.3	a
lemata					2016	5	1.3	0.5	4.5	0.8	а
% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	4.1	2.1	15.4	4.4	b
					2018	5	1.6	0.7	5.5	1.1	а
					2019	5	1.3	8.0	4.4	0.7	а
				2020	5	1.3	1.1	4.5	0.8	а	
					2007	3	0.8	1.0	-	-2.0	. a
					2011	3 5	2.3	6.7 1.7	13.3	- -1.8	b a
lydracarina					2015	5	9.8	3.2	8.8	-0.7	b,c
% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	7.7	1.1	6.7	-1.0	c,d
					2018	5	5.3	1.3	4.5	-1.4	a,c,d
					2019	5	2.0	1.7	1.1	-1.9	а
					2020	5	3.0	2.5	2.1	-1.7	a,d
					2007	3	88.1	7.2	-	2.3	а
					2011	3	76.3	5.1	-1.7	-	a,b,c
					2015	5	75.6	7.5	-1.7	-0.1	a,b,c
Chironomidae % of community)	ANOVA	none	YES	<0.001	2016	5	68.6 74.0	10.6 1.7	-2.7 -2.0	-1.5 -0.5	C
					2017	5	86.8	4.2	-2.0 -0.2	-0.5 2.1	a,c c
					2018	5	85.0	5.1	-0.2	1.7	b,c
					2020	5	81.7	7.9	-0.9	1.1	a,b
					2007	3	3.7	3.6	-	-1.1	а
					2011	3	10.8	6.6	2.0	-	а
Intol Constitut					2015	5	12.7	14.1	2.5	0.3	а
letal Sensitive axa	ANOVA	log10	NO	0.255	2016	5	9.1	9.0	1.5	-0.3	а
% of community)					2017	5	7.2	5.2	1.0	-0.5	a
					2018	5	17.8	4.8 10.4	3.9	1.1 0.5	a
					2019	5	13.8	4.7	2.8	0.5	a a
					2007	3	8.9	4.1	-	0.9	a,b
					2011	3	6.9	2.1	-0.5	-	a,b,c
					2015	5	16.8	4.7	1.9	4.6	а
ipulidae	ANOVA	log10	YES	<0.001	2016	5	16.9	11.8	2.0	4.7	a,b
% of community)	ANOVA	10910	150	\0.001	2017	5	8.4	1.5	-0.1	0.7	a,b
					2018	5	2.9	2.3	-1.5	-1.9	С
					2019	5	5.5	1.9	-0.8	-0.7	b,c
					2020	5	7.4	6.2	-0.4	0.2	a,b

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.9: Statistical Comparison of Functional Feeding Group (FFG) Benthic Metrics at Camp Lake Tributary 1 North Branch (CLT1 US) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2011) for the Mary River Project CREMP

		Overall 8-Yea	r Comparison					Pair-wise,	post-hoc comparise	ons	
		Data	Significant						Effec	t Size	
Metric	Statistical Test ^a	Transform- ation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2011	Pairwise Comparison
					2007	3	72.6	11.0	-	2.2	а
					2011	3	41.4	14.1	-2.8	-	b,c
			YES		2015	5	50.2	7.3	-2.0	0.6	b,c
Collector-Gatherer FFG	ANOVA	none		0.001	2016	5	40.8	11.3	-2.9	0.0	b,c
(% of community)	ANOVA	Hone		0.001	2017	5	38.8	7.1	-3.1	-0.2	b
					2018	5	54.6	13.5	-1.6	0.9	a,b,c
					2019	5	58.8	8.6	-1.3	1.2	a,c
					2020	5	58.5	8.9	-1.3	1.2	a,c
			rank YES	0.020	2007	3	0.3	0.3	-	not calculable	a,b
					2011	3	0.0	0.0	-1.2	-	b
					2015	5	0.0	0.0	-1.2	not calculable	b
Filterer FFG	K-W	rank			2016	5	0.5	0.6	0.9	not calculable	a,b
(% of community)	rx-vv	Idlik			2017	5	1.3	1.5	3.9	not calculable	a,c
					2018	5	0.5	0.5	0.8	not calculable	b,c
					2019	5	2.0	2.4	6.5	not calculable	a,c
					2020	5	4.4	5.3	15.7	not calculable	С
					2007	3	23.1	8.8	-	-1.2	а
					2011	3	40.0	14.2	1.9	-	a,b
					2015	5	46.1	7.3	2.6	0.4	b
Shredder FFG	ANOVA	none	YES	0.016	2016	5	47.8	14.0	2.8	0.5	b
(% of community)	ANOVA	HOHE	ILO	0.010	2017	5	49.5	6.4	3.0	0.7	b
					2018	5	39.3	13.2	1.8	0.0	a,b
					2019	5	33.8	9.1	1.2	-0.4	a,b
					2020	5	32.8	6.8	1.1	-0.5	a,b

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint values between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.10: Statistical Comparison of Primary and Percent Compositional Benthic Metrics at Camp Lake Tributary 1 Lower Main Stem (CLT1 DS) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2011) for the Mary River Project **CREMP**

		Overall 8-Yea	ar Comparison					Pair-wise,	post-hoc compari	sons	
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	t Size vs. Baseline Year 2011	Pairwise Comparison
					2007	3	754	573	-	-0.8	a,b
					2011	3	898	183	0.3	-	a,b
Damait					2015 2016	5 5	1,301 1,143	479 443	1.0 0.7	2.2 1.3	a,b
Density No. per m²)	ANOVA	none	YES	0.077	2016	5	1,143	735	1.2	3.1	a,b a
ito. poi iii ,					2017	5	771	309	0.0	-0.7	a a,b
					2019	5	843	293	0.2	-0.3	a,b
					2020	5	626	261	-0.2	-1.5	b
					2007	3	20.3	6.0	-	1.1	а
					2011	3	15.3	4.5	-0.8	-	а
					2015	5	14.6	1.1	-0.9	-0.2	а
Richness No. of Taxa)	ANOVA	log10	NO	0.125	2016 2017	5 5	17.0 16.8	1.6 1.9	-0.5 -0.6	0.4	а
No. or ruxu,					2017	5	14.4	1.1	-1.0	-0.2	a a
					2019	5	15.8	1.6	-0.7	0.1	a
					2020	5	17.4	3.1	-0.5	0.5	a
					2007	3	0.864	0.040	-	0.0	а
					2011	3	0.864	0.025	0.0	-	а
					2015	5	0.889	0.044	0.6	1.0	а
Simpson's	ANOVA	none	NO	0.276	2016	5	0.864	0.095	0.0	0.0	a
Evenness					2017	5	0.874	0.033	0.3	0.4	a
					2018	5 5	0.857 0.755	0.050 0.161	-0.2 -2.7	-0.3 -4.3	a a
					2019	5	0.755	0.161	-0.9	-4.3 -1.4	a a
					2007	3	1.0	1.3	-0.3	1.5	a
					2011	3	0.4	0.4	-0.4	-	а
					2015	5	3.2	2.6	1.6	7.2	а
lemata	K-W	rank	NO	0.162	2016	5	4.5	4.1	2.6	10.6	а
% of community)	11-44	Tank	NO	0.102	2017	5	4.6	5.0	2.6	10.8	а
					2018	5	2.6	1.8	1.2	5.6	а
					2019	5	2.2	1.3	0.9	4.7	а
					2020 2007	5 3	2.1 7.3	1.0 6.2	0.8	4.3 4.0	a
				0.008	2007	3	1.1	1.6	-1.0	4.0	a,b,c a,c
Oligochaeta (% of community)			0(x+1) YES		2015	5	5.6	3.1	-0.3	2.9	a,b,c
		ANOVA log10(x+1)			2016	5	9.7	3.7	0.4	5.5	a,b
	ANOVA				2017	5	5.0	2.7	-0.4	2.5	a,b,c
					2018	5	1.2	1.0	-1.0	0.1	С
					2019	5	4.0	2.7	-0.5	1.9	a,b,c
					2020	5	11.5	8.4	0.7	6.7	b
					2007	3	2.9 24.7	1.4 6.4	15.4	-3.4	a,c,d
					2011	5	1.7	1.6	-0.8	-3.6	b d
Hydracarina					2016	5	4.6	0.8	1.2	-3.1	a,b
% of community)	K-W	rank	YES	0.007	2017	5	4.0	1.4	0.8	-3.2	a,c
					2018	5	3.6	1.5	0.5	-3.3	a,c,d
					2019	5	2.3	1.4	-0.4	-3.5	c,d
					2020	5	1.6	1.6	-0.9	-3.6	d
					2007	3	80.8	8.5	-	1.7	a,b
					2011	3	65.3	9.0	-1.8	-	C
Shinor!-!-					2015	5 5	85.2 73.9	4.0 5.9	0.5 -0.8	1.0	a,b b,c
Chironomidae % of community)	ANOVA	log10	YES	<0.001	2016	5	80.9	4.5	-0.8	1.0	a,b
37					2018	5	85.9	4.1	0.6	2.3	a
					2019	5	87.4	7.4	0.8	2.5	а
					2020	5	75.8	7.1	-0.6	1.2	a,b,c
					2007	3	15.1	10.2	-	1.0	а
					2011	3	7.6	7.4	-0.7	-	a,b,c
Metal Sensitive					2015	5	4.4	3.5	-1.0	-0.4	b,c
axa	K-W	rank	YES	0.009	2016 2017	5 5	3.9 1.5	3.3 0.7	-1.1 -1.3	-0.5 -0.8	c,d d
% of community)					2017	5	8.6	6.0	-0.6	0.1	a,b
					2019	5	7.7	3.4	-0.7	0.0	a,b a,b
					2020	5	3.6	1.6	-1.1	-0.5	b,c
					2007	3	6.5	2.6	-	-0.6	a
					2011	3	8.4	3.2	0.7	-	а
					2015	5	3.1	1.0	-1.3	-1.7	а
Fipulidae	ANOVA	log10	YES	0.082	2016	5	6.1	3.4	-0.1	-0.7	а
% of community)		J	- -		2017	5	3.9	3.1	-1.0	-1.4	a
					2018	5	4.9	3.1	-0.6	-1.1	a .
					2019	5	2.8	2.4	-1.4	-1.8	а

Indicates a statistically significant difference for respective comparison (p-value \leq 0.1).

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test

Table F.11: Statistical Comparison of Functional Feeding Group (FFG) Benthic Metrics at Camp Lake Tributary 1 Lower Main Stem (CLT1 DS) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2011) for the Mary River Project CREMP

		Overall 8-Yea	r Comparison					Pair-wise,	post-hoc comparis	ons	
Metric		Data	Significant						Effec	t Size	
Metric	Statistical Test ^a	Transform- ation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2011	Pairwise Comparison
					2007	3	51.7	24.3	-	1.5	a.b
					2011	3	35.6	10.5	-0.7	-	b
					2015	5	78.4	9.5	1.1	4.1	С
Collector-Gatherer FFG	ANOVA	none	YES	<0.0010	2016	5	73.8	9.9	0.9	3.6	c,d
(% of community)	ANOVA	Hone	123	~ 0.0010	2017	5	67.2	6.4	0.6	3.0	a,c,d
					2018	5	59.5	8.3	0.3	2.3	a,d
					2019	5	81.5	6.3	1.2	4.4	С
					2020	5	81.6	4.5	1.2	4.4	С
			NO	0.488	2007	3	10.2	13.1	-	41.0	а
		K-W rank			2011	3	0.3	0.2	-0.8	-	а
					2015	5	0.2	0.5	-0.8	-0.2	а
Filterer FFG	K-W				2016	5	1.3	1.5	-0.7	4.3	а
(% of community)	1144	Idik			2017	5	0.3	0.5	-0.8	0.3	а
					2018	5	0.4	0.5	-0.7	0.6	а
					2019	5	0.8	1.9	-0.7	2.3	а
					2020	5	0.9	1.2	-0.7	2.7	а
					2007	3	22.1	3.1	-	-3.7	a,b,c
					2011	3	38.9	4.6	5.5	-	а
					2015	5	19.3	9.0	-0.9	-4.3	b,c
Shredder FFG	ANOVA	log10	YES	<0.0010	2016	5	19.6	9.5	-0.8	-4.2	b,c
(% of community)	ANOVA	10910	120	30.0010	2017	5	27.6	4.9	1.8	-2.5	a,b
					2018	5	35.5	7.7	4.4	-0.7	а
					2019	5	13.9	6.1	-2.7	-5.5	С
					2020	5	14.1	4.2	-2.6	-5.5	С

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint values between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.12: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 2 Study Areas, August 2020

	Study Area	Upstream (CL1				
Таха	Replicate Station	B1	B2	В3	B4	B5
ROUNDWORMS						
P. Nemata		-	-	14	7	-
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta F. Enchytraeidae		215	14	505	7	11
i . Liiciiyii aeidae		213	14	303	,	
<u>ARTHROPODS</u>						
P. Arthropoda						
MITES Cl. Arachnida						
O. Acarina						
F. Lebertiidae						
Lebertia		-	-	-	-	-
F. Sperchonidae		36	14	14	18	11
Sperchon SEED SHRIMPS		30	14	14	10	11
Cl. Ostracoda		-	4	-	4	-
SPRINGTAILS						
Cl. Entognatha						
O. Collembola		-	-	-	-	-
<u>INSECTS</u>						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae Acentrella feropagus		_	_	_	_	_
STONEFLIES						
O. Plecoptera						
F. Capniidae						
immature TRUE FLIES		-	-	4	11	-
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae						
Culicoides		4	61	4	25	11
MIDGES F. Chironomidae						
chironomid pupae		100	22	79	57	54
S.F. Chironominae						
Micropsectra		-	-	-	-	-
Paratanytarsus Rheotanytarsus		-	-	-	-	-
S.F. Diamesinae		-	-	-	-	-
Diamesa		11	-	11	32	14
Pseudokiefferiella		36	4	36	14	11
S.F. Orthocladiinae						
Cardiocladius Chaetocladius		- 11	-	4	4	- 11
Corynoneura		4	-	4	4	4
Cricotopus		50	22	68	4	18
Cricotopus/Orthoclad	ius	36	14	39	14	-
Eukiefferiella		61	65	-	22	18

Table F.12: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 2 Study Areas, August 2020

Taxa Study Area	upstream (CLT	2-US)			
Replicate Station	n B1	B2	В3	В4	B5
Hydrobaenus	4	-	-	-	_
Hydrosmittia	18	22	72	_	22
Krenosmittia	43	7	32	82	50
Limnophyes	-	- -	7	7	14
Metriocnemus	_	_	· -	· -	-
Orthocladius (Euorthocladius)	168	18	151	86	183
Parakiefferiella	-	-	-	-	-
Paraphaenocladius	_	_	_	-	_
Psectrocladius	_	_	-	_	_
Thienemanniella	_	_	-	_	_
Tokunagaia	_	_	_	11	4
Tvetenia	75	43	72	65	57
indeterminate	4	-	-	4	4
S.F. Podonominae	7			·•	-
Trichotanypus	_	_	_	_	_
S.F. Tanypodinae	_	_	_	_	_
Thienemannimyia complex					
F. Empididae	-	-	-	-	-
Clinocera	4	7	_	11	
F. Muscidae	4	,	-	11	-
	-	-	-	-	-
F. Simuliidae	4				4
Gymnopais Matagraphia	4	-	-	-	4
Metacnephia	-	-	-	-	-
Prosimulium	11	7	4	4	22
pupae	-	-	-	-	-
F. Tipulidae					
Dicranota	-	-	_	-	-
Tipula	11	11	7	11	11
Number of Organisms (No. organisms per m²)		333	1,125	502	530
Richness (total number of taxa) ^a	18	14	17	20	18
Simpson's Evenness (E)	0.894	0.939	0.791	0.914	0.856
Shannon-Wiener Diversity	3.166	3.286	2.629	3.457	3.179
Percent Composition					
% Nemata	0.0	0.0	1.3	1.4	0.0
% Oligochaeta	23.8	4.3	44.9	1.4	2.0
% Hydracarina	4.0	4.3	1.3	3.6	2.0
% Ostracods	0.0	1.1	0.0	0.7	0.0
% Ephemeroptera	0.0	0.0	0.0	0.0	0.0
% Chironomids	68.7	64.5	51.0	80.7	87.2
% Metal Sensitive Chironmids	6.2	1.2	4.8	10.8	5.4
% Simuliidae	1.6	2.2	0.3	0.7	4.7
% Tipulidae	1.2	3.2	0.6	2.1	2.0
Functional Feeding Group Composition					
% Collector - Gatherers	84.7	60.1	88.9	83.3	85.4
% Filterers	1.2	2.2	0.3	0.7	4.1
% Shredders	8.9	13.0	9.2	5.3	5.8
Habitat Preference Group Composition				-	
% Clingers	13.7	18.4	9.9	7.4	10.6
% Sprawlers	60.9	55.8	43.0	82.6	83.3
% Sprawiers					

^a Bold entries excluded from taxa count

Table F.12: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 2 Study Areas, August 2020

Таха	Study Area	Downstream (CL	T2-DS)			
	Replicate Station	B1	B2	В3	B4	B5
ROUNDWORMS						
P. Nemata		724	4	7	4	7
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta F. Enchytraeidae		229	14	68	4	-
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
F. Lebertiidae Lebertia						
F. Sperchonidae		-	-	-	-	-
Sperchon		7	36	18	14	43
SEED SHRIMPS						
Cl. Ostracoda		-	4	-	4	-
SPRINGTAILS						
Cl. Entognatha O. Collembola						
O. Collembola		-	-	-	-	-
<u>INSECTS</u>						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus STONEFLIES		-	-	-	-	-
O. Plecoptera						
F. Capniidae						
immature		-	4	-	-	18
TRUE FLIES						
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae Culicoides		14	<u>-</u>	11	_	7
MIDGES		14	_	11	-	,
F. Chironomidae						
chironomid pupae		115	100	75	36	47
S.F. Chironominae						
Micropsectra		-	-	-	-	-
Paratanytarsus		-	-	-	-	-
Rheotanytarsus S.F. Diamesinae		-	4	-	-	-
Diamesa		93	82	75	14	39
Pseudokiefferiella		108	7	25	-	4
S.F. Orthocladiinae						
Cardiocladius		-	-	22	14	7
Chaetocladius		50	14	14	18	4
Corynoneura		7	4	-	-	-
Cricotopus	iuo	72 50	57 7	54	57 18	-
Cricotopus/Orthoclad	เนร	50 36	7 22	11 22	18 14	11 -

Table F.12: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake Tributary 2 Study Areas, August 2020

Taxa	dy Area Downst	ream (CLT2	2-DS)			
Replicate	Station E	31	B2	B3	В4	B5
Hydrobaenus		_	11	-	-	_
Hydrosmittia	1	4	7	7	-	-
Krenosmittia	1	4	65	75	22	-
Limnophyes		-	18	14	-	-
Metriocnemus		-	-	-	-	-
Orthocladius (Euorthocladius)	10	65	115	97	50	32
Parakiefferiella		-	-	7	-	-
Paraphaenocladius		-	4	=	-	-
Psectrocladius		-	-	=	-	-
Thienemanniella		-	-	-	-	-
Tokunagaia	3	86	90	25	32	36
Tvetenia		94	133	154	39	68
indeterminate		-	-	-	-	-
S.F. Podonominae						
Trichotanypus		_	_	-	-	-
S.F. Tanypodinae						
Thienemannimyia complex		_	_	_	_	_
F. Empididae						
Clinocera		_	_	11	-	_
F. Muscidae		_	4	- · · · · · · · · · · · · · · · · ·	_	_
F. Simuliidae			•			
Gymnopais		7	_	4	_	_
Metacnephia		14	11	7	4	_
Prosimulium		14	32	22	-	11
pupae		-	7	-	_	-
F. Tipulidae		_	•	_	_	_
Dicranota		_	_	11		
Tipula		22	11	39	4	-
Number of Organisms (No. organisms p	per m²) 1,9	986	864	875	348	333
Richness (total number of taxa) ^a	,	9	24	23	15	12
Simpson's Evenness (E)		863	0.935	0.946	0.935	0.927
Shannon-Wiener Diversity	3.0	095	3.676	3.839	3.308	3.024
Percent Composition						
% Nemata	30	6.5	0.4	0.8	1.0	2.2
% Oligochaeta	1	1.6	1.7	7.8	1.0	0.0
% Hydracarina	C).4	4.1	2.0	4.1	12.9
% Ostracods	C	0.0	0.4	0.0	1.0	0.0
% Ephemeroptera		0.0	0.0	0.0	0.0	0.0
% Chironomids		8.0	85.5	77.5	90.7	74.2
% Metal Sensitive Chironmids		1.5	12.5	12.9	4.7	15.9
% Simuliidae		.8	5.8	3.7	1.0	3.2
% Tipulidae		.1	1.2	5.7	1.0	0.0
Functional Feeding Group Composition				-	-	
% Collector - Gatherers		1.1	79.5	75.9	67.5	73.7
% Filterers		.4	6.3	3.3	1.0	3.2
% Shredders		6.1	9.7	11.9	22.7	5.4
Habitat Preference Group Composition			J.,	11.0		J. 1
% Clingers		' .1	18.4	14.4	26.9	16.1
	,		10.7	17.7	20.0	10.1
% Sprawlers		3.0	77.8	68.5	65.4	76.9

^a Bold entries excluded from taxa count

Table F.13: Benthic Station Habitat Feature Statistical Comparisons among Camp Lake Tributary 2 and Unnamed Reference Creek Study Areas, Mary River Project CREMP, August 2020

		Overall 3-group Co	mparison		Pair-wis	e, post-hoc comparisons	3	
Metric	Statistical Transformation Diff		Significant Difference between Areas?	p-value	(I) Area	(J) Area	Significant Difference Between Areas?	P-value
					Unnamed Reference Creek	CLT2 Upstream	NO	0.342
Water Depth (cm)	ANOVA	none	NO	0.362	Unnamed Reference Creek	CLT2 Downstream	NO	0.477
					CLT2 Upstream	CLT2 Downstream	NO	0.481
					Unnamed Reference Creek	CLT2 Upstream	NO	0.150
Water Velocity (cm/s)	ANOVA	none	NO	0.111	Unnamed Reference Creek	CLT2 Downstream	NO	0.852
					CLT2 Upstream	CLT2 Downstream	NO	0.372
Subatrata					Unnamed Reference Creek	CLT2 Upstream	NO	0.374
Substrate Embeddedness	ANOVA	none	YES	0.056	Unnamed Reference Creek	CLT2 Downstream	NO	0.230
(%)					CLT2 Upstream	CLT2 Downstream	YES	0.025

Highlighted values indicate significant difference between study areas based on test p-value less than 0.10.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Signficant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.14: Benthic Invertebrate Community Summary Statistics for Camp Lake Tributary 2 Study Areas, Mary River Project CREMP, August 2020

Metric	Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
Danaite	Unnamed Reference Creek	713	296	133	258	821	1,032
Density (no. organisms / m²)	CLT2 Upstream	679	325	145	333	530	1,125
(nor organiomo / m /	CLT2 Downstream	881	672	300	333	864	1,986
	Unnamed Reference Creek	16.0	4.4	2.0	9.0	17.0	20.0
Richness (Number of Taxa)	CLT2 Upstream	17.4	2.2	1.0	14.0	18.0	20.0
(rambor or raxa)	CLT2 Downstream	18.6	5.1	2.3	12.0	19.0	24.0
	Unnamed Reference Creek	0.840	0.043	0.019	0.767	0.856	0.878
Simpson's Evenness	CLT2 Upstream	0.879	0.058	0.026	0.791	0.894	0.939
	CLT2 Downstream	0.921	0.033	0.015	0.863	0.935	0.946
	Unnamed Reference Creek	0.7%	1.3%	0.6%	0.0%	0.3%	3.0%
Nemata (% of community)	CLT2 Upstream	0.5%	0.7%	0.3%	0.0%	0.0%	1.4%
(% or community)	CLT2 Downstream	8.2%	15.8%	7.1%	0.4%	1.0%	36.5%
	Unnamed Reference Creek	1.9%	1.5%	0.7%	0.8%	1.0%	4.2%
Oligochaeta	CLT2 Upstream	15.3%	19.0%	8.5%	1.4%	4.3%	44.9%
(% of community)	CLT2 Downstream	4.4%	5.0%	2.3%	0.0%	1.7%	11.6%
	Unnamed Reference Creek	4.5%	3.7%	1.7%	2.1%	3.0%	11.1%
Hydracarina	CLT2 Upstream	3.0%	1.3%	0.6%	1.3%	3.6%	4.3%
(% of community)	CLT2 Downstream	4.7%	4.8%	2.2%	0.4%	4.1%	12.9%
	Unnamed Reference Creek	30.6%	11.7%	5.3%	16.7%	34.2%	42.0%
Ostracoda	CLT2 Upstream	0.4%	0.5%	0.2%	0.0%	0.0%	1.1%
(% of community)	CLT2 Opstream	0.4%	0.5%	0.2%	0.0%	0.0%	1.1%
	Unnamed Reference Creek	48.3%	12.9%	5.8%	36.7%	43.1%	67.3%
Chironomidae							
(% of community)	CLT2 Upstream	70.4%	14.2%	6.3%	51.0%	68.7%	87.2%
	CLT2 Downstream	75.2%	16.5%	7.4%	48.0%	77.5%	90.7%
Metal-Sensitive	Unnamed Reference Creek	0.8%	1.2%	0.6%	0.0%	0.5%	3.0%
Chironomidae (% of community)	CLT2 Upstream	5.7%	3.5%	1.5%	1.2%	5.4%	10.8%
	CLT2 Downstream	11.5%	4.2%	1.9%	4.7%	12.5%	15.9%
Simuliidae	Unnamed Reference Creek	9.8%	8.6%	3.8%	0.0%	8.7%	20.7%
(% of community)	CLT2 Upstream	1.9%	1.7%	0.8%	0.3%	1.6%	4.7%
	CLT2 Downstream	3.1%	1.9%	0.8%	1.0%	3.2%	5.8%
Tipulidae	Unnamed Reference Creek	1.5%	2.3%	1.0%	0.0%	0.9%	5.6%
(% of community)	CLT2 Upstream	1.8%	1.0%	0.4%	0.6%	2.0%	3.2%
	CLT2 Downstream	1.8%	2.2%	1.0%	0.0%	1.1%	5.7%
Collector-Gatherer	Unnamed Reference Creek	80.7%	8.8%	3.9%	70.0%	77.6%	91.1%
FFG (% of community)	CLT2 Upstream	80.5%	11.6%	5.2%	60.1%	84.8%	88.8%
(% of community)	CLT2 Downstream	77.5%	8.7%	3.9%	67.5%	75.9%	91.0%
Filterer FFG	Unnamed Reference Creek	9.9%	8.9%	4.0%	0.0%	8.0%	21.5%
(% of community)	CLT2 Upstream	1.7%	1.5%	0.7%	0.3%	1.2%	4.1%
	CLT2 Downstream	3.1%	2.1%	0.9%	1.0%	3.2%	6.3%
01	Unnamed Reference Creek	2.8%	2.7%	1.2%	0.0%	2.4%	7.0%
Shredder FFG (% of community)	CLT2 Upstream	8.5%	3.1%	1.4%	5.3%	8.9%	13.0%
(1)	CLT2 Downstream	11.2%	7.0%	3.1%	5.4%	9.7%	22.7%
	Unnamed Reference Creek	15.8%	7.7%	3.5%	7.8%	12.6%	27.0%
Clinger HPG (% of community)	CLT2 Upstream	12.0%	4.2%	1.9%	7.4%	10.6%	18.4%
	CLT2 Downstream	16.6%	7.1%	3.2%	7.1%	16.1%	26.9%
_	Unnamed Reference Creek	79.4%	6.6%	3.0%	70.0%	79.1%	87.2%
Sprawler HPG (% of community)	CLT2 Upstream	65.1%	17.6%	7.9%	43.0%	60.9%	83.3%
(/o Or Community)	CLT2 Downstream	66.3%	14.1%	6.3%	43.0%	68.5%	77.8%
	Unnamed Reference Creek	4.8%	3.3%	1.5%	1.4%	3.1%	8.3%
Burrower HPG	CLT2 Upstream	22.9%	16.2%	7.3%	6.1%	25.4%	47.1%
(% of community)	CLT2 Downstream	17.1%	19.0%	8.5%	3.7%	7.8%	49.8%

Note: Sample size equals five for all study areas.

Table F.15: Statistical Comparison of Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Yea	r Comparison				Pair-wise	, post-hoc co	mparisons ^a	
B.A. duri a		Data	Significant						Effect Size	
Metric	Statistical Test ^a	Transform- ation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	Pairwise Comparison
					2007	3	364	205	-	a,b,c
					2015	5	741	416	1.8	а
					2016	5	412	100	0.2	a,b,c
Density (No. per m²)	ANOVA	log10	YES	<0.001	2017	5	216	30	-0.7	b,c
(C.S. P.S)					2018	5	168	65	-1.0	С
					2019	5	745	282	1.9	а
					2020	5	679	325	1.5	а
					2007	3	12.7	2.1	-	а
					2015	5	20.8	1.8	3.9	b
					2016	5	17.2	3.0	2.2	a,b,c
Richness (No. of Taxa)	ANOVA	log10	YES	0.003	2017	5	14.6	2.5	0.9	a,c
(No. of Taxa)					2018	5	15.0	3.7	1.1	a,c
					2019	5	18.8	2.6	2.9	b,c
					2020	5	17.4	2.2	2.3	a,b,c
					2007	3	0.825	0.008	-	a
					2015	5	0.922	0.025	11.9	b,c
					2016	5	0.898	0.035	8.9	a,c
Simpson's	K-W	rank	YES	0.003	2017	5	0.955	0.013	15.9	b
Evenness					2018	5	0.922	0.043	11.9	b,c
					2019	5	0.949	0.005	15.2	b
					2020	5	0.879	0.058	6.6	a,c
					2007	3	1.1	0.6	-	
							0.9	0.6		а
					2015	5			-0.5	а
Nemata	K-W	nam!	NO	0.055	2016	5	1.0	0.8	-0.3	a
(% of community)	N-VV	rank	NO	0.255	2017	5	1.0	1.4	-0.3	а
					2018	5	1.1	1.6	0.0	а
					2019	5	2.4	1.0	2.2	а
					2020	5	0.5	0.7	-1.0	а
					2007	3	2.1	0.8	-	а
					2015	5	2.7	2.8	0.7	а
Oligochaeta					2016	5	4.9	3.5	3.5	а
(% of community)	K-W	rank	NO	0.406	2017	5	3.4	6.5	1.6	а
					2018	5	2.4	3.4	0.4	а
					2019	5	2.4	1.0	0.4	а
					2020	5	15.3	19.0	16.7	а
					2007	3	2.9	2.1	-	a,b
					2015	5	0.9	0.7	-1.0	b
Llydrocarino					2016	5	5.5	2.6	1.2	a,b
Hydracarina (% of community)	ANOVA	log10(x+1)	YES	0.007	2017	5	8.0	4.2	2.4	а
					2018	5	4.7	4.4	0.8	a,b
					2019	5	1.6	1.5	-0.6	b
					2020	5	3.0	1.3	0.0	a,b
					2007	3	88.4	4.3	-	а
					2015	5	80.2	8.9	-1.9	а
					2016	5	79.5	8.6	-2.1	а
Chironomidae (% of community)	ANOVA	none	NO	0.181	2017	5	75.9	7.5	-2.9	а
					2018	5	80.2	3.9	-1.9	а
					2019	5	80.0	5.9	-2.0	а
					2020	5	70.4	14.2	-4.2	а

Table F.15: Statistical Comparison of Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Upstream (CLT2 US) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Yea	ar Comparison				Pair-wise	, post-hoc co	mparisons ^a				
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2007	Pairwise Comparison			
					2007	3	5.3	0.6	-	а			
					2015	5	10.5	5.7	8.7	a,b			
Metal Sensitive					2016	5	5.3	3.3	0.0	а			
Taxa	ANOVA	none	YES	<0.001	2017	5	22.0	3.1	28.2	С			
(% of community)					2018	5	9.5	5.0	7.1	a,b			
					2019	5	17.0	6.6	19.7	b,c			
					2020	5	5.7	3.5	0.6	а			
					2007	3	5.2	2.0	-	а			
					2015	5	4.1	3.5	-0.5	а			
					2016	5	4.0	1.8	-0.6	а			
Tipulidae (% of community)	ANOVA	log10(x+1)	YES	0.042	2017	5	1.6	1.6	-1.8	а			
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2018	5	2.3	1.5	-1.5	а			
					2019	5	1.6	0.6	-1.8	а			
					2020	5	1.8	1.0	-1.7	а			
					2007	3	68.5	6.5	-	a,b,c			
								2015	5	63.8	10.3	-0.7	c,d
Collector-Gatherer					2016	5	66.6	5.8	-0.3	b,c			
FFG	K-W	rank	YES	0.008	2017	5	75.6	3.9	1.1	a,b			
(% of community)					2018	5	73.2	8.6	0.7	a,b,c			
					2019	5	54.0	6.0	-2.2	d			
					2020	5	80.5	11.6	1.8	а			
					2007	3	0.3	0.4	-	а			
					2015	5	1.0	1.1	1.7	а			
					2016	5	0.2	0.4	-0.2	а			
Filterer FFG (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	6.5	3.1	14.4	b,c			
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2018	5	6.6	5.5	14.7	b,c			
					2019	5	11.3	3.7	25.6	b			
					2020	5	1.7	1.5	3.3	a,c			
					2007	3	27.6	5.8	-	а			
					2015	5	26.2	5.9	-0.2	а			
					2016	5	25.9	4.4	-0.3	а			
Shredder FFG (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	7.4	5.9	-3.5	b			
()					2018	5	12.9	5.3	-2.5	b,c			
					2019	5	21.9	5.8	-1.0	a,c			
					2020	5	8.5	3.1	-3.3	b			

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.16: Statistical Comparison of Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Downstream (CLT2 DS) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year Cor	Overall 7-Year Comparison						Pair-wise, post-hoc comparisons ^a													
Matria	_		Significant						Effect Size													
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	Pairwise Comparison												
					2007	3	431	109	-	a,b,c												
					2015	5	447	258	0.1	a,b												
D					2016	5	205	61	-2.1	b,c												
Density (No. per m²)	ANOVA	log10	YES	0.002	2017	5	222	144	-1.9	b,c												
					2018	5	127	51	-2.8	С												
					2019	5	546	366	1.1	a,b												
					2020	5	881	672	4.1	а												
					2007	3	17.7	2.1	-	a,b												
					2015	5	14.2	3.4	-1.7	a,b												
					2016	5	14.0	4.0	-1.8	a,b												
Richness (No. of Taxa)	ANOVA	none	YES	0.029	2017	5	13.2	4.7	-2.2	a,b												
					2018	5	11.2	1.9	-3.1	b												
					2019	5	18.4	3.1	0.3	а												
					2020	5	18.6	5.1	0.4	а												
					2007	3	0.865	0.017	-	a,b												
					2015	5	0.934	0.034	4.0	С												
					2016	5	0.838	0.079	-1.6	b												
Simpson's Evenness	K-W	rank	YES	0.075	2017	5	0.913	0.052	2.8	a,c,d												
					2018	5	0.908	0.087	2.5	c,d												
					2019	5	0.885	0.048	1.1	a,b,c												
					2020	5	0.921	0.033	3.2	c,d												
					2007	3	1.1	1.2	-	а												
				2015	5	4.2	2.4	2.6	а													
			NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			2016	5	2.0	2.4	0.8	а
Nemata (% of community)	K-W	rank													0.643	2017	5	3.2	4.4	1.8	а	
(70 or community)															2018	5	2.7	3.0	1.4	а		
					2019	5	2.6	1.8	1.2	а												
					2020	5	8.2	15.8	5.9	а												
					2007	3	2.6	0.6	-	а												
					2015	5	8.8	12.8	10.1	а												
					2016	5	1.9	3.2	-1.1	а												
Oligochaeta (% of community)	K-W	rank	NO	0.486	2017	5	4.8	6.9	3.7	а												
(% or community)					2018	5	1.1	2.5	-2.3	а												
					2019	5	4.3	3.3	2.8	а												
					2020	5	4.4	5.0	3.0	а												
					2007	3	1.8	1.2	-	a,b												
					2015	5	0.3	0.6	-1.2	b												
					2016	5	4.5	1.9	2.2	а												
Hydracarina (% of community)	K-W	rank	YES	0.091	2017	5	3.3	4.0	1.3	а												
(% or community)					2018	5	3.5	4.0	1.4	а												
					2019	5	2.1	0.7	0.3	b												
					2020	5	4.7	4.8	2.4	а												
					2007	3	88.0	6.0	-	а												
					2015	5	75.6	10.4	-2.1	а												
					2016	5	82.4	6.3	-0.9	а												
Chironomidae	K-W	rank	NO	0.469	2017	5	81.8	8.4	-1.0	а												
(% of community)					2018	5	84.1	6.0	-0.7	а												
					2019	5	84.7	3.5	-0.6	а												
					2020	5	75.2	16.5	-2.1	а												

Table F.16: Statistical Comparison of Benthic Invertebrate Community Metrics at Camp Lake Tributary 2 Downstream (CLT2 DS) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year Con	nparison				Pair-wise, p	ost-hoc comp	oarisons ^a		
			Significant						Effect Size		
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	Pairwise Comparison	
					2007	3	11.8	2.0	-	a,b,c	
					2015	5	10.6	10.6	-0.6	b,c	
Metal Sensitive					2016	5	5.4	0.9	-3.3	С	
Taxa	K-W	rank	YES	0.032	2017	5	20.2	12.6	4.3	a,b	
(% of community)					2018	5	8.0	7.0	-1.9	b,c	
					2019	5	23.3	10.1	5.9	а	
					2020	5	11.5	4.2	-0.2	a,b,c	
					2007	3	6.5	6.6	-	а	
					2015	5	5.8	5.1	-0.1	а	
					2016	5	2.2	1.6	-0.6	а	
Tipulidae (% of community)	ANOVA	log10(x+1)	NO	0.116	2017	5	0.8	1.9	-0.9	а	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2018	5	2.6	2.4	-0.6	а	
					2019	5	1.7	1.4	-0.7	а	
					2020	5	1.8	2.2	-0.7	а	
					2007	3	66.4	11.0	-	a,b	
					2015	5	69.3	10.9	0.3	a,b	
Collector-Gatherer					2016	5	77.6	11.6	1.0	a,b	
FFG	ANOVA	none	YES	0.059	2017	5	77.1	10.5	1.0	a,b	
(% of community)					2018	5	83.4	6.5	1.5	а	
						2019	5	56.8	23.0	-0.9	b
					2020	5	77.5	8.7	1.0	a,b	
					2007	3	2.7	1.9	-	a,b,c,d	
					2015	5	0.8	0.9	-1.0	c,d	
					2016	5	1.1	1.0	-0.9	b,c,d	
Filterer FFG (% of community)	K-W	rank	YES	0.005	2017	5	3.5	3.1	0.4	b,d	
					2018	5	0.9	2.1	-1.0	С	
					2019	5	15.4	11.3	6.7	а	
					2020	5	3.1	2.1	0.2	a,b	
					2007	3	21.5	6.0	-	а	
					2015	5	25.7	11.6	0.7	а	
					2016	5	13.8	10.4	-1.3	а	
Shredder FFG (% of community)	ANOVA	log10(x+1)	NO	0.130	2017	5	14.6	8.9	-1.2	а	
<u>"</u>					2018	5	7.7	7.3	-2.3	а	
					2019	5	21.0	16.9	-0.1	а	
					2020	5	11.2	7.0	-1.7	а	

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.17: Statistical Comparison of Physical Sediment Quality Between Littoral and Profundal Stations of Reference Lake 3, Mary River Project CREMP, August 2020

		Statistical Test	Results				Sum	mary Statisti	cs		
Habitat Variable	Statistical Analysis ^a	Transformation	Significant Difference Between Areas?	P-value	Station Type	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
Sand-Sized Particles	toqual	nono	NO	0.854	Littoral	5	29.6	7.5	3.4	23.4	40.4
(% by weight)	tequal	none	NO	0.654	Profundal	5	31.6	22.3	10.0	13.9	56.6
Silt-Sized Particles	toqual	nono	NO 0	O 0.590	Littoral	5	62.2	6.3	2.8	53.4	68.4
(% by weight)	tequal	none			Profundal	5	57.4	18.1	8.1	36.9	71.9
Clay-Sized Particles	toqual	nono	NO	0.266	Littoral	5	8.2	3.0	1.3	6.2	13.4
(% by weight)	tequal	none	INO	0.200	Profundal	5	11.0	4.3	1.9	6.3	15.1
Moisture	tamual		VEC	0.070	Littoral	5	87.9	4.6	2.1	80.2	92.3
(% by weight)	tequal	none	YES	0.078	Profundal	5	82.6	3.6	1.6	78.3	86.6
Total Organic Carbon	toqual	nono	NO	0.205	Littoral	5	4.8	2.0	0.9	2.3	7.0
(%)	tequal	none	INO	0.205	Profundal	5	3.4	1.1	0.5	2.2	4.5

Highlighted values indicate significant difference between study areas based on statistical test p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table F.18: Statistical Comparison of Sediment Physical Properties Between Camp Lake and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Test	Results				Sum	mary Statistic	cs		
Lake Zone	Sediment Variable	Statistical Data Difference		P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum	
	Station Depth	tequal	log10	NO	0.310	Reference	5	9.4	1.4	0.6	7.3	10.6
σ	(m)	tequal	10910	NO	0.510	Camp	5	8.3	1.9	0.8	7.0	11.3
Littoral (Shallow) Stations	Sand-Sized Material	tegual	none	YES	0.006	Reference	5	29.6	7.5	3.4	23.4	40.4
itat	(%)	toquai	Horic	TLO	0.000	Camp	5	65.4	20.1	9.0	41.1	85.0
S (Silt-Sized Material	tequal	none	YES	0.008	Reference	5	62.2	6.3	2.8	53.4	68.4
<u>8</u>	(%)	tequal	Hone	123	0.000	Camp	5	32.1	18.2	8.2	14.2	55.1
hal	Clay-Sized Material	tequal	none	YES	0.008	Reference	5	8.2	3.0	1.3	6.2	13.4
S)	(%)	tequal	none	TES	0.006	Camp	5	2.6	2.0	0.9	1.0	5.5
ora	Moisture	tegual	none	YES	0.006	Reference	5	87.9	4.6	2.1	80.2	92.3
l Ħ	(%)	tequal	none	YES	0.000	Camp	5	57.3	17.9	8.0	37.7	81.7
	Total Organic Carbon	tequal	none	YES	0.011	Reference	5	4.8	2.0	0.9	2.3	7.0
	(TOC) Content (%)	tequal	Hone	123	0.011	Camp	5	1.4	1.2	0.5	0.3	3.4
	Station Depth	tequal	none	YES	0.009	Reference	5	19.3	2.5	1.1	16.0	21.9
	(m)	tequal	Hone	123	0.009	Camp	5	26.6	4.1	1.8	21.2	31.0
Suc	Sand-Sized Material	tegual	none	NO	0.253	Reference	5	31.6	22.3	10.0	13.9	56.6
Profundal (Deep) Stations	(%)	tequal	none	NO	0.233	Camp	5	52.8	31.4	14.0	18.3	86.8
) St	Silt-Sized Material	tequal	none	NO	0.270	Reference	5	57.4	18.1	8.1	36.9	71.9
dəe	(%)	tequal	none	NO	0.270	Camp	5	40.4	26.6	11.9	11.8	69.4
ě	Clay-Sized Material	tegual	none	NO	0.195	Reference	5	11.0	4.3	1.9	6.3	15.1
dal	(%)	tequal	none	NO	0.195	Camp	5	6.9	5.0	2.2	1.4	12.3
Į	Moisture	togual		YES	0.024	Reference	5	82.6	3.6	1.6	78.3	86.6
Pro	(%)	tequal	none	150	0.024	Camp	5	55.4	21.7	9.7	26.4	74.4
	Total Organic Carbon	togual	nono	YES	0.022	Reference	5	3.4	1.1	0.5	2.2	4.5
	(TOC) Content (%)	tequal	none	TES	0.022	Camp	5	1.4	1.2	0.5	0.3	3.1

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table F.19: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Reference Lake 3, August 2020

Taxa F	Study Area Replicate Station	REF-01	03 - Littoral Station	REF-03	REF-04	REF-05
ROUNDWORMS						
P. Nemata		26	34	112	103	9
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta						
F. Enchytraeidae	9	-	-	-	-	-
F. Lumbriculidae	e					
Lumbriculus		-	-	-	-	-
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
immature		-	-	-	-	-
F. Acalyptonotic	dae					
Acalyptonotus		26	17	-	-	17
F. Hygrobatidae						
Hygrobates		60	86	17	9	9
F. Lebertiidae						
Lebertia		52	-	34	43	34
F. Sperchontida	е					
Sperchon		-	-	-	-	-
HARPACTICOIDS						
O. Harpacticoida		-	-	-	-	-
SEED SHRIMPS						
Cl. Ostracoda		371	638	431	922	543
NSECTS						
Cl. Insecta						
CADDISFLIES						
O. Trichoptera						
F. Apataniidae						
Apatania		-	-	-	-	-
F. Limnephilidae)					
Grensia praete	erita	9	-	-	-	-
RUE FLIES						
O. Diptera						
MIDGES						
F. Chironomidae)					
chironomid pu	pae	52	86	78	26	121
S.F. Chironomin						
Chironomus		-	-	-	-	-
Micropsectra		147	690	267	164	440

Table F.19: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Reference Lake 3, August 2020

Taxa Study A							
Replicate Stat	ion REF-01	REF-02	REF-03	REF-04	REF-05		
Paratanytarsus	17	17	_	_	_		
Sergentia	-	-	_	_	_		
Stictochironomus	52	328	9	9	43		
Tanytarsus	95	121	34	34	-		
S.F. Diamesinae	93	121	34	34	-		
Diamesa	-	_	_	_	-		
Protanypus	26	17	26	9	9		
Pseudodiamesa	9	-	9	9	-		
S.F. Orthocladiinae	3	_	J	J			
Abiskomyia	181	86	69	52	60		
Heterotrissocladius	26	69	52	34	69		
	20	09	52	34	69		
Hydrobaenus	-	-	-	-	-		
Mesocricotopus	-	-	-	-	-		
Paracladius	95	-	43	43	-		
Parakiefferiella	9	-	-	-	9		
Psectrocladius	17	34	-	9	34		
Zalutschia	86	69	9	9	95		
Orthocladiinae indeterminate	e -	-	-	-	-		
S.F. Tanypodinae							
Arctopelopia	-	17	-	-	-		
Procladius	34	-	-	-	-		
Density (No. organisms per m²)	1,388	2,310	1,190	1,474	1,491		
Richness (total number of taxa) ^a	19	14	13	14	13		
Simpson's Evenness (E)	0.923	0.853	0.847	0.630	0.799		
Shannon-Wiener Diversity	3.510	2.760	2.730	2.079	2.457		
Dominant Taxonomic Group Comp	position						
% Nemata	1.9	1.5	9.4	7.0	0.6		
% Hydracarina	9.9	4.5	4.3	3.5	4.0		
% Ostracods	26.7	27.6	36.2	62.6	36.4		
% Chironomids	60.9	66.4	50.0	26.9	59.0		
% Metal Sensitive Chironmids	22.5	38.7	32.5	15.6	34.8		
Functional Feeding Group Compo	sition						
% Collector - Gatherers	60.3	53.6	65.7	81.5	54.4		
% Filterers	19.8	38.0	29.2	14.4	34.2		
% Shredders	7.2	3.2	8.0	0.6	7.4		
Habitat Preference Group Compos	sition						
% Clingers	28.5	41.6	33.5	17.9	38.2		
% Sprawlers	63.7	41.1	53.7	73.8	57.2		
% Burrowers	7.8	17.3	12.8	8.3	4.6		

^a Bold entries excluded from taxa count

Table F.19: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Reference Lake 3, August 2020

Taxa F	Replicate Station	REF-06	REF-07	REF-08	REF-09	REF-10
ROUNDWORMS						
P. Nemata		-	-	9	-	9
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta						
F. Enchytraeidae)	-	-	-	-	-
F. Lumbriculidae						
Lumbriculus		-	-	-	-	-
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
immature		-	-	-	-	-
F. Acalyptonotic	dae					
Acalyptonotus		9	-	9	-	-
F. Hygrobatidae						
Hygrobates		-	-	-	-	-
F. Lebertiidae						
Lebertia		9	-	9	26	9
F. Sperchontidae	•					
Sperchon		-	-	-	-	-
HARPACTICOIDS						
O. Harpacticoida		-	-	-	-	-
SEED SHRIMPS						
Cl. Ostracoda		26	26	17	69	78
NSECTS						
Cl. Insecta						
CADDISFLIES						
O. Trichoptera						
F. Apataniidae						
Apatania		-	-	-	-	-
F. Limnephilidae						
Grensia praete	erita	-	-	-	-	-
RUE FLIES						
O. Diptera						
MIDGES						
F. Chironomidae						
chironomid pup		9	-	17	-	17
S.F. Chironomina	ae					
Chironomus		-	-	-	-	-
Micropsectra		26	147	233	259	86

Table F.19: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Reference Lake 3, August 2020

laya ¹ ⊑		03 - Profundal S			1
Replicate Station	REF-06	REF-07	REF-08	REF-09	REF-10
Paratanytarsus	-	-	-	-	-
Sergentia	_	_	-	_	_
Stictochironomus	-	_	_	_	17
Tanytarsus	_	_	_	_	-
S.F. Diamesinae					
Diamesa	_	_	_	_	_
Protanypus	_	_	_	_	9
Pseudodiamesa	_	9	_	_	J
S.F. Orthocladiinae	-	9	-	-	-
	24		0		0
Abiskomyia	34	-	9	-	9
Heterotrissocladius	198	164	181	310	284
Hydrobaenus	-	-	-	-	-
Mesocricotopus	-	-	-	-	-
Paracladius	-	-	-	-	-
Parakiefferiella	-	-	-	-	-
Psectrocladius	-	-	-	-	-
Zalutschia	17	-	-	17	17
Orthocladiinae indeterminate	-	-	-	-	-
S.F. Tanypodinae					
Arctopelopia	-	-	-	-	-
Procladius	9	9	9	-	-
Density (No. organisms per m²)	338	355	493	684	537
Richness (total number of taxa) ^a	8	5	8	5	9
Simpson's Evenness (E)	0.689	0.758	0.694	0.795	0.721
Shannon-Wiener Diversity	1.988	1.578	1.721	1.695	2.027
Dominant Taxonomic Group Compos					
% Nemata	0.0	0.0	1.8	0.0	1.6
% Hydracarina	5.1	0.0	3.5	3.8	1.6
% Ostracods	7.7	7.3	3.5	10.1	14.5
% Chironomids	87.2	92.7	91.2	86.1	82.3
% Metal Sensitive Chironmids	7.9	43.9	49.3	38.0	18.5
Functional Feeding Group Composition					
% Collector - Gatherers	79.0	56.1	45.4	55.7	78.2
% Filterers	7.9	41.5	49.3	38.0	16.8
% Shredders	5.3	0.0	0.0	2.5	3.4
Habitat Preference Group Compositio					
% Clingers	13.1	41.5	52.8	41.8	18.4
% Sprawlers	86.9	58.5	45.5	58.2	75.0
% Burrowers	0.0	0.0	1.8	0.0	6.6

^a Bold entries excluded from taxa count

Table F.20: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake, August 2020

D-19	JLO-18
36	34
-	-
^	47
9	17
-	-
03	17
9	103
9	-
-	-
-	-
-0	
52	-
69	-
-	-
••	•
03	34
	4=
-	17 86
03 - 259	

Table F.20: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake, August 2020

Study Area	Camp Lake - L	ittoral Stations			
Taxa Replicate Station	JLO-02	JLO-21	JLO-20	JLO-19	JLO-18
Paratanytarsus	517	759	86	190	17
Sergentia	17	-	-	-	121
Stictochironomus	1,672	2,190	1,388	1,043	966
Tanytarsus	121	1,569	1,353	1,569	34
S.F. Diamesinae					
Diamesa	-	-	_	-	-
Protanypus	-	-	-	34	52
Pseudodiamesa	_	_	_	_	-
S.F. Orthocladiinae					
Abiskomyia	241	103	103	112	121
Heterotrissocladius	1,276	1,431	440	457	259
Hydrobaenus	-,=	-,	-	-	-
Mesocricotopus	_	_	_	_	17
Paracladius	_	17	17	_	-
Parakiefferiella	_	34	52	_	34
Psectrocladius	_	-	17	34	- -
Zalutschia	-	- 17	34	86	-
Orthocladiinae indeterminate	-	17	34	00	-
	-	-	-	-	-
S.F. Tanypodinae	4 207	444	207	4.47	
Arctopelopia	1,207	414	207	147	-
Procladius	328	379	69	103	69
Density (No. organisms per m²)	5,724	8,052	4,362	5,474	2,000
Richness (total number of taxa) ^a	14	17	18	18	16
Simpson's Evenness (E)	0.864	0.889	0.827	0.858	0.773
Shannon-Wiener Diversity	2.705	3.006	2.770	2.889	2.715
Dominant Taxonomic Group Compo	osition				
% Nemata	0.6	3.6	3.0	1.6	1.7
% Hydracarina	0.3	0.6	1.0	2.2	6.0
% Ostracods	2.1	4.1	3.0	0.9	0.0
% Chironomids	95.8	90.8	92.9	93.9	91.4
% Metal Sensitive Chironmids	12.2	33.7	39.3	56.9	9.7
Functional Feeding Group Compos					
% Collector - Gatherers	59.6	54.9	52.4	34.0	83.4
% Filterers	12.2	33.7	39.3	56.3	7.0
% Shredders	0.0	0.2	0.8	1.6	0.0
Habitat Preference Group Composit					
% Clingers	4.5	25.5	38.5	56.2	18.3
% Sprawlers	65.1	43.3	26.6	22.0	26.4
% Burrowers	30.4	31.1	34.9	21.8	55.3

^a Bold entries excluded from taxa count

Table F.20: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake, August 2020

Taxa			Profundal Stations						
Ταλα	Replicate Station	JLO-16	JLO-01	JLO-07		JLO-11		JLO-12	
ROUNDWORMS									
P. Nemata		34	9	-		-		121	
<u>ANNELIDS</u>									
P. Annelida									
WORMS									
Cl. Oligochaeta									
F. Enchytraeid	ae	-	-	-		-		-	
F. Lumbriculid	ae								
Lumbriculus		-	-	-		-		-	
ARTHROPODS									
P. Arthropoda									
MITES									
Cl. Arachnida									
O. Acarina									
immature		-	-	-		-		-	
F. Acalyptono	tidae								
Acalyptonotu	IS	9	9	9		17		-	
F. Hygrobatida	ie								
Hygrobates		34	-	-		-		-	
F. Lebertiidae									
Lebertia		52	-	-		-		-	
F. Sperchontid	lae								
Sperchon		-	-	-		-		-	
HARPACTICOID	S								
O. Harpacticoida		-	-	-		-		-	
SEED SHRIMPS									
Cl. Ostracoda		26	43	17		-		405	
INSECTS									
Cl. Insecta									
CADDISFLIES									
O. Trichoptera									
F. Apataniidae									
Apatania		-	-	-		-		-	
F. Limnephilid	ae								
Grensia prae	eterita	-	-	-		-		-	
TRUE FLIES									
O. Diptera									
MIDGES									
F. Chironomid	ae								
chironomid p	upae	147	-	86		17		17	
S.F. Chironom	inae								
Chironomus		43	-	586		776		-	
Micropsectra)	26	9	-		-		9	

Table F.20: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Camp Lake, August 2020

Taxa Rei	plicate Station	JLO-16	Profundal Stations JLO-01	JLO-07	JLO-11	JLO-12
Ne	plicate Station	320-10	320-01	JEO-01	JEO-11	320-12
Paratanytarsus		-	17	-	52	-
Sergentia		78	-	86	-	-
Stictochironomus	3	414	-	121	34	-
Tanytarsus		198	-	95	155	-
S.F. Diamesinae						
Diamesa		_	_	-	-	_
Protanypus		34	26	9	_	34
Pseudodiamesa		17	17	- -	_	-
S.F. Orthocladiinae	2	• • •				
Abiskomyia	-	155	78	121	69	34
Heterotrissocladi	us	302	388	-	17	1,672
Hydrobaenus	40	-	-	_	-	1,072
Mesocricotopus		_	_	_	_	_
Paracladius		34	-	-	-	43
Parakiefferiella		9	-	-	-	40
Psectrocladius		9	-	-	-	-
Zalutschia		- 17	-	-	-	-
	-l-4	17	-	-	-	-
Orthocladiinae in	determinate	-	-	-	-	-
S.F. Tanypodinae			•			•
Arctopelopia		-	9	-	-	9
Procladius		52	17	-	-	-
Density (No. organism	ns per m²)	623	1,134	1,688	1,143	2,355
Richness (total numbe	er of taxa) ^a	11	8	18	7	8
Simpson's Evenness	(E)	0.643	0.732	0.901	0.576	0.512
Shannon-Wiener Dive	rsity	2.031	2.003	3.278	1.553	1.346
Dominant Taxonomic	Group Compo					
% Nemata		1.4	0.0	2.1	0.0	5.1
% Hydracarina		1.4	0.8	5.6	1.5	0.0
% Ostracods		6.9	1.5	1.5	0.0	17.3
% Chironomids		90.3	97.7	90.8	98.5	77.6
% Metal Sensitive Ch		11.1	9.9	18.2	18.5	1.9
Functional Feeding G						
% Collector - Gathere	rs	90.3	90.1	75.1	80.0	99.3
% Filterers		4.2	9.1	14.8	18.5	0.4
% Shredders		0.0	0.0	1.1	0.0	0.0
Habitat Preference Gr	oup Composi			a		
% Clingers		2.8	18.2	25.5	15.4	0.4
% Sprawlers		91.7	13.1	40.1	12.3	93.0
% Burrowers		5.6	68.7	34.4	72.3	6.6

^a Bold entries excluded from taxa cour

Table F.21: Statistical Comparison of Bray-Curtis Index between the Mine-Exposed Lakes and Reference Lake 3, Mary River Project CREMP, August 2020

Matarbady	Comparison	r	1	Betadisper	Mantel Test			dbRDA			
Waterbody	Companson	Reference	Mine- Exposed	P-Value	r	R ²	P-Value	F-Value	R ²	R ² adj	P-Value
Reference Lake 3	Littoral vs Profundal	5	5	0.277	0.789	0.622	0.008	12.32	0.606	0.557	0.006
Camp Lake	Littoral Habitat, vs Reference Lake 3	5	5	0.855	0.649	0.421	0.008	8.12	0.504	0.442	0.008
(JL0)	Profundal Habitat, vs Reference Lake 3	5	5	0.011	0.487	0.237	0.008	5.67	0.415	0.342	0.008
Sheardown Lake NW	Littoral Habitat, vs Reference Lake 3	5	5	0.229	0.518	0.268	0.008	5.10	0.389	0.313	0.013
(DL0-1)	Profundal Habitat, vs Reference Lake 3	5	5	0.554	0.479	0.230	0.008	5.44	0.405	0.330	0.008
Sheardown Lake SE	Littoral Habitat, vs Reference Lake 3	5	5	0.350	0.809	0.654	0.008	11.81	0.596	0.546	0.008
(DL0-2)	Profundal Habitat, vs Reference Lake 3	5	5	0.590	0.676	0.457	0.007	9.80	0.550	0.494	0.008
Mary Lake	Littoral Habitat, vs Reference Lake 3	5	4	0.044	0.406	0.165	0.008	2.89	0.292	0.191	0.021
(BL0)	Profundal Habitat, vs Reference Lake 3	5	6	0.243	0.240	0.058	0.030	3.18	0.261	0.179	0.010

Highlighted values indicate significant difference between study areas based on statistical test p-value less than 0.10.

Table F.22: Statistical Comparison of Benthic Invertebrate Community Metrics at Camp Lake Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2013) for the Mary River Project CREMP

		Overall 7-Yea	ar Comparison				Pair-wise	, post-hoc co	mparisons ^a	
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2013	Pairwise Comparison
					2013	4	7,752	3,849	-	а
					2015	5	3,671	1,891	-1.1	a,b
					2016	5	2,639	668	-1.3	b
Density (No. per m ²)	ANOVA	log10	YES	<0.031	2017	5	3,642	1,449	-1.1	a,b
,					2018	5	2,600	998	-1.3	b
					2019	5	5,126	1,390	-0.7	a,b
					2020	5	5,122	2,202	-0.7	a,b
					2013	4	18.0	4.4	-	а
					2015	5	12.8	3.7	-1.2	а
					2016	5	15.8	3.3	-0.5	а
Richness (No. of Taxa)	ANOVA	none	NO	0.149	2017	5	12.8	2.3	-1.2	а
- 					2018	5	14.2	3.4	-0.9	а
					2019	5	15.6	3.0	-0.5	а
					2020	5	16.6	1.7	-0.3	а
					2013	4	0.893	0.054	-	а
					2015	5	0.712	0.063	-3.4	b
					2016	5	0.917	0.034	0.4	а
Simpson's Evenness	ANOVA	none	YES	<0.001	2017	5	0.848	0.068	-0.8	а
					2018	5	0.851	0.057	-0.8	а
					2019	5	0.893	0.053	0.0	а
					2020	5	0.842	0.044	-1.0	а
					2013	4	5.6%	3.6%	-	а
					2015	5	4.7%	4.6%	-0.2	а
					2016	5	4.4%	4.8%	-0.3	а
Nemata (% of community)	ANOVA	log10(x+1)	NO	0.818	2017	5	4.2%	4.2%	-0.4	а
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2018	5	2.8%	3.2%	-0.8	а
					2019	5	3.7%	2.5%	-0.5	а
					2020	5	4.1%	3.9%	-0.4	а
					2013	4	0.7%	0.5%	-	a,b,c
					2015	5	0.2%	0.3%	-1.0	b
					2016	5	1.8%	1.1%	2.5	a,c
Ostracoda (% of community)	ANOVA	log10(x+1)	YES	0.007	2017	5	0.2%	0.3%	-1.1	b
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2018	5	0.4%	0.6%	-0.7	b,c
					2019	5	1.3%	0.8%	1.3	a,b,c
					2020	5	2.0%	1.6%	2.9	а
					2013	4	90.1%	4.4%	-	а
					2015	5	93.1%	4.7%	0.7	а
					2016	5	87.4%	7.0%	-0.6	а
Chironomidae (% of community)	ANOVA	none	NO	0.270	2017	5	92.2%	6.5%	0.5	а
,					2018	5	95.4%	4.0%	1.2	а
					2019	5	92.6%	3.6%	0.6	а
					2020	5	92.9%	2.0%	0.6	а

Table F.22: Statistical Comparison of Benthic Invertebrate Community Metrics at Camp Lake Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2013) for the Mary River Project CREMP

		Overall 7-Yea	ar Comparison				Pair-wise	, post-hoc co	mparisons ^a		
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2013	Pairwise Comparison	
					2013	4	30.8%	14.6%	-	а	
			NO		2015	5	38.5%	24.5%	0.5	а	
Metal Sensitive					2016	5	29.7%	11.8%	-0.1	а	
Taxa	ANOVA	none		0.588	2017	5	38.2%	17.3%	0.5	а	
(% of community)					2018	5	17.4%	18.5%	-0.9	а	
					2019	5	34.6%	16.1%	0.3	а	
					2020	5	30.3%	19.7%	0.0	а	
		none			2013	4	55.9%	12.4%	1	а	
			NO	0.451	2015	5	51.1%	14.7%	-0.4	а	
Collector-Gatherer						2016	5	65.7%	7.8%	0.8	а
FFG	ANOVA				2017	5	50.8%	17.4%	-0.4	а	
(% of community)					2018	5	67.3%	18.6%	0.9	а	
					2019	5	53.7%	12.4%	-0.2	а	
					2020	5	56.9%	17.7%	0.1	а	
	-				2013	4	30.8%	14.5%	-	а	
					2015	5	38.2%	24.3%	0.5	а	
					2016	5	25.0%	7.5%	-0.4	а	
Filterer FFG (% of community)	ANOVA	none	NO	0.520	2017	5	37.3%	17.3%	0.4	а	
					2018	5	16.7%	17.8%	-1.0	а	
					2019	5	31.8%	15.9%	0.1	а	
					2020	5	29.7%	20.2%	-0.1	а	

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.23: Statistical Comparison of Benthic Metrics at Camp Lake Profundal (Deep) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2013) for the Mary River Project CREMP

		Overall 8-Year (Comparison			Pair-wise, post-hoc comparisons							
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2013	Pairwise Comparison		
					2007	4	2,627	1,403	-	0.9	а		
					2013	5	2,140	567	-0.3	-	а		
Density					2015	5	1,552	1,005	-0.8	-1.0	а		
No. per m²)	ANOVA	none	NO	0.251	2017	5	1,510	844	-0.8	-1.1	а		
					2018	5	1,258	609	-1.0	-1.6	a		
					2019	5	1,847 1,383	830 656	-0.6 -0.9	-0.5 -1.3	a a		
					2020	4	9.0	1.7	-0.9	-1.8	a,b		
					2013	5	14.2	2.9	3.0	-	a		
					2015	5	8.2	2.8	-0.5	-2.0	b		
Richness (No. of Taxa)	ANOVA	log10	YES	0.029	2017	5	10.8	3.3	1.0	-1.2	a,b		
No. of Taxa)					2018	5	8.2	0.8	-0.5	-2.0	b		
					2019	5	11.0	1.9	1.2	-1.1	a,b		
					2020	5	10.4	4.5	0.8	-1.3	a,b		
					2007	4	0.602	0.114	-	-1.0	a,b		
					2013	5	0.720	0.122	1.0	-	а		
Simpson's	,		YES		2015	5	0.604	0.283	0.0	-0.9	a,b		
Evenness	ANOVA	none		0.089	2017	5	0.681	0.154	0.7	-0.3	a,b		
					2018	5	0.374	0.118	-2.0	-2.8	b		
					2019	5	0.615	0.206	0.1	-0.9	a,b		
					2020	5	0.673	0.151	0.6	-0.4	a,b		
					2007	4	3.5	3.1	-	-0.3	a		
					2013	5	4.4	3.2	0.3	- 0.7	а		
Nemata	K-W	ronk	NO	0.790	2015	5	6.7 7.1	10.4	1.0	0.7	а		
% of community)	K-VV	rank	NO	0.780	2017	5	2.9	6.2 5.6	-0.2	0.9 -0.5	а		
					2018	5	4.4	5.7	0.3	0.0	a a		
					2019	5	1.7	2.1	-0.6	-0.8	a		
					2020	4	0.0	0.1	-0.0	-0.8	a		
					2013	5	0.4	0.4	4.9	-0.0	a		
					2015	5	0.3	0.7	3.6	-0.2	а		
Ostracoda	K-W	rank	NO	0.200	2017	5	0.3	0.6	3.3	-0.3	а		
% of community)					2018	5	0.7	1.5	8.6	0.6	а		
					2019	5	1.9	3.8	24.4	3.3	а		
					2020	5	5.5	7.1	72.4	11.3	а		
					2007	4	94.9	4.3	-	0.8	а		
					2013	5	91.1	4.7	-0.9	-	а		
Obinon and de a					2015	5	90.4	11.3	-1.1	-0.1	а		
Chironomidae (% of community)	K-W	rank	NO	0.811	2017	5	90.0	6.6	-1.1	-0.2	а		
,					2018	5	95.2	7.9	0.1	0.9	а		
					2019	5	91.4	7.1	-0.8	0.1	а		
					2020	5	91.0	8.4	-0.9	0.0	а		
					2007	4	34.8	4.8	-	-0.3	а		
					2013	5	39.5	17.2	1.0	-	a		
Metal Sensitive	ANGLE		\/E0	.0.001	2015	5	11.7	7.3	-4.9	-1.6	b,c		
Taxa (% of community)	ANOVA	log10	YES	<0.001	2017	5	33.3	25.5	-0.3	-0.4	a,b		
3,					2018	5	6.6	3.0	-5.9	-1.9	C a b c		
					2019	5	19.5 11.9	10.5 6.9	-3.2 -4.8	-1.2 -1.6	a,b,c b,c		
					2020	4	64.6	6.1	-4.8	0.4	a D,C		
					2007	5	57.0	19.9	-1.3	-	a		
Sallando C. C. d					2015	5	84.7	7.3	3.3	1.4	b,c		
Collector-Gatherer FFG	K-W	rank	YES	<0.001	2017	5	64.2	28.1	-0.1	0.4	a,b		
% of community)					2018	5	95.6	2.9	5.1	1.9	C C		
					2019	5	84.8	9.3	3.3	1.4	b,c		
					2020	5	87.0	9.5	3.7	1.5	С		
					2007	4	32.6	4.0	-	-0.3	а		
					2013	5	37.5	16.8	1.2	-	а		
					2015	5	11.4	6.8	-5.3	-1.6	b,c		
Filterer FFG % of community)	K-W	rank	YES	<0.001	2017	5	31.6	26.4	-0.2	-0.3	a,b		
5. 55mmamty)					2018	5	3.0	3.7	-7.3	-2.1	С		
					2019	5	12.0	8.3	-5.1	-1.5	b,c		
					2020	5	9.4	7.4	-5.8	-1.7	С		

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.24: Replicate Grab Habitat Data for Benthic Invertebrate Community Samples Collected at the Sheardown Lake Tributaries, Mary River Project CREMP, August 2020

		W	ater Depth (c	m)	Wa	ter Velocity (r	n/s)	E	mbeddednes	SS	In-S	tream Vegeta	tion	A	Algae Presenc	e
Study Area	Station	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3
	REF-CRK-B1	6	10	8	0.35	0.50	0.33	25%	50%	25%	sparse	none	none	sparse	sparse	sparse
	REF-CRK-B2	6	8	10	0.31	0.37	0.48	25%	25%	25%	none	none	none	sparse	sparse	sparse
Unnamed Reference	REF-CRK-B3	16	8	7	0.33	0.37	0.31	50%	50%	50%	none	none	none	sparse	sparse	common
Creek	REF-CRK-B4	10	12	8	0.50	0.51	0.42	50%	50%	25%	none	none	none	sparse	sparse	sparse
	REF-CRK-B5	10	8	9	0.37	0.35	0.38	50%	50%	25%	none	none	none	sparse	sparse	sparse
	SDLT1 - B1	8	12	13	0.30	0.41	0.38	0%	50%	50%	sparse	sparse	sparse	common	sparse	sparse
Observatoring	SDLT1 - B2	8	10	11	0.32	0.46	0.37	50%	50%	75%	common	sparse	sparse	sparse	sparse	sparse
Sheardown Lake	SDLT1 - B3	7	10	12	0.31	0.30	0.40	25%	25%	0%	common	common	sparse	sparse	sparse	sparse
Tributary 1	SDLT1 - B4	10	8	8	0.44	0.44	0.31	25%	25%	25%	common	common	sparse	sparse	sparse	sparse
	SDLT1 - B5	4	5	7	0.30	0.45	0.32	25%	50%	50%	common	common	common	sparse	sparse	sparse
	SDLT9 - B1	5	8	6	0.35	0.38	0.30	50%	25%	25%	sparse	none	none	common	sparse	common
Chaandaum	SDLT9 - B2	8	4	6	0.31	0.30	0.31	25%	50%	25%	sparse	sparse	sparse	common	common	sparse
Sheardown Lake	SDLT9 - B3	8	8	6	0.31	0.35	0.30	50%	50%	25%	none	none	sparse	sparse	common	common
Tributary 9	SDLT9 - B4	5	6	8	0.32	0.31	0.32	25%	50%	50%	none	sparse	sparse	sparse	common	sparse
	SDLT9 - B5	4	8	7	0.34	0.41	0.32	50%	50%	50%	sparse	sparse	sparse	common	common	sparse
Chardens	SDLT12 - B1	14	16	9	0.05	0.02	0.07	25%	0%	25%	sparse	none	common	sparse	common	common
Sheardown Lake	SDLT12 - B2	4	8	8	0.02	0.02	0.07	25%	25%	25%	common	sparse	common	common	sparse	sparse
Tributary 12	SDLT12 - B3	4	4	5	0.08	0.17	0.07	50%	25%	25%	sparse	sparse	common	common	common	common

Table F.25: Replicate Station Habitat Feature Summary Statistics for the Sheardown Lake Tributary Benthic Stations, Mary River Project CREMP, August 2020

Metric	Study Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
	Unnamed Reference Creek	9.1	1.1	0.49	8.0	9.0	10
Water Depth	Sheardown Tributary 1 (SDLT1)	8.9	2.1	1.0	5.3	9.7	11
(cm)	Sheardown Tributary 12 (SDLT12)	8.0	4.48	2.59	4.3	6.7	13.0
	Sheardown Tributary 9 (SDLT9)	6.5	0.5	0.2	6.0	6.3	7
	Unnamed Reference Creek	0.39	0.052	0.023	0.34	0.39	0.48
Water Velocity	Sheardown Tributary 1 (SDLT1)	0.37	0.023	0.010	0.34	0.36	0.40
(m/s)	Sheardown Tributary 12 (SDLT12)	0.06	0.038	0.0219	0.04	0.05	0.11
	Sheardown Tributary 9 (SDLT9)	0.33	0.02	0.01	0.31	0.32	0.36
	Unnamed Reference Creek	38%	10%	4%	25%	42%	50%
Substrate	Sheardown Tributary 1 (SDLT1)	35%	16%	7%	17%	33%	58%
Embeddedness (%)	Sheardown Tributary 12 (SDLT12)	25%	8%	5%	17%	25%	33%
	Sheardown Tributary 9 (SDLT9)	40%	7%	3%	33%	42%	50%

Note: Five stations were sampled at Unnamed Reference Creek, SDLT1, and SDLT9, and three stations were sampled at SDLT12.

Table F.26: Benthic Station Habitat Feature Statistical Comparisons Between Individual Sheardown Lake Tributaries and Unnamed Reference Creek, Mary River Project CREMP, August 2020

		Pa	ir-wise compariso	ns ^a		
Metric	Area 1	Area 2	Statistical Test ^a	Data Transformation	Significant Difference between Areas?	P-value
	Unnamed Reference Creek	SDLT1	tequal	none	NO	0.857
Water Depth (cm)	Unnamed Reference Creek	SDLT12	tequal	none	NO	0.613
· ,	Unnamed Reference Creek	SDLT9	tequal	none	YES	<0.001
	Unnamed Reference Creek	SDLT1	tequal	none	NO	0.363
Water Velocity (m/s)	Unnamed Reference Creek	SDLT12	tequal	none	YES	0.001
,	Unnamed Reference Creek	SDLT9	tequal	none	YES	0.036
Substrate	Unnamed Reference Creek	SDLT1	tequal	none	NO	0.700
Embeddedness	Unnamed Reference Creek	SDLT12	tequal	none	YES	0.092
(%)	Unnamed Reference Creek	SDLT9	tequal	none	NO	0.760

Shaded values indicate significant difference between study areas based on statistical test p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table F.27: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Tributary 1, August 2020

Tava	Study Area	Sheardown Lake	e Tributary 1 (SD	LT1)		
Taxa	Replicate Station	B1	B2	B3	B4	B5
ROUNDWORMS						
P. Nemata		54	36	25	14	22
<u>ANNELIDS</u>						
P. Annelida						
WORMS						
Cl. Oligochaeta F. Enchytraeid	20	39	7	4		18
F. Lumbriculid		39	,	4	-	10
Lumbriculus		-	-	-	-	-
<u>ARTHROPODS</u>						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina immature		4				
F. Lebertiidae		4	-	-	-	-
Lebertia		4	_	_	_	_
F. Sperchonida	ae	•				
Sperchon		22	4	-	7	4
HARPACTICOID	S					
O. Harpacticoida		-	-	-	-	-
SEED SHRIMPS						
Cl. Ostracoda SPRINGTAILS		4	-	-	-	-
Cl. Entognatha						
O. Collembola		_	_	-	7	_
INSECTS					•	
Cl. Insecta						
MAYFLIES						
O. Ephemeropter	a					
F. Baetidae	ranagua					
Acentrella fe	ropagus	-	-	-	-	-
O. Trichoptera						
F. Apataniidae						
Apatania		4	-	-	-	-
F. Limnephilida	ae					
immature		-	-	-	-	-
TRUE FLIES						
O. Diptera BITING-MIDGE						
F. Ceratopogo	nidae					
Culicoides		-	-	-	-	-
MIDGES						
F. Chironomida						
chironomid p		50	65	4	25	22
S.F. Chironom		_				
Micropsectra		7	-	4	-	-
Paratanytars Rheotanytars		- -	4	-	- 7	-
Tanytarsus		- 7	-	- -	-	- -
S.F. Diamesina	ie	•				
Diamesa		-	-	-	-	-
Pseudokieffe		111	36	22	22	47
S.F. Orthoclad						
Chaetocladiu		-	-	-	-	-
Corynoneura Cricotopus	1	- 147	-	- 1.4	- F0	- 1.4
Cricotopus		147	100	14	50	14

Table F.27: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Tributary 1, August 2020

		ake Tributary 1 (S		_	_
Replicate Station	B1	B2	B3	B4	B5
Cricotopus/Orthocladius	54	29	-	11	-
Diplocladius	-	-	-	-	4
Doncricotopus	7	-	-	-	-
Eukiefferiella	-	-	4	-	-
Hydrobaenus	7	- 450	-	-	- 10E
Hydrosmittia Krenosmittia	1,086	452	93	161	125
Limnophyes	-	-	-	-	-
Metriocnemus	_	_	-	-	_
Orthocladius (Euorthocladius)	_	7	_	_	_
Parakiefferiella	32	7	4	4	_
Paraphaenocladius	_	_	-	-	-
Tokunagaia	-	-	4	-	4
Tvetenia	-	61	7	22	4
indeterminate	25	-	4	-	-
S.F. Podonominae					
Trichotanypus	-	-	-	-	-
S.F. Tanypodinae					
Procladius	-	-	4	-	-
Thienemannimyia complex F. Dixidae	25	11	-	4	4
pupae			4		
F. Empididae	-	-	4	-	-
Clinocera	_	_	7	_	_
F. Ephydridae	_	<u>-</u>	-	<u>-</u>	<u>-</u>
F. Muscidae	4	4	_	_	_
F. Simuliidae					
Gymnopais	-	-	-	-	-
Metacnephia	-	-	-	-	-
Prosimulium	-	-	-	-	-
pupae	-	-	-	-	-
F. Tipulidae					
Dicranota	-	-	-	-	-
Ormosia Tipula	- 11	- 29	- 14	- 22	- 7
Прина					
Density (No. organisms per m²)	1,703	849	215	355	272
Richness (total number of taxa) ^a	18	13	14	11	11
Simpson's Evenness (E)	0.575	0.677	0.824	0.774	0.757
Shannon-Wiener Diversity Dominant Group Composition	1.955	2.116	2.823	2.396	2.312
% Nemata	3.2	4.2	11.7	4.0	7.9
% Oligochaeta	0.0	0.0	0.0	0.0	0.0
% Hydracarina	1.7	0.4	0.0	2.0	1.3
% Ostracods	0.2	0.0	0.0	0.0	0.0
% Ephemeroptera	0.0	0.0	0.0	0.0	0.0
% Chironomids	91.6	90.7	75.0	85.9	81.6
% Metal Sensitive Chironmids	7.6	5.1	11.9	8.8	18.9
% Simuliidae	0.0	0.0	0.0	0.0	0.0
% Tipulidae	0.6	3.4	6.7	6.1	2.6
Functional Feeding Group Composition			:	22.5	20 -
% Collector - Gatherers	82.7	77.6	78.1	69.9	88.8
% Filterers	0.9	0.5	3.4	2.2	0.0
% Shredders	12.8	19.7	13.5	24.8	8.5
Habitat Preference Group Composition	14.0	16 0	10 E	22.0	7 1
% Clingers	14.9 78.7	16.8	13.5	22.9	7.1
% Sprawlers	/2 /	74.4	66.5	64.9	75.8

^a Bold entries excluded from taxa count

Table F.28: Benthic Invertebrate Community Summary Statistics for the Sheardown Lake Tributaries, Mary River Project CREMP, August 2020

Metric	Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
	Unnamed Reference Creek	713	296	133	258	821	1,032
Density	Sheardown Tributary 1 (SDLT1)	679	625	279	215	355	1,703
(no. organisms/m²)	Sheardown Tributary 12 (SDLT12)	1,318	26	15	1,297	1,308	1,348
	Sheardown Tributary 9 (SDLT9)	1,601	841	376	892	1,111	2,556
	Unnamed Reference Creek	16.0	4.4	2.0	9.0	17.0	20.0
Richness	Sheardown Tributary 1 (SDLT1)	13.4	2.9	1.3	11.0	13.0	18.0
(Number of Taxa)	Sheardown Tributary 12 (SDLT12)	17.3	4.2	2.4	14.0	16.0	22.0
	Sheardown Tributary 9 (SDLT9)	18.0	4.7	2.1	14.0	16.0	24.0
	Unnamed Reference Creek	0.840	0.043	0.019	0.767	0.856	0.878
Simpson's	Sheardown Tributary 1 (SDLT1)	0.722	0.097	0.044	0.575	0.757	0.824
Evenness	Sheardown Tributary 12 (SDLT12)	0.832	0.063	0.036	0.759	0.860	0.876
	Sheardown Tributary 9 (SDLT9)	0.855	0.024	0.011	0.831	0.841	0.884
	Unnamed Reference Creek	0.7	1.3	0.6	0.0	0.3	3.0
Nemata	Sheardown Tributary 1 (SDLT1)	6.2	3.6	1.6	3.2	4.2	11.7
(% of community)	Sheardown Tributary 12 (SDLT12)	5.4	1.7	1.0	3.6	5.8	6.9
	Sheardown Tributary 9 (SDLT9)	3.1	2.3	1.0	0.6	2.6	6.4
	Unnamed Reference Creek	0.0	0.0	0.0	0.0	0.0	0.0
Oligochaeta	Sheardown Tributary 1 (SDLT1)	0.0	0.0	0.0	0.0	0.0	0.0
(% of community)	Sheardown Tributary 12 (SDLT12)	0.4	0.3	0.2	0.0	0.5	0.6
	Sheardown Tributary 9 (SDLT9)	0.0	0.0	0.0	0.0	0.0	0.0
Hydracarina	Unnamed Reference Creek	4.5	3.7	1.7	2.1	3.0	11.1
	Sheardown Tributary 1 (SDLT1)	1.1	0.9	0.4	0.0	1.3	2.0
(% of community)	Sheardown Tributary 12 (SDLT12)	0.2	0.2	0.1	0.0	0.3	0.3
	Sheardown Tributary 9 (SDLT9)	4.2	1.8	0.8	2.2	3.4	6.8
	Unnamed Reference Creek	30.6	11.7	5.3	16.7	34.2	42.0
Ostracoda	Sheardown Tributary 1 (SDLT1)	0.0	0.1	0.0	0.0	0.0	0.2
(% of community)	Sheardown Tributary 12 (SDLT12)	0.6	0.1	0.1	0.5	0.6	0.8
	Sheardown Tributary 9 (SDLT9)	8.2	2.6	1.1	4.9	9.0	11.0
	Unnamed Reference Creek	48.3	12.9	5.8	36.7	43.1	67.3
Chironomidae	Sheardown Tributary 1 (SDLT1)	85.0	6.9	3.1	75.0	85.9	91.6
(% of community)	Sheardown Tributary 12 (SDLT12)	88.6	2.1	1.2	87.0	87.8	91.0
	Sheardown Tributary 9 (SDLT9)	70.3	4.3	1.9	63.5	72.9	73.2
	Unnamed Reference Creek	0.8	1.2	0.6	0.0	0.5	3.0
Metal-Sensitive	Sheardown Tributary 1 (SDLT1)	10.5	5.3	2.4	5.1	8.8	18.9
Chironomidae (% of community)	Sheardown Tributary 12 (SDLT12)	0.5	0.4	0.2	0.0	0.6	0.8
	Sheardown Tributary 9 (SDLT9)	3.2	3.6	1.6	0.0	2.1	9.1
	Unnamed Reference Creek	9.8	8.6	3.8	0.0	8.7	20.7
Simuliidae	Sheardown Tributary 1 (SDLT1)	0.0	0.0	0.0	0.0	0.0	0.0
(% of community)	Sheardown Tributary 12 (SDLT12)	0.0	0.0	0.0	0.0	0.0	0.0
	Sheardown Tributary 9 (SDLT9)	0.5	0.9	0.4	0.0	0.0	2.1
	Unnamed Reference Creek	1.5	2.3	1.0	0.0	0.9	5.6
Tipulidae	Sheardown Tributary 1 (SDLT1)	3.9	2.5	1.1	0.6	3.4	6.7
(% of community)	Sheardown Tributary 12 (SDLT12)	1.5	0.7	0.4	1.1	1.1	2.2
	Sheardown Tributary 9 (SDLT9)	3.1	1.3	0.6	2.0	2.5	5.2

Table F.28: Benthic Invertebrate Community Summary Statistics for the Sheardown Lake Tributaries, Mary River Project CREMP, August 2020

Metric	Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
	Unnamed Reference Creek	80.7	8.8	3.9	70.0	77.6	91.1
Collector-Gatherer FFG (% of community)	Sheardown Tributary 1 (SDLT1)	79.4	7.0	3.1	69.9	78.1	88.8
	Sheardown Tributary 12 (SDLT12)	82.2	1.4	0.8	80.7	82.2	83.6
	Sheardown Tributary 9 (SDLT9)	63.1	6.9	3.1	56.5	63.0	72.8
	Unnamed Reference Creek	9.9	8.9	4.0	0.0	8.0	21.5
Filterer FFG	Sheardown Tributary 1 (SDLT1)	1.4	1.4	0.6	0.0	0.9	3.4
(% of community)	Sheardown Tributary 12 (SDLT12)	0.2	0.3	0.2	0.0	0.0	0.5
	Sheardown Tributary 9 (SDLT9)	0.5	0.8	0.4	0.0	0.0	1.8
	Unnamed Reference Creek	2.8	2.7	1.2	0.0	2.4	7.0
Shredder FFG	Sheardown Tributary 1 (SDLT1)	15.8	6.4	2.9	8.5	13.5	24.8
(% of community)	Sheardown Tributary 12 (SDLT12)	16.9	1.8	1.0	15.7	16.2	19.0
	Sheardown Tributary 9 (SDLT9)	29.8	6.8	3.0	22.4	26.7	38.3
	Unnamed Reference Creek	15.8	7.7	3.5	7.8	12.6	27.0
Clinger HPG	Sheardown Tributary 1 (SDLT1)	15.1	5.7	2.6	7.1	14.9	22.9
(% of community)	Sheardown Tributary 12 (SDLT12)	16.3	1.9	1.1	14.5	16.2	18.2
	Sheardown Tributary 9 (SDLT9)	33.4	8.1	3.6	22.0	32.5	41.2
	Unnamed Reference Creek	79.4	6.6	3.0	70.0	79.1	87.2
Sprawler HPG	Sheardown Tributary 1 (SDLT1)	72.1	6.0	2.7	64.9	74.4	78.7
(% of community)	Sheardown Tributary 12 (SDLT12)	73.8	0.3	0.2	73.6	73.7	74.2
	Sheardown Tributary 9 (SDLT9)	53.0	9.9	4.4	37.6	57.2	63.1
	Unnamed Reference Creek	4.8	3.3	1.5	1.4	3.1	8.3
Burrower HPG	Sheardown Tributary 1 (SDLT1)	12.5	5.8	2.6	6.3	10.1	20.0
(% of community)	Sheardown Tributary 12 (SDLT12)	9.9	1.6	0.9	8.2	10.1	11.3
	Sheardown Tributary 9 (SDLT9)	8.1	2.8	1.3	4.9	10.0	10.5

Note: Sample size equals five for Unnamed Reference Creek, SDLT1, and SDLT9, and three for SDLT12.

Table F.29: Statistical Comparison of Bray-Curtis Index for the Sheardown Lake Tributaries Compared to Unnamed Reference Creek, Mary River Project CREMP, August 2020

Comparison	Betadisper	Ма	ntel Test		dbRDA				
Comparison	P-Value	r	R ²	P-Value	F-Value	R ²	R ² _{adj}	P-Value	
SDLT1 vs Reference Creek	0.661	0.822	0.676	0.008	11.17	0.583	0.530	0.006	
SDLT12 vs Reference Creek	0.435	0.835	0.697	0.008	10.34	0.564	0.509	0.007	
SDLT9 vs Reference Creek	0.846	0.570	0.324	0.008	5.31	0.399	0.324	0.007	

Highlighted values indicate significant difference between study areas based on statistical test p-value less than 0.10. Note: Sample size was five for all study areas except SDLT9, at which the sample size was three.

Table F.30: Statistical Comparison of Benthic Metrics at Sheardown Lake Tributary 1 (SDLT1) Among Years of Mine Operation (2015 to 2020) and Baseline (2008, 2013) for the Mary River Project CREMP

		Overall 8-Year C	Comparison					Pair-wise, po	st-hoc compariso	ns	
Metric	Ctatiatical		Significant						Effec	t Size	
	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2008	vs. Baseline Year 2013	Pairwise Comparison
					2008	3	300	52	-	-2.0	а
					2013	3	657	176	6.8	-	a,b,c
					2015	5	722	485	8.1	0.4	a,b
Density (No. per m²)	ANOVA	log10	YES	0.003	2016	5	2,453	814	41.1	10.2	C
(.to. po)					2017	5	1,660 1,102	1,643 766	26.0 15.3	5.7 2.5	a,b,c a,b,c
					2019	5	1,483	982	22.6	4.7	b,c
					2020	5	679	625	7.2	0.1	a,c
					2008	3	12.0	1.0	-	-1.9	а
					2013	3	16.7	2.5	4.7	-	а
					2015	5	15.4	4.3	3.4	-0.5	а
Richness	ANOVA	none	NO	0.305	2016	5	15.2	2.5	3.2	-0.6	а
(No. of Taxa)					2017	5	14.0	2.0	2.0	-1.1	а
					2018	5	12.8 14.8	1.6	2.8	-1.5	a
					2019	5	13.4	1.9 2.9	1.4	-0.8 -1.3	a a
					2020	3	0.894	0.034	-	0.1	a
					2013	3	0.887	0.064	-0.2	-	а
					2015	5	0.869	0.067	-0.7	-0.3	а
Simpson's	ANOVA		YES	<0.001	2016	5	0.872	0.032	-0.7	-0.2	а
Evenness	ANOVA	none	TES	<0.001	2017	5	0.883	0.028	-0.3	-0.1	а
					2018	5	0.834	0.063	-1.8	-0.8	а
					2019	5	0.787	0.026	-3.2	-1.6	a,b
					2020	5	0.722	0.097	-5.1	-2.6	b
					2008	3	3.0	2.5	-	-1.3	a,c,d
					2013 2015	3 5	7.3 14.4	3.3 10.8	4.6	2.1	a,b,c b
Olimanhanta					2015	5	14.4	8.8	4.6	2.0	a,b
Oligochaeta (% of community)	K-W	rank	YES	0.005	2017	5	8.6	7.4	2.3	0.4	a,b
(vi or community)					2018	5	2.2	2.8	-0.3	-1.5	c,d
					2019	5	3.3	1.0	0.1	-1.2	a,b,c
					2020	5	0.0	0.0	-1.2	-2.2	d
					2008	3	12.1	4.7	-	2.6	а
					2013	3	4.6	2.9	-1.6	-	b,c
					2015	5	4.6	1.6	-1.6	0.0	b,c
Hydracarina (% of community)	ANOVA	log10(x+1)	YES	<0.001	2016	5	5.3	1.3	-1.4	0.2	b
(70 or community)					2017	5	3.9	2.0	-1.7	-0.2 -0.5	b,c
					2018	5	1.3	0.9	-1.9 -2.3	-0.5	b,c c
					2020	5	1.1	0.9	-2.3	-1.2	С
					2008	3	69.2	2.0	-	-3.0	а
					2013	3	81.1	3.9	6.0	-	a,b
					2015	5	72.0	9.0	1.4	-2.3	а
Chironomidae	ANOVA	none	YES	<0.001	2016	5	73.1	11.9	2.0	-2.0	а
(% of community)	7410771	none	120	0.001	2017	5	82.4	10.1	6.7	0.3	a,b
					2018	5	90.7	4.4	10.9	2.5	b
					2019	5	91.6	1.6	11.4	2.7	b
					2020	5	85.0 27.5	6.9	8.0	1.0	a,b
					2008	3	27.5 19.9	5.5 14.3	- -1.4	0.5	a,b a,b,c
					2015	5	6.1	2.9	-3.9	-1.0	a,b,c C
Metal Sensitive					2016	5	15.6	4.4	-2.2	-0.3	a,b,c
Taxa (% of community)	ANOVA	log10	YES	<0.001	2017	5	26.1	15.6	-0.3	0.4	a,b
. · <i>(</i>					2018	5	19.8	12.4	-1.4	0.0	a,b
					2019	5	31.2	11.0	0.7	0.8	а
					2020	5	10.5	5.3	-3.1	-0.7	b,c
					2008	3	14.7	2.7	-	22.9	а
					2013	3	3.8	0.5	-4.0	-	b
					2015	5	2.1	1.3	-4.7	-3.7	b
Tipulidae (% of community)	ANOVA	log10(x+1)	YES	<0.001	2016	5	3.5	1.9	-4.1	-0.6	b
,					2017	5	2.8	2.7	-4.4	-2.1	b
					2010	<u></u>	1 1 1 1		// /	_/1 / 1	
					2018	5	1.9 2.1	1.3 1.6	-4.7 -4.6	-4.0 -3.6	b b

Table F.30: Statistical Comparison of Benthic Metrics at Sheardown Lake Tributary 1 (SDLT1) Among Years of Mine Operation (2015 to 2020) and Baseline (2008, 2013) for the Mary River Project CREMP

						Pair-wise, po	st-hoc compariso	ns			
			Significant						Effec	t Size	
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2008	vs. Baseline Year 2013	Pairwise Comparison
					2008	3	40.3	2.9	-	-2.0	а
					2013	3	55.5	7.5	5.2	-	a,b
					2015	5	64.2	5.2	8.2	1.2	b
Collector-Gatherer FFG	ANOVA	none	YES	<0.001	2016	5	58.6	10.7	6.3	0.4	b
(% of community)	ANOVA	none	TLO	\0.001	2017	5	55.3	8.0	5.2	0.0	a,b
					2018	5	62.2	9.3	7.5	0.9	b
					2019	5	81.6	4.9	14.2	3.5	С
					2020	5	79.4	7.0	13.4	3.2	С
		rank	YES		2008	3	5.2	3.5	-	-2.0	a,b
				0.002	2013	3	8.5	1.6	0.9	-	а
					2015	5	4.5	1.4	-0.2	-2.4	а
Filterer FFG	K-W				2016	5	7.6	3.3	0.7	-0.5	а
(% of community)	1144	Talik			2017	5	8.9	8.0	1.1	0.3	а
					2018	5	1.6	1.4	-1.0	-4.2	С
					2019	5	1.3	0.9	-1.1	-4.4	b,c
					2020	5	1.4	1.4	-1.1	-4.3	С
					2008	3	40.6	4.2	-	1.6	а
					2013	3	28.7	7.4	-2.8	-	а
					2015	5	22.9	4.5	-4.2	-0.8	a,b
Shredder FFG	ANOVA	log10	YES	<0.001	2016	5	27.4	9.4	-3.1	-0.2	а
(% of community)	ANOVA	10910	120	30.001	2017	5	31.6	7.7	-2.1	0.4	а
					2018	5	32.8	8.2	-1.8	0.6	а
					2019	5	15.0	4.3	-6.1	-1.9	b
					2020	5	15.8	6.4	-5.9	-1.7	b

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Signficant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.31: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Tributary 12, August 2020

_	Study Area	Sheardown Tributary 1	2 (SDI T12)	
Taxa	Replicate Station	B1	B2	B3
ROUNDWORMS				
P. Nemata		75	47	93
<u>ANNELIDS</u>				
P. Annelida				
WORMS				
Cl. Oligochaeta	d			
F. Enchytraeio F. Lumbriculio		36	47	36
Lumbriculus		7		7
ARTHROPODS)	1	-	1
P. Arthropoda				
MITES				
Cl. Arachnida				
O. Acarina				
immature		-	-	-
F. Lebertiidae				
Lebertia		-	-	-
F. Sperchonid	lae			
Sperchon	20	4	-	4
HARPACTICOID O. Harpacticoida				4
SEED SHRIMPS		-	-	4
Cl. Ostracoda	,	7	7	11
SPRINGTAILS		,	,	11
Cl. Entognatha				
O. Collembola		-	-	-
<u>INSECTS</u>				
Cl. Insecta				
MAYFLIES				
O. Ephemeropte	ra			
F. Baetidae				
Acentrella fe	eropagus	-	-	-
O. Trichoptera				
F. Apataniidae	۵			
Apatania	•	_	_	_
F. Limnephilid	dae			
immature		-	-	4
TRUE FLIES				
O. Diptera				
BITING-MIDGE				
F. Ceratopogo	onidae			
Culicoides		-	-	-
MIDGES F. Chironomid	daa			
chironomid		11	7	18
S.F. Chironom		• • • • • • • • • • • • • • • • • • • •	•	10
Micropsectra		_	_	_
Paratanytar		-	-	7
Rheotanyta		-	-	-
Tanytarsus		-	-	-
S.F. Diamesin	ae			
Diamesa		-	7	4
Pseudokieff		-	-	-
S.F. Orthoclad		60	^7	60
Chaetocladi Corynoneur		68	97	68
Cricotopus	а	- 115	- 129	- 22
Сполориз		IIJ	123	<u> </u>

Table F.31: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Tributary 12, August 2020

Taxa Study Area	Sheardown Tributary 12 (SI	DLT12)	
Replicate Station	B1	B2	B3
Cricotopus/Orthocladius	68	104	183
Diplocladius	631	423	315
Doncricotopus	-	-	-
Eukiefferiella	-	-	-
Hydrobaenus	22	-	-
Hydrosmittia	-	-	68
Krenosmittia	<u>-</u>	-	7
Limnophyes	7	29	7
Metriocnemus	-	29	22
Orthocladius (Euorthocladius)	-	-	-
Parakiefferiella Paraphaenocladius	- -	-	-
Tokunagaia	7 29	22 233	14 39
Tvetenia	29	233 7	22
indeterminate	- 176	104	369
S.F. Podonominae	170	104	503
Trichotanypus	7	_	7
S.F. Tanypodinae	•		•
Procladius	-	-	-
Thienemannimyia complex	-	-	-
F. Dixidae			
pupae	-	-	-
F. Empididae			
Clinocera	-	4	4
F. Ephydridae	-	-	-
F. Muscidae	-	-	-
F. Simuliidae			
Gymnopais	-	-	-
Metacnephia	-	-	-
Prosimulium	-	-	-
pupae	-	-	-
F. Tipulidae			4.4
Dicranota	-	-	14
Ormosia Tipula	4	- 14	-
Tipula	25	14	-
Density (No. organisms per m²)	1,297	1,308	1,348
Richness (total number of taxa) ^a	16	14	22
Simpson's Evenness (E)	0.759 2.489	0.876	0.860
Shannon-Wiener Diversity Dominant Group Composition	2.409	2.859	3.033
% Nemata	5.8	3.6	6.9
% Oligochaeta	0.6	0.0	0.5
% Hydracarina	0.3	0.0	0.3
% Ostracods	0.6	0.5	0.8
% Ephemeroptera	0.0	0.0	0.0
% Chironomids	87.8	91.0	87.0
% Metal Sensitive Chironmids	0.0	0.6	0.8
% Simuliidae	0.0	0.0	0.0
% Tipulidae	2.2	1.1	1.1
Functional Feeding Group Compositi	on		
% Collector - Gatherers	83.6	80.7	82.2
% Filterers	0.0	0.0	0.5
% Shredders	16.2	19.0	15.7
Habitat Preference Group Composition			
% Clingers	14.5	18.2	16.2
% Sprawlers	74.2	73.6	73.7
% Burrowers	11.3	8.2	10.1

^a Bold entries excluded from taxa count

Table F.32: Statistical Comparison of Benthic Invertebrate Community Metrics at Sheardown Lake Tributary 12 Upstream (SDLT12) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	, post-hoc co	mparisons	
Metric	Statistical	D. f	Significant			C '		04	Effect Size	D-1
illicatio	Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	Pairwise Comparison
					2007	5	1,016	669	-	а
					2015	3	841	575	-0.3	а
					2016	3	894	502	-0.2	а
Density (No. per m ²)	ANOVA	log10	NO	0.122	2017	3	783	561	-0.3	а
, ,					2018	3	2,826	2,237	2.7	а
					2019	3	3,078	2,660	3.1	а
					2020	3	1,318	26	0.5	а
					2007	5	19.0	1.9	-	а
					2015	3	12.0	1.0	-3.7	b
					2016	3	18.3	1.2	-0.4	ac
Richness (No. of Taxa)	ANOVA	log10	YES	0.004	2017	3	15.3	0.6	-2.0	a,b,c
,					2018	3	14.3	2.5	-2.5	b,c
					2019	3	15.0	2.0	-2.1	a,b,c
					2020	3	17.3	4.2	-0.9	a,c
					2007	5	0.854	0.020	-	а
					2015	3	0.884	0.041	1.5	а
					2016	3	0.884	0.046	1.5	а
Simpson's Evenness	ANOVA	none	YES	<0.001	2017	3	0.931	0.021	3.9	а
Everiness					2018	3	0.659	0.152	-9.8	b,c
					2019	3	0.613	0.095	-12.2	С
					2020	3	0.832	0.063	-1.1	a,b
					2007	5	0.7	0.6	-	a
					2015	3	28.8	8.8	48.7	b,c
					2016	3	31.6	11.1	53.6	С
Oligochaeta	K-W	rank	YES	0.003	2017	3	21.9	8.4	36.8	b,c
(% of community)					2018	3	3.4	1.5	4.7	a,b,c
					2019	3	2.3	0.6	2.8	a,b,
					2020	3	0.4	0.3	-0.6	a
					2007	5	3.0	2.9	-0.0	a
					2015	3	0.0	0.0	-1.0	a
					2016	3	0.4	0.4	-0.9	a
Hydracarina	K-W	rank	NO	0.156	2017	3	0.0	0.0	-1.0	a
(% of community)	1000	Tarix	110	0.100	2018	3	0.7	1.2	-0.8	a
					2019	3	0.7	0.7	-0.9	a
					2020	3	0.4	0.7	-0.9	a
					2007	5	88.0	10.2	-0.9	
					2007	3	65.1	6.7	-2.2	a
					2015	3	54.9	18.0	-3.2	b b
Chironomidae	ANOVA	none	YES	<0.001	2016	3	64.6	7.2	-3.2	
(% of community)	ANOVA	HOHE	TEG	V.001	2017	3	92.1	4.0	0.4	b
					2018		95.1	1.9	0.4	а
						3	95.1 88.6	2.1		а
					2020	3			0.1	а
					2007	5	3.3	2.0	-	а
					2015	3	1.4	1.5	-0.9	a
Metal Sensitive	ANO. (2	lo =40(··· 4)	VEO	40.004	2016	3	2.6	0.5	-0.3	а
Taxa (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	3	12.7	5.2	4.7	b
					2018	3	0.6	0.6	-1.3	а
					2019	3	2.3	3.3	-0.5	а
					2020	3	0.5	0.4	-1.4	а

Table F.32: Statistical Comparison of Benthic Invertebrate Community Metrics at Sheardown Lake Tributary 12 Upstream (SDLT12) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	e, post-hoc co	mparisons	
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2007	Pairwise Comparison
					2007	5	0.3	0.5	-	а
					2015	3	3.4	1.3	6.3	a,b
					2016	3	3.8	3.1	7.2	b
Tipulidae (% of community)	ANOVA	log10(x+1)	YES	0.033	2017	3	3.4	2.0	6.5	a,b
					2018	3	2.2	1.5	3.9	a,b
					2019	3	0.6	0.3	0.6	a,b
					2020	3	1.5	0.7	2.4	a,b
					2007	5	57.8	15.8	-	а
					2015	3	83.7	11.4	1.6	b
Collector-Gatherer FFG (% of community)	ANOVA	none	YES		2016	3	87.0	2.6	1.8	b
				0.003	2017	3	88.5	3.2	1.9	b
					2018	3	87.6	9.4	1.9	b
					2019	3	82.0	5.0	1.5	b
					2020	3	82.2	1.4	1.5	b
					2007	5	6.9	9.2	-	a,b
					2015	3	0.0	0.0	-0.7	С
					2016	3	2.1	0.1	-0.5	a,b
Filterer FFG (% of community)	K-W	rank	YES	0.053	2017	3	3.5	2.8	-0.4	а
					2018	3	0.4	0.4	-0.7	b,c
					2019	3	2.2	3.4	-0.5	a,b,c
					2020	3	0.2	0.3	-0.7	С
					2007	5	22.5	8.9	-	а
					2015	3	16.3	11.4	-0.7	а
					2016	3	9.3	1.5	-1.5	а
Shredder FFG (% of community)	ANOVA	log10	NO	0.158	2017	3	8.0	2.1	-1.6	а
•					2018	3	11.3	7.9	-1.3	а
					2019	3	15.2	8.6	-0.8	а
					2020	3	16.9	1.8	-0.6	а

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.33: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Tributary 9, August 2020

Tour	Study Area	Sheardown Lake	e Tributary 9 (SD	LT9)		
Таха	Replicate Station	B1	B2	B3	B4	B5
ROUNDWORMS						
P. Nemata		108	36	57	25	7
ANNELIDS						
P. Annelida						
WORMS Cl. Oligochaeta						
F. Enchytraeid	lao	79	29	11	25	25
F. Lumbriculid		19	29	11	25	23
Lumbriculus		_	-	_	_	_
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
immature		4	-	-	-	-
F. Lebertiidae						
Lebertia		4	7	-	-	-
F. Sperchonid	ae					
Sperchon		79	161	29	22	57
HARPACTICOID						
O. Harpacticoida		-	-	-	-	-
SEED SHRIMPS		405	222	00	0.4	400
Cl. Ostracoda		125	222	90	61	122
SPRINGTAILS						
Cl. Entognatha O. Collembola		26	111	100	47	E7
INSECTS		36	111	100	47	57
Cl. Insecta						
MAYFLIES						
O. Ephemeropte	ra					
F. Baetidae	· u					
Acentrella fe	eropagus	108	11	_	4	-
CADDISFLIES		.00				
O. Trichoptera						
F. Apataniidae	•					
Apatania		-	-	-	-	-
F. Limnephilid	ae					
immature		-	7	-	4	-
TRUE FLIES						
O. Diptera						
BITING-MIDGE	!.					
F. Ceratopogo	nidae	7				4.4
Culicoides MIDGES		7	-	-	-	11
F. Chironomid	20					
chironomid p		287	423	129	125	136
S.F. Chironomina		201	720	120	120	100
Micropsectra		-	-	_	_	-
Paratanytars		-	-	-	-	-
Rheotanytar		-	-	-	-	-
Tanytarsus		-	-	-	-	-
S.F. Diamesinae						
Diamesa		190	75	14	-	7
Pseudokieffe		7	-	-	-	-
S.F. Orthocladiin						
Chaetocladi		-	-	-	-	-
Corynoneura	a	-	-	-	4	-

Table F.33: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Tributary 9, August 2020

T	Study Area	Sheardown Lak	ke Tributary 9 (SI			
Taxa	Replicate Station	B1	B2	В3	B4	B5
Cricotopus		376	566	151	86	151
Cricotopus/0	Orthocladius	147	65	97	50	75
Diplocladius		-	-	4	-	-
Doncricotopi		-	-	-	-	-
Eukiefferiella		14	-	-	-	-
Hydrobaenu		-	-	-	11	-
Hydrosmittia		14	115	50	25	39
Krenosmittia		43	32	54	79	68
Limnophyes		-	-	-	-	-
Metriocnemu		14	7	-	-	-
	(Euorthocladius)	-	18	-	-	-
Parakiefferie	ella	-	7	-	-	-
Paraphaeno	cladius	-	-	-	-	-
Tokunagaia		14	7	-	-	-
Tvetenia		742	434	47	287	262
indeterminat		-	57	22	39	25
S.F. Podonomina	ie					
Trichotanypı		14	7	-	-	-
S.F. Tanypodinae	Э					
Procladius		-	-	-	-	-
Thienemann	<i>imyia</i> complex	-	-	-	-	-
F. Dixidae						
pupae		-	-	-	-	-
F. Empididae						
Clinocera		14	11	18	22	29
F. Ephydridae		-	-	4	-	-
F. Muscidae		11	-	-	-	-
F. Simuliidae						
Gymnopais		7	-	-	-	-
Metacnephia	a	22	7	-	-	-
Prosimulium		-	-	-	-	-
pupae		25	7	-	-	-
F. Tipulidae						
Dicranota		-	-	-	4	25
Ormosia		-	-	-	-	-
Tipula		65	57	18	47	14
Density (No. orga	nisms nor m²\	2,556	2,480	892	964	1,111
Richness (total nu		24	22	14	16	14
Simpson's Evenn	ess (F)	0.841	0.841	0.884	0.831	0.876
Shannon-Wiener		3.106	2.974	3.015	2.855	2.920
Dominant Group		0.100	2.07	0.010	2.000	2.020
% Nemata	opoortioi.	4.2	1.4	6.4	2.6	0.6
% Oligochaeta		0.0	0.0	0.0	0.0	0.0
% Hydracarina		3.4	6.8	3.2	2.2	5.2
% Ostracods		4.9	9.0	10.0	6.3	11.0
% Chironomids		72.9	73.1	63.5	73.2	68.7
% Metal Sensitive	- Chironmide	9.1	4.0	2.1	0.0	0.8
% Simuliidae	o omiominus	9.1 2.1	4.0 0.6	0.0	0.0	0.0
% Tipulidae		2.5	2.3	2.0	5.2	3.5
	ng Group Composi		۷.۵	2.0	5.2	3.5
			EG F	EG E	70.0	62.0
% Collector - Gat	nerers	66.5	56.5	56.5	72.8	63.0
% Filterers		1.8	0.6	0.0	0.0	0.0
% Shredders	. 0 6	26.7	35.7	38.3	22.4	26.0
	e Group Composit				22 -	^ =
% Clingers		30.2	41.2	41.1	22.0	32.5
% Sprawlers		57.8	49.5	37.6	63.1	57.2
% Burrowers		10.5	4.9	10.0	10.0	5.2

^a Bold entries excluded from taxa count

Table F.34: Statistical Comparison of Benthic Metrics at Sheardown Lake Tributary 9 (SDLT9) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2013) for the Mary River Project CREMP

		Overall 8-Year	Comparison					Pair-wise, po	ost-hoc compariso	ns	
Madria			Significant						Effec	t Size	
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2013	Pairwise Comparison
					2007	3	712	42	-	-0.8	а
					2013	3	1,240	690	12.6	-	a,b
					2015	5	2,147	942	34.2	1.3	a,b
Density	ANOVA	none	YES	0.029	2016	5	2,401	1,054	40.3	1.7	a,b
(No. per m²)					2017	5	3,404	1,983	64.2	3.1	b
					2018	5	1,482	375	18.4	0.4	a,b
					2019	5	1,575	705	20.6	0.5	a,b
					2020	5	1,601	841	21.2	0.5	a,b
					2007	3	22.3	3.2	-	0.9	а
					2013	3	19.0	3.6	-1.0	-	а
					2015	5	19.4	4.8	-0.9	0.1	а
Richness (No. of Taxa)	ANOVA	none	NO	0.543	2016	5	18.2	2.6	-1.3	-0.2	a
(itoi oi rana)					2017	5	20.8 17.8	2.8 3.9	-0.5 -1.4	0.5 -0.3	а
					2018	5	21.0	2.0	-1.4	0.6	а
					2019	5	18.0	4.7	-1.3	-0.3	а
					2020	3	0.865	0.049	-1.3	-0.3	a a
					2007	3	0.899	0.049	0.7		
					2015	5	0.899	0.060	0.7	-0.4	a a
Simpo!-					2015	5	0.843	0.064	-0.4	-3.1	a
Simpson's Evenness	ANOVA	none	NO	0.421	2017	5	0.883	0.042	0.4	-0.9	a
					2018	5	0.889	0.047	0.5	-0.6	а
					2019	5	0.899	0.008	0.7	0.0	a
					2020	5	0.855	0.024	-0.2	-2.4	а
					2007	3	5.9	4.1	-	4.7	а
					2013	3	0.7	1.1	-1.3	-	b,c
					2015	5	0.8	0.4	-1.3	0.2	b
Oligochaeta					2016	5	1.5	1.0	-1.1	0.8	a,b
(% of community)	K-W	rank	YES	0.009	2017	5	3.0	2.8	-0.7	2.0	a,b
					2018	5	0.9	1.0	-1.2	0.3	b,c
					2019	5	2.1	1.7	-0.9	1.3	a,b
					2020	5	0.0	0.0	-1.5	-0.6	С
					2007	3	3.4	2.0	-	-1.3	а
					2013	3	9.0	4.2	2.8	-	а
					2015	5	4.2	4.1	0.4	-1.1	а
Hydracarina	A NIO \ / A	la m10	VEC	0.050	2016	5	4.6	3.2	0.6	-1.0	а
(% of community)	ANOVA	log10	YES	0.052	2017	5	3.3	2.0	-0.1	-1.4	а
					2018	5	8.5	2.3	2.6	-0.1	а
					2019	5	2.7	1.1	-0.3	-1.5	а
					2020	5	4.2	1.8	0.4	-1.2	а
					2007	3	77.5	5.8	-	0.9	а
					2013	3	73.3	4.4	-0.7	-	а
					2015	5	78.7	8.7	0.2	1.2	а
Chironomidae	K-W	rank	NO	0.154	2016	5	67.1	8.8	-1.8	-1.4	а
(% of community)					2017	5	73.4	10.1	-0.7	0.0	а
					2018	5	75.8	11.1	-0.3	0.6	а
					2019	5	63.7	6.9	-2.4	-2.2	а
	<u> </u>				2020	5	70.3	4.3	-1.2	-0.7	а
					2007	3	2.6	0.9	-	2.9	a,b
					2013	3	1.0	0.5	-1.8	-	b,c,d
Motol Sovettie					2015	5	5.0	2.5	2.8	7.4	а
Metal Sensitive Taxa	K-W	rank	YES	0.022	2016	5	0.8	1.2	-2.1	-0.4	d
(% of community)					2017	5	1.1	1.3	-1.7	0.2	b,c,d
					2018	5	0.8	0.6	-2.0	-0.3	c,d
					2019	5	2.5	1.1	-0.1	2.8	a,b
					2020	5	3.2	3.6	0.7	4.0	a,b,c
					2007	3	4.6	1.9	- 0.4	0.1	a,b
					2013	3	4.4	2.1	-0.1	-	a,b
					2015	5	3.9	3.4	-0.4	-0.2	a,b
Tipulidae (% of community)	ANOVA	log10	YES	0.029	2016	5	8.0	3.3	1.8	1.7	a
(,,, o. community)					2017	5	5.8	5.6	0.7	0.7	a,b
					2018	5	3.6	2.3	-0.5	-0.4	a,b
					2019	5	1.4	0.8	-1.7	-1.5	b
					2020	5	3.1	1.3	-0.8	-0.6	a,b

Table F.34: Statistical Comparison of Benthic Metrics at Sheardown Lake Tributary 9 (SDLT9) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2013) for the Mary River Project CREMP

		Overall 8-Year	Comparison					Pair-wise, po	st-hoc compariso	ns	
			Significant						Effec	t Size	
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2013	Pairwise Comparison
					2007	3	57.8	3.1	-	-0.4	а
					2013	3	60.6	6.9	0.9	-	а
					2015	5	60.7	20.5	0.9	0.0	а
Collector-Gatherer FFG	ANOVA	none	NO	0.267	2016	5	44.6	15.7	-4.3	-2.3	а
(% of community)	ANOVA	Hone	NO		2017	5	57.5	11.6	-0.1	-0.4	а
					2018	5	52.6	7.3	-1.7	-1.2	а
					2019	5	62.5	6.5	1.5	0.3	а
					2020	5	63.1	6.9	1.7	0.4	а
				0.140	2007	3	1.3	0.9	-	-0.7	а
			NO		2013	3	1.9	0.9	0.6	-	а
					2015	5	2.0	1.8	0.7	0.1	а
Filterer FFG	ANOVA	log10(x+1)			2016	5	0.5	0.4	-0.9	-1.6	а
(% of community)	ANOVA	10910(X11)	NO		2017	5	0.8	0.7	-0.6	-1.3	а
					2018	5	1.4	1.4	0.1	-0.6	а
					2019	5	2.0	1.0	0.7	0.1	а
					2020	5	0.5	0.8	-0.9	-1.6	а
					2007	3	26.8	3.9	-	-0.4	а
					2013	3	28.4	4.4	0.4	-	а
					2015	5	32.0	18.2	1.3	0.8	а
Shredder FFG	ANOVA	log10	NO	0.143	2016	5	49.1	15.0	5.7	4.7	а
(% of community)	ANOVA	10910	NO	0.143	2017	5	37.7	10.7	2.8	2.1	а
					2018	5	37.2	9.7	2.7	2.0	а
				-	2019	5	32.0	7.2	1.3	0.8	а
					2020	5	29.8	6.8	0.8	0.3	а

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.35: Statistical Comparison of Sediment Physical Properties Between Sheardown Lake NW (DL0-1) and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Test	Results				Sum	mary Statistic	cs		
Lake Zone	Sediment Variable	Statistical Test ^a	Data Transformation	Significant Difference between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
v	Sand-Sized Material	tequal	none	NO	0.264	Reference	5	29.6	7.5	3.4	23.4	40.4
<u>io</u>	(%)	toquai	none	NO	0.204	Sheardown NW	5	45.1	27.9	12.5	22.9	93.0
Stations	Silt-Sized Material	tequal	none	NO	0.159	Reference	5	62.2	6.3	2.8	53.4	68.4
	(%)	toquai	none	NO	0.100	Sheardown NW	5	45.5	23.3	10.4	6.4	67.1
Littoral (Shallow)	Clay-Sized Material	tequal	none	NO	0.640	Reference	5	8.2	3.0	1.3	6.2	13.4
hal	(%)	toquai	Hone	NO	0.040	Sheardown NW	5	9.5	5.0	2.2	1.0	13.6
S)	Moisture	tequal	none	YES	0.092	Reference	5	87.9	4.6	2.1	80.2	92.3
oral	(%)	tequal	none	TES	0.092	Sheardown NW	5	67.7	23.2	10.4	27.4	84.3
≝	Total Organic Carbon	tequal	none	YES	0.076	Reference	5	4.8	2.0	0.9	2.3	7.0
	(TOC) Content (%)	tequal	none	TES	0.070	Sheardown NW	5	2.5	1.6	0.7	0.2	4.3
	Sand-Sized Material	tequal	none	NO	0.113	Reference	5	31.6	22.3	10.0	13.9	56.6
Sus	(%)	tequal	none	NO	0.113	Sheardown NW	5	13.3	5.3	2.4	8.5	19.5
Stations	Silt-Sized Material	tegual	none	NO	0.109	Reference	5	57.4	18.1	8.1	36.9	71.9
	(%)	tequal	none	NO	0.109	Sheardown NW	5	72.6	5.2	2.3	64.4	78.9
dea	Clay-Sized Material	tequal	none	NO	0.272	Reference	5	11.0	4.3	1.9	6.3	15.1
ě	(%)	tequal	none	NO	0.272	Sheardown NW	5	14.1	3.9	1.7	8.8	17.2
Profundal (Deep)	Moisture	tegual	none	YES	<0.001	Reference	5	82.6	3.6	1.6	78.3	86.6
Į ž	(%)	iequai	none	123	~ 0.001	Sheardown NW	5	68.7	2.7	1.2	64.3	70.9
Prc	Total Organic Carbon	toqual	none	YES	0.006	Reference	5	3.4	1.1	0.5	2.2	4.5
	(TOC) Content (%)	tequal	none	123	0.000	Sheardown NW	5	1.6	0.3	0.1	1.3	2.0

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table F.36: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Northwest, August 2020

Taxa	Study Area Replicate Station	DLO-1-9	NW - Littoral Sta	DLO-1-3	DLO-1-11	DLO-1-10
ROUNDWORMS						
P. Nemata		69	-	-	26	34
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta						
F. Enchytraeidae		-	-	17	-	-
F. Lumbriculidae	e					
Lumbriculus		-	34	17	-	-
<u>ARTHROPODS</u>						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
immature		-	-	-	-	-
F. Acalyptonotic	dae					
Acalyptonotus		-	17	17	86	52
F. Hygrobatidae						
Hygrobates		17	17	-	69	103
F. Lebertiidae						
Lebertia		-	-	-	26	17
F. Sperchontida	e					
Sperchon		-	-	-	-	-
HARPACTICOIDS						
O. Harpacticoida		-	17	17	-	-
SEED SHRIMPS						
Cl. Ostracoda		1,810	4,500	1,086	664	845
NSECTS						
Cl. Insecta						
CADDISFLIES						
O. Trichoptera						
F. Apataniidae						
Apatania		34	34	121	17	-
F. Limnephilidae						
Grensia praete	erita	-	-	-	-	-
TRUE FLIES						
O. Diptera						
MIDGES						
F. Chironomidae						
chironomid pu	pae	-	17	17	-	52
S.F. Chironomin	ae					
Chironomus		-	-	34	-	-
Micropsectra		224	181	448	17	17

Table F.36: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Northwest, August 2020

Taxa Study Area	Sheardown Lake	NW - Littoral St			
Replicate Station	DLO-1-9	DLO-1-4	DLO-1-3	DLO-1-11	DLO-1-10
Paratanytarsus	784	1,284	1,966	26	-
Sergentia	112	34	· -	-	-
Stictochironomus	2,586	4,655	2,422	1,060	2,138
Tanytarsus	336	181	388	-	34
S.F. Diamesinae	000	101	000		0.1
Diamesa	_	_	-	_	_
Protanypus	34	147	34	9	34
Pseudodiamesa	04	147	04	3	17
S.F. Orthocladiinae	-	-	-	-	17
	440	004	24		24
Abiskomyia	112	224	34	-	34
Heterotrissocladius	147	810	560	95	328
Hydrobaenus	-	-	-	-	-
Mesocricotopus	-	-	-	-	-
Paracladius	-	-	-	17	224
Parakiefferiella	-	-	-	9	52
Psectrocladius	-	-	-	-	-
Zalutschia	-	-	-	9	-
Orthocladiinae indeterminate	-	-	34	-	-
S.F. Tanypodinae					
Arctopelopia	112	328	560	-	-
Procladius	78	17	34	121	155
Density (No. organisms per m²)	6,457	12,500	7,810	2,250	4,138
Richness (total number of taxa) ^a	14	16	17	15	15
Simpson's Evenness (E)	0.798	0.762	0.854	0.732	0.718
Shannon-Wiener Diversity	2.481	2.273	2.764	2.260	2.283
Dominant Taxonomic Group Composition	on				
% Nemata	1.1	0.0	0.0	1.1	8.0
% Hydracarina	0.3	0.3	0.2	8.0	4.2
% Ostracods	28.0	36.0	13.9	29.5	20.4
% Chironomids	70.1	63.0	83.7	60.5	74.6
% Metal Sensitive Chironmids	21.4	14.4	36.4	2.3	2.5
Functional Feeding Group Composition	ı				
% Collector - Gatherers	75.4	83.5	54.2	83.5	90.7
% Filterers	20.8	13.2	36.0	1.9	1.3
% Shredders	0.0	0.0	0.4	0.4	0.0
Habitat Preference Group Composition					
% Clingers	11.2	3.7	12.5	9.6	5.4
% Sprawlers	47.1	57.5	55.1	41.8	40.3
% Burrowers	41.7	38.8	32.4	48.7	54.2

^a Bold entries excluded from taxa count

Table F.36: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Northwest, August 2020

Taxa F	Replicate Station	DLO-1-5	e NW - Profundal DLO-1-14	DLO-1-15	DLO-1-2	DLO-1-12
ROUNDWORMS						
P. Nemata		-	-	-	-	-
<u>ANNELIDS</u>						
P. Annelida						
WORMS						
Cl. Oligochaeta						
F. Enchytraeidae		-	-	-	-	-
F. Lumbriculidae	•					
Lumbriculus		-	-	-	-	-
<u>ARTHROPODS</u>						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
immature		-	-	-	-	-
F. Acalyptonotic	dae					
Acalyptonotus		9	17	17	9	9
F. Hygrobatidae						
Hygrobates		9	17	9	26	-
F. Lebertiidae						
Lebertia		9	-	-	9	17
F. Sperchontidae	e					
Sperchon		-	-	-	-	-
HARPACTICOIDS						
O. Harpacticoida		-	-	-	-	-
SEED SHRIMPS		00	100		70	101
Cl. Ostracoda		69	190	9	78	121
NSECTS						
Cl. Insecta						
CADDISFLIES						
O. Trichoptera						
F. Apataniidae						
Apatania		-	-	-	-	-
F. Limnephilidae						
Grensia praete	erita	-	-	-	-	-
TRUE FLIES						
O. Diptera						
MIDGES						
F. Chironomidae			_			_
chironomid pur		-	52	-	-	9
S.F. Chironomin	ae					
Chironomus		112	862	-	-	-
Micropsectra		9	-	-	-	-

Table F.36: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Northwest, August 2020

iaya · L		e NW - Profundal			T
Replicate Station	DLO-1-5	DLO-1-14	DLO-1-15	DLO-1-2	DLO-1-12
Paratanytarsus	_	17	_	_	-
Sergentia	17	-	_	-	_
Stictochironomus	259	259	-	-	_
Tanytarsus	-	155	-	-	_
S.F. Diamesinae					
Diamesa	_	_	_	-	-
Protanypus	17	_	17	34	26
Pseudodiamesa	_	_	_	-	
S.F. Orthocladiinae					
Abiskomyia	69	52	_	_	_
Heterotrissocladius	216	-	707	1,138	1,810
Hydrobaenus	210	_	101	1,100	1,010
Mesocricotopus	_	_	_	_	_
Paracladius	-	-	-	-	-
	-	-	-	-	-
Parakiefferiella	-	-	-	-	-
Psectrocladius	-	-	-	-	-
Zalutschia	-	-	-	-	-
Orthocladiinae indeterminate	-	-	-	-	-
S.F. Tanypodinae					
Arctopelopia	-	-	-	-	-
Procladius	34	-	43	52	43
Density (No. organisms per m²)	831	1,627	805	1,350	2,043
Richness (total number of taxa) ^a	12	8	6	7	6
Simpson's Evenness (E)	0.872	0.734	0.262	0.324	0.236
Shannon-Wiener Diversity	2.716	1.970	0.766	0.961	0.677
Dominant Taxonomic Group Composi					
% Nemata	0.0	0.0	0.0	0.0	0.0
% Hydracarina	3.1	2.1	3.2	3.2	1.3
% Ostracods	8.3	11.7	1.1	5.8	5.9
% Chironomids	88.5	86.2	95.7	91.0	92.8
% Metal Sensitive Chironmids	3.1	11.0	2.2	2.6	1.3
Functional Feeding Group Compositio					
% Collector - Gatherers	91.7	86.8	91.4	92.9	96.6
% Filterers	1.0	11.0	0.0	0.0	0.0
% Shredders	0.0	0.0	0.0	0.0	0.0
Habitat Preference Group Composition					
% Clingers	6.3	12.1	3.2	3.2	1.3
% Sprawlers	46.9	16.1	94.6	94.2	97.5
% Burrowers	46.9	71.8	2.2	2.6	1.3

^a Bold entries excluded from taxa count

Table F.37: Statistical Comparison of Benthic Metrics at Sheardown Lake NW Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2008, 2013) for the Mary River Project CREMP

		Overall 9-Year	Comparison		Pair-wise, post-hoc comparisons ^a										
Metric			Significant							Effect Size					
	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2008	vs. Baseline Year 2013	Pairwise Comparison			
					2007	4	5,974	3,000	-	-0.3	-1.5	а			
					2008	4	7,536	5,273	0.5	-	-0.9	а			
					2013	3	9,940	2,634	1.3	0.5	-	а			
Donaitu					2015	5	5,665	3,230	-0.1	-0.4	-1.6	а			
Density	ANOVA	log10	NO	0.835	2016	5	5,503	4,184	-0.2	-0.4	-1.7	а			
No. per m²)					2017	5	5,216	2,398	-0.3	-0.4	-1.8	а			
					2018	5	6,334	3,717	0.1	-0.2	-1.4	а			
					2019	5	6,207	2,673	0.1	-0.3	-1.4	а			
					2020	5	6,631	3,914	0.2	-0.2	-1.3	а			
					2007	4	12.3	1.5	-	-1.3	-1.7	а			
					2008	4	14.5	1.7	1.4	-	-1.0	а			
					2013	3	17.7	3.2	3.5	1.9	-	а			
					2015	5	13.8	1.9	1.0	-0.4	-1.2	а			
Richness	ANOVA	log10	NO	0.181	2016	5	14.6	2.4	1.5	0.1	-1.0	а			
No. of Taxa)					2017	5	14.0	3.2	1.1	-0.3	-1.1	а			
					2018	5	15.0	1.2	1.8	0.3	-0.8	а			
					2019	5	13.2	3.6	0.6	-0.8	-1.4	а			
					2020	5	15.4	1.1	2.0	0.5	-0.7	а			
					2007	4	0.768	0.055	-	-0.7	-2.0	ab			
					2008	4	0.840	0.098	1.3	-	-0.5	ab			
					2013	3	0.863	0.047	1.7	0.2	-	ab			
					2015	5	0.759	0.096	-0.2	-0.8	-2.2	ab			
Simpson's Evenness	ANOVA	log10	YES	0.038	2016	5	0.893	0.024	2.3	0.5	0.6	а			
•					2017	5	0.842	0.048	1.3	0.0	-0.5	ab			
					2018	5	0.769	0.163	0.0	-0.7	-2.0	ab			
					2019	5	0.686	0.114	-1.5	-1.6	-3.8	b			
					2020	5	0.773	0.055	0.1	-0.7	-1.9	а			
					2007	4	1.5	1.6	-	0.4	1.1	а			
					2008	4	1.1	1.0	-0.3	-	0.6	а			
					2013	3	0.6	0.8	-0.6	-0.5	-	а			
					2015	5	0.9	1.1	-0.4	-0.2	0.3	а			
Nemata	ANOVA	log10(x+1)	NO	0.592	2016	5	1.1	0.7	-0.2	0.1	0.6	a			
% of community)					2017	5	1.3	1.5	-0.2	0.2	0.8	а			
					2018	5	1.3	1.0	-0.1	0.3	0.9	а			
					2019	5	0.2	0.2	-0.9	-0.9	-0.5	а			
					2020	5	0.6	0.6	-0.6	-0.5	0.0	а			
					2007	4	11.9	12.8	-	0.1	-1.4	ab			
					2008	4	10.8	8.7	-0.1	-	-1.5	ab			
					2013	3	23.4	8.1	0.9	1.4	-	ab			
					2015	5	7.8	3.7	-0.3	-0.3	-1.9	b			
Ostracoda	ANOVA	none	YES	0.018	2016	5	9.2	6.1	-0.2	-0.2	-1.7	b			
% of community)					2017	5	19.5	11.1	0.6	1.0	-0.5	ab			
					2018	5	13.0	4.1	0.1	0.2	-1.3	ab			
					2019	5	16.0	5.7	0.3	0.6	-0.9	ab			
	I				2020	5	25.6	8.6	1.1	1.7	0.3				

Table F.37: Statistical Comparison of Benthic Metrics at Sheardown Lake NW Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2008, 2013) for the Mary River Project CREMP

		Overall 9-Year	Comparison		Pair-wise, post-hoc comparisons ^a										
Metric			Significant							Effect Size					
	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2008	vs. Baseline Year 2013	Pairwise Comparison			
					2007	4	83.0	8.3	-	0.3	1.3	abc			
					2008	4	81.2	6.7	-0.2	-	1.1	abc			
					2013	3	70.5	9.6	-1.5	-1.6	-	bc			
Older a conductor					2015	5	89.8	3.2	0.8	1.3	2.0	а			
Chironomidae (% of community)	ANOVA	log10	YES	0.003	2016	5	85.0	6.6	0.2	0.6	1.5	ab			
					2017	5	73.5	11.2	-1.1	-1.2	0.3	bc			
					2018	5	83.7	2.9	0.1	0.4	1.4	abc			
					2019	5	82.1	5.9	-0.1	0.1	1.2	abc			
					2020	5	70.4	9.3	-1.5	-1.6	0.0	С			
					2007	4	16.9	16.8	-	-0.2	-0.9	а			
					2008	4	20.7	17.2	0.2	-	-0.1	а			
				0.804	2013	3	21.0	4.6	0.2	0.0	-	а			
					2015	5	19.1	7.2	0.1	-0.1	-0.4	а			
Metal Sensitive Taxa % of community)	ANOVA	log10	NO		2016	5	24.6	15.2	0.5	0.2	0.8	а			
					2017	5	16.6	7.9	0.0	-0.2	-0.9	а			
					2018	5	18.3	15.0	0.1	-0.1	-0.6	а			
					2019	5	10.7	6.0	-0.4	-0.6	-2.2	а			
					2020	5	15.4	14.3	-0.1	-0.3	-1.2	а			
					2007	4	71.6	13.5	-	0.7	0.7	ab			
					2008	4	61.1	15.0	-0.8	-	-0.5	ab			
					2013	3	65.3	9.0	-0.5	0.3	-	ab			
					2015	5	68.9	8.0	-0.2	0.5	0.4	ab			
Collector-Gatherer FFG	ANOVA	none	YES	0.034	2016	5	56.8	7.7	-1.1	-0.3	-1.0	а			
(% of community)					2017	5	69.4	9.2	-0.2	0.6	0.5	ab			
					2018	5	76.2	13.1	0.3	1.0	1.2	ab			
					2019	5	81.7	8.4	0.8	1.4	1.8	b			
					2020	5	77.5	14.1	0.4	1.1	1.4	ab			
					2007	4	16.7	17.1	-	-0.2	-0.9	а			
					2008	4	19.9	17.1	0.2	-	-0.2	а			
					2013	3	21.0	4.7	0.3	0.1	-	а			
					2015	5	18.6	6.8	0.1	-0.1	-0.5	а			
Filterer FFG	ANOVA	none	NO	0.908	2016	5	23.0	17.3	0.4	0.2	0.4	а			
(% of community)					2017	5	16.5	8.0	0.0	-0.2	-1.0	а			
					2018	5	17.5	15.7	0.0	-0.1	-0.7	а			
					2019	5	10.0	5.8	-0.4	-0.6	-2.4	а			
					2020	5	14.6	14.5	-0.1	-0.3	-1.4	а			

Indicates a significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.38: Statistical Comparison of Benthic Metrics at Sheardown Lake NW Profundal (Deep) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2013) for the Mary River Project CREMP

		Overall 0-100	r Comparison					1 411-11150,	oost-hoc comparis	1	
Metric	Statistical Test ^a	Data Transform- ation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	t Size vs. Baseline Year 2013	Pairwise Comparison
					2007	4	1,461	308	-	-4.3	a
					2013	5	2,744	302	4.2	-	b
					2015	5	1,425	210	-0.1	-4.4	a
ensity	ANOVA	log10	YES	0.001	2017	5	861	391	-1.9	-6.2	С
lo. per m²)					2018	5	1,154	240	-1.0	-5.3	a,c
					2019	5	1,670	302	0.7	-3.6	a,b
					2020	5	1,326	527	-0.4	-4.7	a,c
					2007	4	7.5	0.4	-	-0.9	а
					2013	5	9.8	2.5	5.4	-	а
i a la una a a					2015	5	8.4	3.0	2.1	-0.6	а
ichness No. of Taxa)	ANOVA	none	NO	0.898	2017	5	9.2	3.5	4.0	-0.3	а
					2018	5	9.4	3.5	4.4	-0.2	а
					2019	5	9.2	3.5	4.0	-0.3	а
					2020	5	7.8	2.5	0.7	-0.8	а
					2007	4	0.426	0.165	-	-0.6	а
					2013	5	0.521	0.167	0.6	-	а
impson's					2015	5	0.355	0.212	-0.4	-1.0	a
venness	ANOVA	none	NO	0.228	2017	5	0.717	0.113	1.8	1.2	а
					2018	5	0.491	0.133	0.4	-0.2	a
					2019	5	0.444	0.210	0.1	-0.5	a
					2020	5	0.486	0.295	0.4	-0.2	a
					2007	4	0.6	0.5	-	-1.2	a,b
					2013	5	3.6	2.6	5.8	-	a
lemata	K-W	rank	YES	0.058	2015	5 5	0.5	0.3	-0.2 1.4	-1.2 -0.9	b
% of community)	K-VV	Talik	TES	0.056	2017	5	0.6	3.0 1.0	-0.1	-0.9 -1.2	b,c b,c
					2018	5	0.0	0.4	-0.1	-1.2	b,c b,c
					2020	5	0.0	0.0	-1.2	-1.4	С
					2007	4	0.3	0.4	-1.2	-0.7	a
		log10(x+1)			2013	5	6.2	8.7	16.4	-	a
					2015	5	2.8	3.7	7.0	-0.4	a
Stracoda	ANOVA		NO	0.137	2017	5	6.8	4.6	18.2	0.1	a
% of community)			NO	0.137	2018	5	2.9	2.4	7.1	-0.4	а
					2019	5	2.5	1.6	6.3	-0.4	а
					2020	5	6.6	3.9	17.5	0.0	а
					2007	4	94.6	1.9	-	1.1	а
					2013	5	84.9	8.8	-5.0	-	а
					2015	5	93.2	6.0	-0.7	0.9	а
Chironomidae % of community)	ANOVA	log10	NO	0.124	2017	5	85.1	8.5	-4.9	0.0	а
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,					2018	5	90.4	3.8	-2.2	0.6	а
					2019	5	93.0	5.7	-0.8	0.9	а
					2020	5	90.8	3.7	-2.0	0.7	а
					2007	4	0.5	0.6	-	-0.5	а
					2013	5	1.4	1.7	1.4	-	a,b
letal Sensitive					2015	5	2.8	2.8	3.7	0.9	a,b
axa % of community)	K-W	rank	YES	0.041	2017	5	6.3	4.4	9.2	2.9	С
o. community)					2018	5	3.3	2.0	4.4	1.1	b,c
					2019	5	2.2	2.1	2.7	0.5	a,b
					2020	5	4.0	4.0	5.6	1.6	b,c
					2007	4	83.6	8.4	- 0.2	-0.6	a,b
					2013	5	86.4	4.8	0.3	-	a,b
ollector-Gatherer FG	ANOVA	nono	YES	0.011	2015	5	90.5	5.3	0.8	0.9	a
FG % of community)	ANOVA	none	169	0.011	2017	5	75.5	7.3	-1.0	-2.3	b
•					2018	5 5	85.2 88.6	7.7 6.5	0.2	-0.3 0.5	a,b a
					2019	5	91.9	3.5	1.0	1.2	a a
					2020	4	0.1	0.1	-	-0.8	<u>а</u> а
					2007	5	1.3	1.6	11.6	-0.8	a a
					2015	5	1.9	2.6	16.7	0.3	a a
ilterer FFG	K-W	rank	NO	0.575	2013	5	2.9	2.5	26.2	1.0	a a
% of community)	,	. 501113		0.010	2017	5	1.0	1.4	8.5	-0.2	a a
					2019	5	1.3	2.6	11.1	0.0	a a
	Ī				2010	5	2.4	4.9	21.8	0.7	ч

 $Indicates \ magnitude \ of \ difference \ outside \ of \ a \pm 2 \ SD \ effect \ size \ of \ respective \ baseline \ year \ mean \ indicating \ an \ ecologically \ meaningful \ difference \ between \ study \ years.$

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.39: Statistical Comparison of Sediment Physical Properties Between Sheardown Lake SE (DL0-2) and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Test	Results				Sum	mary Statistic	cs		
Lake Zone	Sediment Variable	Statistical Test ^a	Data Transformation	Significant Difference between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
S	Sand-Sized Material	tequal	none	YES	0.003	Reference	5	29.6	7.5	3.4	23.4	40.4
<u>o</u>	(%)	tequal	none	TES	0.003	Sheardown SE	5	11.1	6.7	3.0	5.2	21.6
Littoral (Shallow) Stations	Silt-Sized Material	tegual	none	YES	0.009	Reference	5	62.2	6.3	2.8	53.4	68.4
8	(%)	tequal	none	TLO	0.009	Sheardown SE	5	75.0	5.5	2.5	68.9	81.5
<u>8</u>	Clay-Sized Material	tegual	none	YES	0.029	Reference	5	8.2	3.0	1.3	6.2	13.4
hal	(%)	tequal	none	TLO	0.029	Sheardown SE	5	13.9	3.7	1.7	9.4	17.5
S)	Moisture	tequal	none	YES	0.000	Reference	5	87.9	4.6	2.1	80.2	92.3
ora	(%)	tequal	Hone	TLO	0.000	Sheardown SE	5	60.9	7.3	3.3	48.9	68.6
I≝	Total Organic Carbon	tegual	none	YES	0.008	Reference	5	4.8	2.0	0.9	2.3	7.0
	(TOC) Content (%)	tequal	none	TLO	0.000	Sheardown SE	5	1.4	0.8	0.4	0.4	2.3
	Station Depth	tegual	log10	YES	0.001	Reference	5	20.6	2.2	1.0	18.5	24.2
	(m)	tequal	10910	TLO	0.001	Sheardown SE	5	12.4	1.2	0.5	10.5	13.5
suc	Sand-Sized Material	tequal	none	NO	0.146	Reference	5	31.6	22.3	10.0	13.9	56.6
atic	(%)	toquai	none	110	0.140	Sheardown SE	5	15.1	5.3	2.4	8.3	20.7
Profundal (Deep) Stations	Silt-Sized Material	tegual	none	NO	0.112	Reference	5	57.4	18.1	8.1	36.9	71.9
dee	(%)	tequal	Hone	110	0.112	Sheardown SE	5	72.2	4.0	1.8	67.5	76.6
<u> </u>	Clay-Sized Material	tequal	none	NO	0.477	Reference	5	11.0	4.3	1.9	6.3	15.1
da	(%)	tequal	Hone	140	0.477	Sheardown SE	5	12.7	2.8	1.2	9.5	15.6
Į į	Moisture	tequal	none	YES	0.001	Reference	5	82.6	3.6	1.6	78.3	86.6
Pr	(%)	toquai	HOHE	ILU	0.001	Sheardown SE	5	55.8	11.8	5.3	41.9	70.7
	Total Organic Carbon	tequal	none	YES	0.002	Reference	5	3.4	1.1	0.5	2.2	4.5
	(TOC) Content (%)	iequai	HOHE	TES	0.002	Sheardown SE	5	1.1	0.6	0.2	0.2	1.6

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table F.40: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Southeast, August 2020

Taxa			SE - Littoral Stat				
Tuxu	Replicate Station	DLO-2-11	DLO-2-10	DLO-2-4	DLO-2-9	DLO-2-1	
ROUNDWORMS							
P. Nemata		-	-	103	9	-	
ANNELIDS							
P. Annelida							
WORMS							
Cl. Oligochaeta							
F. Enchytraeida		-	-	-	-	-	
F. Lumbriculida	е						
Lumbriculus		-	-	-	-	-	
<u>ARTHROPODS</u>							
P. Arthropoda							
MITES							
Cl. Arachnida							
O. Acarina							
immature		-	-	-	-	-	
F. Acalyptonoti							
Acalyptonotus		34	34	34	43	17	
F. Hygrobatidae	•	- 1				400	
Hygrobates		34	17	259	69	129	
F. Lebertiidae			47	20	0.4	40	
Lebertia		-	17	69	34	43	
F. Sperchontida	16						
Sperchon HARPACTICOIDS		-	-	-	-	-	
	•						
O. Harpacticoida SEED SHRIMPS		-	-	-	-	-	
Cl. Ostracoda		121	638	638	448	129	
Ci. Ostracoda		121	030	030	440	129	
INSECTS							
Cl. Insecta							
CADDISFLIES							
O. Trichoptera							
F. Apataniidae			20	47			
Apatania 		-	69	17	-	-	
F. Limnephilida							
Grensia praet	erita	-	-	-	-	-	
TRUE FLIES							
O. Diptera							
MIDGES F. Chironomida	•						
					17	112	
chironomid pu S.F. Chironomir		-	-	-	17	112	
Chironomus	ıa c					543	
Micropsectra		- 293	- 86	- 86	- 310	543	

Table F.40: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Southeast, August 2020

Taxa Study Area	Sheardown Lake	e SE - Littoral Sta			
Replicate Station	DLO-2-11	DLO-2-10	DLO-2-4	DLO-2-9	DLO-2-1
Paratanytarsus	-	17	-	-	60
Sergentia	-	_	-	17	-
Stictochironomus	1,603	3,655	2,293	905	543
Tanytarsus	724	103	448	517	405
S.F. Diamesinae					
Diamesa	-	_	_	_	_
Protanypus	_	_	_	_	_
Pseudodiamesa	_	_	_	_	_
S.F. Orthocladiinae					
Abiskomyia	121	534	655	664	276
Heterotrissocladius	293	362	181	172	78
Hydrobaenus	293	302	101	172	70
•	-	-	-	-	-
Mesocricotopus	-	-	-	-	-
Paracladius	-	-	-	-	-
Parakiefferiella	-	-	-	-	-
Psectrocladius	-	17	-	-	-
Zalutschia	-	-	-	-	-
Orthocladiinae indeterminate	-	-	-	-	-
S.F. Tanypodinae					
Arctopelopia	17	121	60	9	-
Procladius	1,966	1,241	1,345	2,293	879
Density (No. organisms per m²)	3,216	5,207	6,914	6,190	5,509
Richness (total number of taxa) ^a	11	10	14	13	13
Simpson's Evenness (E)	0.911	0.818	0.722	0.851	0.827
Shannon-Wiener Diversity	2.834	2.292	2.219	2.692	2.565
Dominant Taxonomic Group Composition	on				
% Nemata	0.0	0.0	0.0	1.7	0.2
% Hydracarina	5.9	1.3	1.0	5.8	2.7
% Ostracods	4.0	2.3	9.2	10.3	8.1
% Chironomids	90.1	96.4	88.8	81.9	89.0
% Metal Sensitive Chironmids	15.1	19.5	3.0	8.6	15.1
Functional Feeding Group Composition					
% Collector - Gatherers	50.6	41.1	75.3	62.5	40.3
% Filterers	15.1	19.5	3.0	8.6	15.1
% Shredders	0.0	0.0	0.0	0.0	0.0
Habit Preference Group Composition					
% Clingers	19.0	20.9	4.7	14.8	18.1
% Sprawlers	45.9	48.3	42.4	46.5	65.3
% Burrowers	35.1	30.8	52.9	38.7	16.6

^a Bold entries excluded from taxa count

Table F.40: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Southeast, August 2020

ROUNDWORMS P. Nemata ANNELIDS P. Annelida	Replicate Station	DLO-2-12	DLO-2-8	DLO-2-13	DLO-2-2	DLO-2-3
P. Nemata ANNELIDS		-				
<u>ANNELIDS</u>		-				
			-	-	-	-
P. Annelida						
WORMS						
Cl. Oligochaeta						
F. Enchytraeidae	•	-	-	-	-	-
F. Lumbriculidae)					
Lumbriculus		-	-	-	-	-
<u>ARTHROPODS</u>						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
immature		-	-	-	-	-
F. Acalyptonotic	dae					
Acalyptonotus		9	17	17	9	9
F. Hygrobatidae						
Hygrobates		9	17	9	26	-
F. Lebertiidae						
Lebertia		9	-	-	9	17
F. Sperchontida	9					
Sperchon		-	-	-	-	-
HARPACTICOIDS						
O. Harpacticoida		-	-	-	-	-
SEED SHRIMPS			400	_		404
Cl. Ostracoda		69	190	9	78	121
<u>INSECTS</u>						
Cl. Insecta						
CADDISFLIES						
O. Trichoptera						
F. Apataniidae						
Apatania		-	-	-	-	-
F. Limnephilidae						
Grensia praete	erita	-	-	-	-	-
TRUE FLIES						
O. Diptera						
MIDGES						
F. Chironomidae			F0			•
chironomid pu		-	52	-	-	9
S.F. Chironomin	ae	440	000			
Chironomus Micropsectra		112 9	862 -	-	-	-

Table F.40: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Sheardown Lake Southeast, August 2020

Taxa Study Area	Sheardown Lake	SE - Profundal	Stations		
Replicate Station	DLO-2-12	DLO-2-8	DLO-2-13	DLO-2-2	DLO-2-3
Paratanytarsus	-	17	-	-	-
Sergentia	17	_	_	_	_
Stictochironomus	259	259	_	_	_
Tanytarsus	-	155	_	_	_
S.F. Diamesinae		100			
Diamesa	_	_	_	_	_
Protanypus	17	_	17	34	26
Pseudodiamesa	.,	_	17	04	20
S.F. Orthocladiinae	-	-	-	-	-
	60	F0			
Abiskomyia	69	52	-	-	-
Heterotrissocladius	216	-	707	1,138	1,810
Hydrobaenus	-	-	-	-	-
Mesocricotopus	-	-	-	-	-
Paracladius	-	-	-	-	-
Parakiefferiella	-	-	-	-	-
Psectrocladius	-	-	-	-	-
Zalutschia	-	-	-	-	-
Orthocladiinae indeterminate	-	-	-	-	-
S.F. Tanypodinae					
Arctopelopia	-	-	-	-	-
Procladius	34	-	43	52	43
Density (No. organisms per m²)	3,350	3,038	6,189	3,177	3,670
Richness (total number of taxa) ^a	13	15	12	6	11
Simpson's Evenness (E)	0.835	0.806	0.869	0.732	0.619
Shannon-Wiener Diversity	2.566	2.596	2.670	1.665	1.736
Dominant Taxonomic Group Composi					
% Nemata	0.3	0.0	0.4	0.0	0.2
% Hydracarina	3.1	2.8	2.5	0.3	0.9
% Ostracods	6.5	5.7	13.0	8.0	0.5
% Chironomids	90.2	91.2	84.1	98.9	98.3
% Metal Sensitive Chironmids	24.0	21.6	19.9	22.0	11.8
Functional Feeding Group Compositic					
% Collector - Gatherers	33.6	52.1	44.3	61.8	70.6
% Filterers	23.8	21.6	19.2	22.0	11.8
% Shredders	0.3	0.6	0.0	0.0	0.0
Habit Preference Group Composition					
% Clingers	26.9	19.6	21.7	22.3	12.3
% Sprawlers	53.7	37.4	55.1	16.8	21.3
% Burrowers	19.4	43.0	23.2	61.0	66.4

^a Bold entries excluded from taxa count

Table F.41: Statistical Comparison of Benthic Invertebrate Community Metrics at Sheardown Lake SE Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2013) for the Mary River Project CREMP

		Overall 7-Year	Comparison		Pair-wise, post-hoc comparisons ^a						
B.B. a Austra			Significant						Effect Size		
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2013	Pairwise Comparison	
					2013	4	10,649	4,062	1	а	
					2015	5	4,829	1,898	-1.4	b	
					2016	5	3,700	1,485	-1.7	b	
Density (No. per m ²)	ANOVA	none	YES	<0.001	2017	5	4,417	1,317	-1.5	b	
(100 poi)					2018	5	4,240	1,520	-1.6	b	
					2019	5	5,080	1,329	-1.4	b	
					2020	5	5,407	1,391	-1.3	b	
					2013	4	14.2	4.0	-	а	
					2015	5	10.6	2.5	-0.9	a,b	
					2016	5	11.4	2.3	-0.7	a,b	
Richness (No. of Taxa)	ANOVA	log10	YES	0.052	2017	5	9.0	0.7	-1.3	b	
(No. or Taxa)					2018	5	10.2	2.6	-1.0	a,b	
					2019	5	11.6	0.9	-0.7	a,b	
					2020	5	12.2	1.6	-0.5	a,b	
					2013	4	0.785	0.096	-	а	
					2015	5	0.759	0.123	-0.3	а	
					2016	5	0.772	0.089	-0.1	а	
Simpson's	ANOVA	log10	NO	0.219	2017	5	0.712	0.055	-0.8	а	
Evenness		_		0.219	2018	5	0.704	0.131	-0.8	а	
					2019	5	0.826	0.058	0.4	a	
					2020	5	0.826	0.068	0.4	a	
					2013	4	0.2	0.2	-	a	
					2015	5	1.5	2.9	7.0	a	
Nemata			NO	0.905	2016	5	1.1	1.3	4.4	a	
	K-W	rank			2017	5	0.5	0.6	1.4	a	
(% of community)	14-44	Tank			2017	5	0.6	0.5	1.8		
					2019	5	1.1	1.3	4.5	а	
					2019	5	0.4	0.7	0.8	а	
					2013	4	5.9	8.8	-	а	
										a	
					2015	5	5.5 1.7	10.0	-0.5	a	
Ostracoda	IZ \\\\	ronk	NO	0.274	2016			2.5		a	
(% of community)	K-W	rank	NO	0.274	2017	5	0.8	0.8	-0.6	a	
					2018	5	6.1	9.9	0.0	a	
					2019	5	5.4	7.7	-0.1	а	
					2020	5	6.8	3.5	0.1	а	
					2013	4	89.9	7.5	-	a	
					2015	5	88.9	9.4	-0.1	a	
Chironomidae				0.400	2016	5	95.4	3.9	0.7	а	
(% of community)	K-W	rank	NO	0.132	2017	5	95.6	1.8	0.8	а	
					2018	5	92.4	10.0	0.3	а	
					2019	5	90.3	9.2	0.0	а	
					2020	5	89.2	5.1	-0.1	а	
					2013	4	15.1	9.8	-	а	
					2015	5	12.7	10.4	-0.2	а	
Metal Sensitive					2016	5	6.8	4.2	-0.8	а	
Taxa (% of community)	ANOVA	none	NO	0.615	2017	5	12.1	4.2	-0.3	а	
,					2018	5	12.1	8.9	-0.3	а	
					2019	5	16.3	7.8	0.1	а	
					2020	5	12.3	6.5	-0.3	а	

Table F.41: Statistical Comparison of Benthic Invertebrate Community Metrics at Sheardown Lake SE Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2013) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	e, post-hoc co	mparisons ^a	
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2013	Pairwise Comparison
					2013	4	44.6	8.2	-	а
		IOVA log10			2015	5	59.1	10.6	1.8	а
Collector-Gatherer				0.605	2016	5	56.5	12.8	1.5	а
FFG	ANOVA		NO		2017	5	48.4	18.8	0.5	а
(% of community)					2018	5	52.5	11.1	1.0	а
					2019	5	51.9	14.6	0.9	а
					2020	5	54.0	14.9	1.1	а
					2013	4	15.1	9.8	-	а
					2015	5	12.5	10.4	-0.3	а
Filterer FFG (% of community)				2016	5	6.7	4.4	-0.9	а	
	ANOVA	none	NO	0.598	2017	5	12.1	4.2	-0.3	а
					2018	5	12.1	8.9	-0.3	а
				-	2019	5	16.3	7.8	0.1	а
					2020	5	12.3	6.5	-0.3	а

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.42: Statistical Comparison of Benthic Metrics at Sheardown Lake SE Profundal (Deep) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2013) for the Mary River Project CREMP

		Overall 8-Year	Comparison					Pair-wise, po	st-hoc compariso	ns	T
Metric	Statistical	D. C.	Significant			0		01	Effec	t Size	5
	Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2013	Pairwise Comparisor
					2007	3	4,998	348		-1.8	a,b
					2013	4	6,602	874	4.6	-	а
					2015	5	3,185	281	-5.2	-3.9	С
ensity No. per m²)	K-W	rank	YES	0.020	2017	5	3,234	880	-5.1	-3.9	b,c,d
to. per in ,					2018	5	3,209	2,747	-5.1	-3.9	c,d
					2019	5	4,284	851	-2.1	-2.7	a,b,d
					2020	5	3,869	1,304	-3.2	-3.1	b,c,d
					2007	3	9.0	2.8	-	-0.7	а
					2013	4	10.5	2.1	0.5	-	а
Richness					2015	5	8.8	1.8	-0.1	-0.8	а
No. of Taxa)	ANOVA	none	NO	0.395	2017	5	8.8	1.6	-0.1	-0.8	а
•					2018	5	8.4	2.2	-0.2	-1.0	а
					2019	5	10.2	2.3	0.4	-0.1	а
					2020	5	11.4	3.4	0.9	0.4	а
					2007	3	0.607	0.093	-	-2.4	a,b
					2013	4	0.703	0.039	1.0	-	a,c
impson's					2015	5	0.588	0.130	-0.2	-2.9	a,b
venness	K-W	rank	YES	0.045	2017	5	0.651	0.086	0.5	-1.3	a,b
					2018	5	0.568	0.050	-0.4	-3.4	b
					2019	5	0.706	0.149	1.1	0.1	a,c
					2020	5	0.772	0.099	1.8	1.8	С
					2007	3	0.0	0.1	-	-0.9	а
					2013	4	0.1	0.1	1.6	-	а
lemata					2015	5	0.6	1.1	11.4	5.4	а
% of community)	K-W	rank	NO	0.509	2017	5	0.0	0.0	-0.6	-1.2	а
					2018	5	0.9	1.7	16.4	8.2	а
					2019	5	0.3	0.3	4.8	1.8	а
					2020	5	0.2	0.2	2.9	0.7	а
				0.033	2007	3	1.1	1.5	- 0.7	5.1	a,b
9stracoda			YES		2013	5	0.2	0.2	-0.7	-	b
	K-W	W rank			2015	5	1.0	0.4 1.4	-0.4 -0.1	1.8 4.5	b
% of community)	N-VV				2017	5	0.8	1.4	-0.1	3.3	b b
					2019	5	2.2	1.7	0.7	10.4	а
					2019	5	5.3	5.1	2.8	26.7	a
					2020	3	97.0	2.9	-	-5.6	a
					2013	4	98.6	0.3	0.6	-5.0	a
					2015	5	97.0	2.9	0.0	-5.5	a
Chironomidae	K-W	rank	NO	0.364	2017	5	97.1	1.6	0.0	-5.3	a
% of community)				0.00	2018	5	97.6	2.1	0.2	-3.7	a
					2019	5	95.3	4.2	-0.6	-11.5	a
					2020	5	92.5	6.2	-1.6	-21.1	a
					2007	3	13.5	11.4	-	-1.2	a,b
					2013	4	16.8	2.8	0.3	-	a,b
Metal Sensitive					2015	5	8.0	4.7	-0.5	-3.2	a,b
letal Sensitive axa	ANOVA	none	YES	0.065	2017	5	12.3	9.5	-0.1	-1.6	a,b
% of community)					2018	5	5.9	3.5	-0.7	-3.9	b
					2019	5	16.9	10.9	0.3	0.0	a,b
					2020	5	19.9	4.7	0.6	1.1	а
					2007	3	74.1	15.7	-	1.2	а
					2013	4	64.9	7.5	-0.6	-	а
Collector-Gatherer					2015	5	60.2	23.0	-0.9	-0.6	а
FG	ANOVA	none	NO	0.459	2017	5	45.1	17.4	-1.8	-2.6	а
% of community)					2018	5	63.8	22.4	-0.7	-0.1	а
					2019	5	52.7	26.8	-1.4	-1.6	а
					2020	5	52.5	14.5	-1.4	-1.7	а
					2007	3	13.4	11.5	-	-1.2	a,b
					2013	4	16.8	2.8	0.3	-	a,b
Tilda and TES					2015	5	7.8	4.7	-0.5	-3.2	a,b
ilterer FFG % of community)	ANOVA	log10	YES	0.042	2017	5	12.2	9.6	-0.1	-1.6	a,b
					2018	5	5.9	3.5	-0.7	-3.9	b
					2019	5	16.8	10.9	0.3	0.0	a,b
	Ī				2020	5	19.7	4.7	0.5	1.0	а

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.43: Replicate Grab Data for Benthic Invertebrate Community Samples Collected at the Mary River, Mary River Project CREMP, August 2020

		W	ater Depth (c	m)	Wa	ter Velocity (r	m/s)	E	Embeddednes	ss	In-S	Stream Vegeta	ation		Algae Presenc	:e
Study Area	Station	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3	Replicate Grab 1	Replicate Grab 2	Replicate Grab 3
Mary River	GO-09 B1	8	11	16	0.31	0.32	0.47	50%	50%	50%	none	none	none	common	common	common
Upstream	GO-09 B2	11	15	6	0.33	0.45	0.31	50%	50%	25%	none	none	none	sparse	common	common
Reference	GO-09 B3	17	9	7	0.32	0.34	0.31	50%	50%	50%	common	sparse	none	common	common	common
(GO-09)	GO-09 B4	11	10	6	0.31	0.32	0.35	25%	50%	50%	common	common	common	common	common	common
(Reference)	GO-09 B5	15	16	8	0.31	0.36	0.45	25%	25%	25%	common	common	common	common	common	common
	GO-03 B1	12	6	8	0.31	0.38	0.30	25%	75%	50%	none	none	none	common	common	common
Mary River	GO-03 B2	8	6	7	0.33	0.45	0.37	50%	50%	50%	sparse	sparse	none	common	common	common
Upstream	GO-03 B3	12	8	6	0.46	0.32	0.32	50%	50%	50%	none	none	none	sparse	sparse	sparse
(GO-03)	GO-03 B4	8	10	12	0.39	0.55	0.32	50%	50%	50%	none	sparse	none	common	common	common
	GO-03 B5	12	16	15	0.45	0.31	0.52	25%	25%	25%	none	none	none	sparse	sparse	sparse
	EO-01 B1	12	8	8	0.47	0.40	0.32	25%	25%	25%	none	none	none	sparse	common	sparse
Mary River	EO-01 B2	12	11	6	0.36	0.46	0.36	25%	25%	25%	sparse	sparse	none	sparse	sparse	sparse
Upper Mine-	EO-01 B3	10	12	20	0.53	0.33	0.42	0%	25%	0%	none	none	none	sparse	sparse	common
Exposed (EO-01)	EO-01 B4	17	18	6	0.32	0.32	0.30	50%	50%	25%	none	none	none	sparse	common	sparse
(== 0.1)	EO-01 B5	20	10	10	0.51	0.32	0.32	75%	50%	50%	none	none	none	sparse	sparse	sparse
	EO-20 B1	12	14	8	0.32	0.34	0.36	25%	25%	25%	none	none	none	sparse	common	common
Mary River	EO-20 B2	16	10	18	0.30	0.51	0.31	25%	25%	25%	none	none	none	common	sparse	common
Middle Mine-	EO-20 B3	14	20	16	0.39	0.42	0.37	50%	50%	50%	none	none	none	sparse	common	common
Exposed (EO-20)	EO-20 B4	8	11	16	0.42	0.31	0.48	25%	25%	50%	sparse	sparse	none	sparse	sparse	sparse
(====)	EO-20 B5	12	12	6	0.30	0.42	0.42	25%	25%	50%	sparse	none	none	sparse	sparse	sparse
	CO-05 B1	6	10	8	0.30	0.37	0.47	50%	50%	50%	sparse	none	sparse	sparse	sparse	sparse
Mary River	CO-05 B2	9	12	16	0.31	0.47	0.51	25%	25%	50%	sparse	none	none	sparse	sparse	sparse
Lower Mine-	CO-05 B3	6	6	7	0.31	0.30	0.34	0%	25%	50%	sparse	none	common	sparse	sparse	sparse
Exposed (CO-05)	CO-05 B4	8	15	8	0.32	0.31	0.31	25%	25%	50%	sparse	sparse	sparse	sparse	sparse	sparse
(000)	CO-05 B5	6	7	11	0.34	0.31	0.42	0%	25%	25%	sparse	none	sparse	sparse	sparse	sparse

Table F.44: Replicate Station Habitat Feature Summary Statistics for Mary River Benthic Stations, Mary River Project CREMP, August 2020

Metric	Study Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
	GO-09 Reference Area	11	1.5	0.7	9.0	11	13
	GO-03 Upstream Area	9.7	2.8	1.2	7.0	8.7	14
Water Depth (cm)	EO-01 Upper Mine-Exposed Area	12	2.3	1.0	9.3	13	14
, ,	EO-20 Middle Mine-Exposed Area	13	2.7	1.2	10	12	17
	CO-05 Lower Mine-Exposed Area	9.0	2.3	1.0	6.3	8.0	12
	GO-09 Reference Area	0.35	0.024	0.011	0.32	0.36	0.37
	GO-03 Upstream Area	0.39	0.040	0.018	0.33	0.38	0.43
Water Velocity (m/s)	EO-01 Upper Mine-Exposed Area	0.38	0.042	0.019	0.31	0.39	0.43
	EO-20 Middle Mine-Exposed Area	0.38	0.024	0.011	0.34	0.38	0.40
	CO-05 Lower Mine-Exposed Area	0.36	0.048	0.022	0.31	0.36	0.43
	GO-09 Reference Area	0.42	0.10	0.046	0.25	0.42	0.50
Substrate	GO-03 Upstream Area	0.45	0.11	0.050	0.25	0.50	0.50
Embeddedness	EO-01 Upper Mine-Exposed Area	0.32	0.19	0.085	0.08	0.25	0.58
(%)	EO-20 Middle Mine-Exposed Area	0.33	0.10	0.046	0.25	0.33	0.50
	CO-05 Lower Mine-Exposed Area	0.32	0.12	0.055	0.17	0.33	0.50

Note: Five stations were sampled at each study area.

Table F.45: Benthic Station Habitat Feature Statistical Comparisons Among Mary River Reference and Mine-Exposed Study Areas, Mary River Project CREMP, August 2020

		Overall 5-Area	Comparison		Pa	ir-wise, post	hoc comparis	ons
Metric	Statistical Test ^a	Transformation	Significant Difference between Areas?	p-value	Study Area	Mean	Standard Deviation	Pairwise Comparison
					G0-09	11.1	1.46	a,b
					G0-03	9.73	2.78	a,b
Water Depth (cm)	ANOVA	log10	YES	0.079	E0-01	12.0	2.30	a,b
(0111)					E0-20	12.9	2.72	а
					C0-05	9.00	2.35	b
					G0-09	0.351	0.0237	а
			NO	0.505	G0-03	0.385	0.0398	а
Water Velocity (m/s)	ANOVA	none			E0-01	0.383	0.0420	а
()					E0-20	0.378	0.0242	а
					C0-05	0.359	0.0484	а
					G0-09	41.7	10.2	а
Substrate					G0-03	45.0	11.2	а
mbeddedness	ANOVA	none	NO	0.363	E0-01	31.7	19.0	а
(%)				_	E0-20	33.3	10.2	а
					C0-05	31.7	12.4	а

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis Htest (K-W) followed by Mann-Whitney U-test (M-W).

Table F.46: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Upstream Reference (GO-09) Study Area, August 2020

Гаха	Study Area		am Reference)			_
	Replicate Station	B1	B2	B3	B4	B5
ROUNDWORMS						
P. Nemata		-	4	-	14	7
ANNELIDS						
P. Annelida WORMS						
Cl. Oligochaeta						
F. Enchytraeidae		-	14	-	-	-
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
D. Acarina						
F. Sperchonidae						
Sperchon		11	_	_	11	32
SEED SHRIMPS						
Cl. Ostracoda		-	-	-	-	-
SPRINGTAILS						
Cl. Entognatha						
O. Collembola		-	-	-	-	-
NSECTS						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus		25	7	11	7	29
STONEFLIES					•	
O. Plecoptera						
F. Capniidae						
immature		-	-	-	-	-
RUE FLIES						
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae						
indeterminate		-	-	-	-	-
MIDGES						
F. Chironomidae						
chironomid pupae		11	14	14	14	18
S.F. Chironominae						
Micropsectra		-	-	-	-	-
Stictochironomus		-	-	-	-	-
S.F. Diamesinae						
Diamesa		36	25	4	18	14
Pseudokiefferiella		43	25	29	484	1,487
S.F. Orthocladiinae			5 7			
Charledius		-	57	-	-	-
Chaetocladius		-	-	-	39	-
Cricotopus		- 11	- 7	- 5.1	- 165	- 68
Cricotopus	diuo	11 22	7 22	54 7	165 50	68 29
Cricotopus/Orthoclad	iius	22	22	1		
Diplocladius		-	-	-	4	-

Table F.46: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Upstream Reference (GO-09) Study Area, August 2020

axa Study Are	ea GO-09 (Upstre	am Reference)			
Replicate Statio	on B1	B2	В3	В4	B5
Hydrobaenus	4	-	4	43	7
Hydrosmittia	-	-	-	22	-
Krenosmittia	-	4	29	18	7
Limnophyes	4	7	-	25	-
Metriocnemus	-	-	-	-	-
Orthocladius (Euorthocladius)	4	57	65	86	75
Synorthocladius	-	-	-	-	-
Tokunagaia	90	79	39	39	47
Tvetenia	14	11	50	118	82
indeterminate	43	-	-	43	50
S.F. Tanypodinae	4				
Thienemannimyia complex	4	-	-	-	-
F. Empididae Clinocera					
F. Simuliidae	-	-	-	-	-
Gymnopais	11	4	4	4	75
Metacnephia	7	4	-	-	39
Prosimulium	, -	4	4	_	68
F. Tipulidae		-	- T		00
Dicranota	_	_	_	-	_
Ormosia	_	_	_	-	_
Tipula	4	7	4	11	22
Density (No. organisms per m²)	341	351	315	1,215	2,208
Richness (total number of taxa) ^a	14	16	12	17	16
Simpson's Evenness (E)	0.915	0.903	0.923	0.829	0.562
Shannon-Wiener Diversity	3.120	3.160	2.940	2.840	2.020
Dominant Group Composition					
% Nemata	0.0	1.0	0.0	1.2	0.3
% Oligochaeta	0.0	4.1	0.0	0.0	0.0
% Hydracarina	3.2	0.0	0.0	0.9	1.5
% Ephemeroptera	7.4	2.0	3.4	0.6	1.3
% Ostracods	0.0	0.0	0.0	0.0	0.0
% Chironomids	83.2	87.8	93.2	96.2	87.7
% Metal Sensitive Chironmids	24.1	15.0	10.8	41.8	68.7
% Simuliidae	5.3	3.1	2.3	0.3	8.3
% Tipulidae	1.1	2.0	1.1	0.9	1.0
Functional Feeding Group Composition	1.1	2.0	1.1	0.0	1.0
	04.0	74.0	77.0	04.5	0.5.5
% Collector - Gatherers	81.2	74.9	77.6	81.5	85.5
% Filterers	2.1	2.0	1.1	0.0	4.9
% Shredders	9.3	4.9	20.1	17.4	4.7
labitat Preference Group Composition					
	16.6	5.9	21.3	17.7	13.5
% Clingers	10.0	0.0			
% Clingers % Sprawlers	82.3	69.8	77.6	80.3	85.2

^a Bold entries excluded from taxa count

Table F.47: Statistical Comparison of Benthic Metrics at the Mary River Reference Area (G0-09) Among Years of Mine Operation (2015 to 2020) and Baseline (2006, 2007) for the Mary River Project CREMP

		Overall 8-Yea	ar Comparison					Pair-wise,	post-hoc comparis	sons	
Metric	Statistical	Data	Significant	Difference		Cample		Standard		t Size	Pairwise
	Test ^a	Transform- ation	Among Years?	P-value	Year	Sample Size (n)	Mean	Deviation	vs. Baseline Year 2006	vs. Baseline Year 2007	Comparison
					2006	3	404	149	-	-4.0	a,b
					2007	3	739	84	2.3	-	a,c
					2015	5	472	255	0.5	-3.2	a,b
ensity	ANOVA	la #10	VEC	~ 0.001	2016	5	662	320	1.7	-0.9	a,c
No. per m²)	ANOVA	log10	YES	<0.001	2017	5	410	313	0.0	-3.9	a,b
					2018	5	194	112	-1.4	-6.5	b
					2019	5	1,623	700	8.2	10.5	С
					2020	5	886	831	3.2	1.8	a,c
					2006	3	7.3	2.9	-	-10.4	a
					2007	3	13.3	0.6	2.1	-	b
					2015	5	11.4	3.2	1.4	-3.3	a,b
Richness	ANOVA	none	YES	0.005	2016	5	14.0	1.6	2.3	1.2	b
No. of Taxa)	,		.20	0.000	2017	5	11.2	2.9	1.3	-3.7	a,b
					2018	5	11.8	2.3	1.5	-2.7	a,b
					2019	5	11.4	1.5	1.4	-3.3	a,b
					2020	5	15.0	2.0	2.7	2.9	b
					2006	3	0.324	0.095	-	-8.6	а
					2007	3	0.655	0.039	3.5	-	a,b
					2015	5	0.878	0.049	5.8	5.8	c,d
Simpson's	K-W	rank	YES	0.001	2016	5	0.907	0.023	6.1	6.5	С
enness					2017	5	0.770	0.097	4.7	3.0	b,d
					2018	5	0.907	0.030	6.1	6.5	С
					2019	5	0.687	0.095	3.8	0.8	a,b
					2020	5	0.826	0.153	5.3	4.4	c,d
					2006	3	0.7	0.6	-	0.6	а
					2007	3	0.3	0.6	-0.6	-	а
					2015	5	0.4	0.5	-0.5	0.1	а
lemata	K-W	rank	NO	0.6	2016	5	1.6	1.1	1.6	2.2	а
% of community)				0.0	2017	5	0.4	0.9	-0.5	0.1	а
					2018	5	1.8	2.5	2.0	2.5	а
					2019	5	0.6	0.5	-0.1	0.5	а
					2020	5	0.5	0.6	-0.3	0.3	а
					2006	3	0.3	0.6	-	0.0	а
					2007	3	0.3	0.6	0.0	-	а
					2015	5	4.2	3.1	6.7	6.7	b
Hydracarina	K-W	rank	YES	0.003	2016	5	4.6	2.3	7.4	7.4	b
% of community)		Tarik	120	0.000	2017	5	0.0	0.0	-0.6	-0.6	а
					2018	5	0.4	0.9	0.1	0.1	а
					2019	5	8.0	1.3	0.8	0.8	а
					2020	5	1.1	1.3	1.3	1.3	а
					2006	3	98.7	0.6	-	1.2	а
					2007	3	97.3	1.2	-2.4	-	а
					2015	5	88.0	2.7	-18.5	-8.1	a,b
Chironomidae	ANOVA	none	YES	<0.001	2016	5	84.0	4.6	-25.5	-11.6	b
% of community)			, _ 3	3.001	2017	5	79.2	6.5	-33.8	-15.7	b
					2018	5	78.8	12.3	-34.5	-16.1	b
					2019	5	97.0	2.4	-2.9	-0.3	а
					2020	5	89.6	5.1	-15.8	-6.7	a,b
					2006	3	62.0	3.5	-	1.8	а
					2007	3	31.0	17.6	-9.0	-	a,b,c
					2015	5	13.0	14.0	-14.2	-1.0	С
Metal Sensitive axa	ANOVA	none	YES	<0.001	2016	5	23.2	12.3	-11.2	-0.4	b,c
% of community)				3.30	2017	5	59.8	13.1	-0.6	1.6	а
					2018	5	31.0	10.6	-9.0	0.0	a,b,c
					2019	5	51.6	21.5	-3.0	1.2	a,b
					2020	5	32.0	23.7	-8.7	0.1	a,b,c
					2006	3	0.3	0.6	-	-0.6	а
					2007	3	1.7	2.1	2.3	-	а
					2015	5	4.4	3.0	7.0	1.3	а
ipulidae	K-W	rank	NO	0.16	2016	5	1.8	1.5	2.5	0.1	а
% of community)	17-44	ialik	NO	0.10	2017	5	1.4	1.1	1.8	-0.1	а
					2018	5	3.2	4.1	5.0	0.7	а
					2019	5	0.6	0.5	0.5	-0.5	а
					2020	5	1.2	0.5	1.5	-0.2	а

Table F.47: Statistical Comparison of Benthic Metrics at the Mary River Reference Area (G0-09) Among Years of Mine Operation (2015 to 2020) and Baseline (2006, 2007) for the Mary River Project CREMP

		Overall 8-Yea	ar Comparison					Pair-wise,	post-hoc comparis	ons	
Statistical Test* Data Transform ation Difference Among Years? P-value P-value Sample Size (n) Mean Standard Deviation Vs. Baseline Year 2006 Vs. Basel	Effec	t Size	B.C. To								
			Among	P-value	Year		Mean		Year	vs. Baseline Year 2007	Pairwise Comparison
					2006	3	98.7	1.2	-	3.5	а
					2007	3	94.7	1.2	-3.5	-	a,b
					2015	5	78.0	12.2	-18.0	-14.5	b,c
Collector-Gatherer	ANOVA	none	VEQ	<0.001	2016	5	75.4	9.0	-20.3	-16.8	С
(% of community)	ANOVA	none	TES	\0.001	2017	5	74.6	6.9	-21.0	-17.5	С
					2018	5	80.8	11.4	-15.6	-12.1	b,c
					2019	5	92.6	5.0	-5.3	-1.8	a,b
					2020	5	80.2	4.1	-16.1	-12.6	b,c
					2006	3	0.0	0.0	-	not calculable	а
					2007	3	0.0	0.0	not calculable	-	а
					2015	5	2.0	1.9	not calculable	not calculable	a,b
Filterer FFG	K W	ronk	VEQ	<0.001	2016	5	7.2	4.2	not calculable	not calculable	b,c
(% of community)	rx-vv	Idik	TES	\0.001	2017	5	19.0	5.4	not calculable	not calculable	С
					2018	5	14.2	10.0	not calculable	not calculable	С
					2019	5	0.0	0.0	not calculable	not calculable	а
					2020	5	2.0	1.8	not calculable	not calculable	a,b
					2006	3	0.3	0.6	-	-6.9	а
					2007	3	4.3	0.6	6.9	-	a,b,c
					2015	5	16.0	11.3	27.2	20.2	b
Shredder FFG	K-W	rank	YES	0.014	2016	5	11.8	3.6	19.9	12.9	b
(% of community)	17-44	Idilk	TLO	0.014	2017	5	5.6	2.3	9.1	2.2	b,c
					2018	5	4.8	6.2	7.7	0.8	a,c
					2019	5	5.0	2.8	8.1	1.2	a,c
					2020	5	11.3	7.1	19.0	12.1	b

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.48: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Upstream of the Mine (GO-03) Study Area, August 2020

Taxa	Study Area	GO-03 (Upstrea	am of Mine)	_		
Таха	Replicate Station	B1	B2	В3	B4	B5
ROUNDWORMS						
P. Nemata		11	7	-	-	7
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta					_	_
F. Enchytraeidae		11	-	-	7	7
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
F. Sperchonidae Sperchon		7	7	7		18
SEED SHRIMPS		,	,	,	-	10
Cl. Ostracoda		_	_	-	-	-
SPRINGTAILS						
CI. Entognatha						
O. Collembola		-	-	-	-	-
INSECTS						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus		-	4	-	-	-
STONEFLIES						
O. Plecoptera						
F. Capniidae						
immature TRUE FLIES		-	4	-	-	-
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae						
indeterminate		-	75	11	-	57
MIDGES						
F. Chironomidae						
chironomid pupae		11	14	-	14	14
S.F. Chironominae						
Micropsectra		7	-	-	-	-
Stictochironomus		-	-	-	-	-
S.F. Diamesinae						4
Diamesa Pseudokiefferiella		- 14	- 36	- 4	- 25	4 22
S.F. Orthocladiinae		14	30	4	25	22
Cardiocladius		_	_	4	_	4
Chaetocladius		-	-	-	-	4
Corynoneura		- -	-	-	-	4
Cricotopus		18	32	4	11	11
Cricotopus/Orthoclad	dius	4	7	4	-	25
Diplocladius		4	_	-	-	-
Eukiefferiella		_	_	_	4	_

Table F.48: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Upstream of the Mine (GO-03) Study Area, August 2020

Taxa St	udy Area G	O-03 (Upstrea	am of Mine)			
Replicat	e Station	B1	B2	B3	B4	B5
Hydrobaenus		-	7	-	-	4
Hydrosmittia		4	7	-	11	-
Krenosmittia		4	4	7	18	25
Limnophyes		-	-	-	-	-
Metriocnemus		-	-	-	-	-
Orthocladius (Euorthocladius))	4	7	7	4	29
Synorthocladius		-	-	-	-	-
Tokunagaia _		4	-	7	7	4
Tvetenia		43	50	29	32	14
indeterminate		7	-	-	-	-
S.F. Tanypodinae						
Thienemannimyia complex		-	-	-	-	-
F. Empididae						4
Clinocera F. Simuliidae		-	-	-	-	4
Gymnopais						
Metacnephia		-	-	-	4	- 11
Prosimulium		-	-	_	4	7
F. Tipulidae		_	_	_	7	,
Dicranota		_	_	_	_	_
Ormosia		_	_	_	4	_
Tipula		4	7	4	7	47
Density (No. organisms per m²)		154	269	86	151	319
Richness (total number of taxa) ^a		13	13	10	13	19
Simpson's Evenness (E)		0.890	0.898	0.924	0.936	0.944
Shannon-Wiener Diversity		3.05	2.94	2.96	3.23	3.63
Dominant Group Composition		0.00		2.00	0.20	0.00
% Nemata		7.0	2.7	0.0	0.0	2.3
% Oligochaeta		7.0	0.0	0.0	4.8	2.3
% Hydracarina		4.7	2.7	8.3	0.0	5.6
% Ephemeroptera		0.0	1.3	0.0	0.0	0.0
% Ostracods		0.0	0.0	0.0	0.0	0.0
% Chironomids		79.1	61.3	75.0	83.3	50.6
% Metal Sensitive Chironmids		15.3	14.6	4.2	18.8	8.6
% Simuliidae		0.0	0.0	0.0	4.8	5.6
% Tipulidae		2.3	2.7	4.2	7.1	14.6
	ition	2.0	۷.1	7.2	7.1	14.0
functional Feeding Group Compos	iuon	70.0	40.0	25.0	20.4	4
% Collector - Gatherers		73.0	49.8	65.3	82.4	47.8
% Filterers		5.1	0.0	0.0	4.8	5.6
% Shredders		17.2	19.5	9.7	12.8	20.7
labitat Preference Group Composit	tion					
% Clingers		24.6	18.2	13.9	12.8	18.4
% Sprawlers		59.1	48.5	65.3	75.3	43.3
·		16.3				38.3
% Burrowers		10.3	33.3	20.8	11.9	აგ.ა

^a Bold entries excluded from taxa count

Table F.49: Benthic Invertebrate Community Summary Statistics for Mary River, Mary River Project CREMP, August 2020

Metric	Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
	GO-09 Reference Area	886	831	372	315	351	2,208
	GO-03 Upstream Area	196	95.3	42.6	86	154	319
Density (no. organisms / m²)	EO-01 Upper Mine-Exposed Area	513	420	188	244	351	1,258
(iio. organisms / iii)	EO-20 Middle Mine-Exposed Area	1,441	553	247	943	1,186	2,315
	CO-05 Lower Mine-Exposed Area	906	818	366	269	341	1,839
	GO-09 Reference Area	15.0	2.0	0.9	12.0	16.0	17.0
	GO-03 Upstream Area	13.6	3.3	1.5	10.0	13.0	19.0
Richness (Number of Taxa)	EO-01 Upper Mine-Exposed Area	15.6	2.1	0.9	12.0	16.0	17.0
(rumber er ruxu)	EO-20 Middle Mine-Exposed Area	14.0	2.6	1.1	11.0	14.0	17.0
	CO-05 Lower Mine-Exposed Area	14.2	2.2	1.0	11.0	14.0	17.0
	GO-09 Reference Area	0.826	0.153	0.068	0.562	0.903	0.923
	GO-03 Upstream Area	0.918	0.024	0.011	0.890	0.924	0.944
Simpson's Evenness	EO-01 Upper Mine-Exposed Area	0.913	0.016	0.007	0.889	0.916	0.933
	EO-20 Middle Mine-Exposed Area	0.868	0.046	0.021	0.789	0.890	0.900
	CO-05 Lower Mine-Exposed Area	0.839	0.048	0.022	0.777	0.859	0.897
	GO-09 Reference Area	0.5	0.6	0.3	0.0	0.3	1.2
	GO-03 Upstream Area	2.4	2.9	1.3	0.0	2.3	7.0
Nemata (% of community)	EO-01 Upper Mine-Exposed Area	0.8	1.2	0.5	0.0	0.0	2.8
(70 or community)	EO-20 Middle Mine-Exposed Area	0.0	0.1	0.0	0.0	0.0	0.2
	CO-05 Lower Mine-Exposed Area	1.5	0.6	0.3	1.1	1.3	2.4
	GO-09 Reference Area	1.1	1.3	0.6	0.0	0.9	3.2
	GO-03 Upstream Area	4.3	3.1	1.4	0.0	4.7	8.3
Hydracarina (% of community)	EO-01 Upper Mine-Exposed Area	3.1	2.9	1.3	0.0	2.9	7.3
(,,, e,	EO-20 Middle Mine-Exposed Area	0.8	0.4	0.2	0.2	0.8	1.3
	CO-05 Lower Mine-Exposed Area	6.0	4.9	2.2	3.1	4.0	14.7
	GO-09 Reference Area	89.6	5.1	2.3	83.2	87.8	96.2
	GO-03 Upstream Area	69.9	13.6	6.1	50.6	75.0	83.3
Chironomidae (% of community)	EO-01 Upper Mine-Exposed Area	88.2	9.2	4.1	74.3	93.5	95.9
(, 3)	EO-20 Middle Mine-Exposed Area	95.5	2.5	1.1	91.7	95.8	98.2
	CO-05 Lower Mine-Exposed Area	84.8	8.0	3.6	75.3	82.7	93.4
	GO-09 Reference Area	32.0	23.7	10.6	10.8	24.1	68.7
Metal-Sensitive	GO-03 Upstream Area	12.3	5.8	2.6	4.2	14.6	18.8
Chironomidae	EO-01 Upper Mine-Exposed Area	11.0	2.5	1.1	6.9	12.4	12.9
(% of community)	EO-20 Middle Mine-Exposed Area	9.4	9.1	4.1	1.6	5.2	24.4
	CO-05 Lower Mine-Exposed Area	19.4	9.6	4.3	8.5	17.1	32.4
	GO-09 Reference Area	1.2	0.5	0.2	0.9	1.1	2.0
	GO-03 Upstream Area	6.2	5.1	2.3	2.3	4.2	14.6
Tipulidae (% of community)	EO-01 Upper Mine-Exposed Area	5.7	4.3	1.9	1.1	4.4	11.9
,	EO-20 Middle Mine-Exposed Area	0.6	0.9	0.4	0.0	0.3	2.1
	CO-05 Lower Mine-Exposed Area	1.4	0.9	0.4	0.0	1.3	2.3
	GO-09 Reference Area	80.2	4.1	1.8	74.9	81.2	85.5
	GO-03 Upstream Area	63.7	14.9	6.7	47.8	65.3	82.4
Collector-Gatherer FFG (% of community)	EO-01 Upper Mine-Exposed Area	59.4	7.1	3.2	51.5	56.9	69.2
n vo or community)	EO-20 Middle Mine-Exposed Area	54.6	13.2	5.9	37.0	62.3	66.3
	CO-05 Lower Mine-Exposed Area	71.0	7.0	3.1	61.7	71.6	81.0

Table F.49: Benthic Invertebrate Community Summary Statistics for Mary River, Mary River Project CREMP, August 2020

Metric	Area	Mean	Standard Deviation	Standard Error	Minimum	Median	Maximum
	GO-09 Reference Area	2.0	1.8	0.8	0.0	2.0	4.9
	GO-03 Upstream Area	3.1	2.8	1.3	0.0	4.8	5.6
Filterer FFG (% of community)	EO-01 Upper Mine-Exposed Area	5.2	3.6	1.6	0.0	6.2	8.4
((1)	EO-20 Middle Mine-Exposed Area	4.6	4.2	1.9	0.6	4.8	10.9
	CO-05 Lower Mine-Exposed Area	4.3	5.0	2.2	0.0	1.2	10.1
	GO-09 Reference Area	11.3	7.1	3.2	4.7	9.3	20.1
	GO-03 Upstream Area	16.0	4.6	2.1	9.7	17.2	20.7
Shredder FFG (% of community)	EO-01 Upper Mine-Exposed Area	27.3	7.0	3.1	19.6	29.4	36.6
(,	EO-20 Middle Mine-Exposed Area	15.8	9.4	4.2	6.7	12.7	31.5
	CO-05 Lower Mine-Exposed Area	13.5	9.3	4.2	5.3	11.0	29.1
	GO-09 Reference Area	15.0	5.8	2.6	5.9	16.6	21.3
	GO-03 Upstream Area	17.6	4.7	2.1	12.8	18.2	24.6
Clinger HPG (% of community)	EO-01 Upper Mine-Exposed Area	29.9	8.6	3.9	17.9	31.4	39.5
((1)	EO-20 Middle Mine-Exposed Area	20.9	12.7	5.7	11.6	17.6	43.0
	CO-05 Lower Mine-Exposed Area	22.5	6.2	2.8	17.1	20.6	33.0
	GO-09 Reference Area	79.0	5.9	2.6	69.8	80.3	85.2
	GO-03 Upstream Area	58.3	12.8	5.7	43.3	59.1	75.3
Sprawler HPG (% of community)	EO-01 Upper Mine-Exposed Area	57.0	5.5	2.5	49.3	56.9	64.6
(,, o o o o o o o o o o o o o o o o o o	EO-20 Middle Mine-Exposed Area	54.2	13.0	5.8	36.6	62.3	64.8
	CO-05 Lower Mine-Exposed Area	71.0	5.8	2.6	63.1	70.3	79.0
	GO-09 Reference Area	6.0	10.2	4.6	1.1	1.3	24.3
	GO-03 Upstream Area	24.1	11.3	5.0	11.9	20.8	38.3
Burrower HPG (% of community)	EO-01 Upper Mine-Exposed Area	13.1	5.2	2.3	7.3	11.2	19.5
()	EO-20 Middle Mine-Exposed Area	24.9	12.5	5.6	13.0	23.6	45.8
	CO-05 Lower Mine-Exposed Area	6.4	2.7	1.2	3.9	6.7	10.2

Table F.50: Benthic Invertebrate Community Metric Statistical Comparison Results among Mary River Reference (GO-09), Upstream (GO-03) and Mine-Exposed (EO-01, EO-20, CO-05) Study Areas, Mary River Project CREMP, August 2020

		Overall 5-Area C	Comparison			Pair-wise, post-hoc comparisons						
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Areas?	P-value	Area	Mean	Standard Deviation (SD)	Magnitude of Difference (GO-09 Reference SD)	Pairwise Comparison			
					GO-09 Ref	80.2	4.1	-	а			
Collector-					G0-03	63.7	14.9	-4.1	a,b			
Gatherer FFG (% of	ANOVA	none	YES	0.006	E0-01	59.4	7.1	-5.1	b			
community)					E0-20	54.6	13.2	-6.3	b			
					C0-05	71.0	7.0	-2.3	a,b			
					GO-09 Ref	2.0	1.8	-	а			
Filterer FFG					G0-03	3.1	2.8	0.6	а			
(% of	ANOVA	none	NO	0.667	E0-01	5.2	3.6	1.7	а			
community)					E0-20	4.6	4.2	1.4	а			
					C0-05	4.3	5.0	1.3	а			
					GO-09 Ref	11.3	7.1	-	b			
Shredder FFG					G0-03	16.0	4.6	0.7	a,b			
(% of	ANOVA	log10	YES	0.051	E0-01	27.3	7.0	2.2	а			
community)					E0-20	15.8	9.4	0.6	a,b			
					C0-05	13.5	9.3	0.3	a,b			
					GO-09 Ref	15.0	5.8	-	а			
Clinger HPG					G0-03	17.6	4.7	0.4	b,a			
(% of	ANOVA	log10	YES	0.068	E0-01	29.9	8.6	2.6	b			
community)					E0-20	20.9	12.7	1.0	b,a			
					C0-05	22.5	6.2	1.3	b,a			
					GO-09 Ref	79.0	5.9	-	а			
Sprawler HDC					G0-03	58.3	12.8	-3.5	b,c			
Sprawler HPG (% of	ANOVA	log10	YES	0.005	E0-01	57.0	5.5	-3.7	b,c			
community)					E0-20	54.2	13.0	-4.2	С			
					C0-05	71.0	5.8	-1.4	a,b			
					GO-09 Ref	6.0	10.2	-	b			
Dumenta UDA					G0-03	24.1	11.3	1.8	а			
Burrower HPG (% of	K-W	rank	YES	0.009	E0-01	13.1	5.2	0.7	a,b			
community)		rank	YES	-	E0-20	24.9	12.5	1.9	а			
					C0-05	6.4	2.7	0.0	b			

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Blue shaded values indicate significant difference (ANOVA p-value \leq 0.10) that was also outside of a Critical Effect Size of ± 2 SD_{REF}, indicating that the difference between the mine-exposed area and reference area was ecologically meaningful.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.51: Statistical Comparison of Bray-Curtis Index for the Mary River Mine-exposed Areas Compared to the Upstream Reference Area, Mary River Project CREMP, August 2020

Commonicon	Betadisper	Ма		dbRDA				
Comparison	P-Value	r	R ²	P-Value	F-Value	R ²	R ² _{adj}	P-Value
G0-03 vs G0-09	0.041	0.679	0.461	0.008	4.16	0.342	0.260	0.007
E0-01 vs G0-09	0.820	0.554	0.307	0.008	3.46	0.302	0.214	0.005
E0-20 vs G0-09	0.056	0.743	0.552	0.008	5.35	0.401	0.326	0.005
C0-05 vs G0-09	0.379	0.629	0.396	0.008	5.37	0.402	0.327	0.007

Highlighted values indicate significant difference between study areas based on statistical test p-value less than 0.10. Note: Sample size was five for all study areas..

Table F.52: Statistical Comparison of Benthic Invertebrate Community Metrics at Mary River Upstream of the Mine (G0-03) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	, post-hoc co	mparisons ^a	
Metric	04-41-41	-	Significant						Effect Size	
Wetric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	Pairwise Comparison
					2007	3	136	29	-	а
					2015	5	169	122	1.1	а
					2016	5	287	92	5.1	a,b
Density (No. per m ²)	ANOVA	log10	YES	0.005	2017	5	282	172	5.0	a,b
(100 p 01)					2018	5	165	54	1.0	а
					2019	5	634	315	17.0	b
					2020	5	196	95.3	2.0	а
					2007	3	6.3	1.2	-	а
					2015	5	9.4	3.5	2.7	a,b
					2016	5	14.4	1.8	7.0	b
Richness (No. of Taxa)	ANOVA	none	YES	0.011	2017	5	13.6	3.9	6.3	b
(ito: o: raxa)					2018	5	12.2	3.5	5.1	a,b
					2019	5	11.2	1.6	4.2	a,b
					2020	5	13.6	3.3	6.3	b
					2007	3	0.591	0.003	-	а
					2015	5	0.921	0.045	114.3	b
					2016	5	0.899	0.041	106.5	b,c
Simpson's Evenness	K-W	rank	YES	0.055	2017	5	0.873	0.142	97.7	b,c
Evenness					2018	5	0.868	0.119	96.0	b,c
					2019	5	0.858	0.048	92.4	a,c
					2020	5	0.918	0.0238	113.2	b,c
					2007	3	0.0	1.2	-	a,b
					2015	5	0.0	0.0	0.0	b
					2016	5	2.2	1.3	1.9	c,d
Nemata	K-W	rank	YES	0.005	2017	5	1.3	1.2	1.1	a,b,d
(% of community)			5	0.000	2018	5	4.4	2.2	3.7	C
					2019	5	0.7	1.2	0.6	a,b
					2020	5	2.38	2.85	2.0	a,c,d
					2007	3	0.0	3.4	-	a,c,u a
					2015	5	8.0	4.5	2.4	b,c
					2016	5	10.3	4.4	3.1	b
Hydracarina	ANOVA	log10(x+1)	YES	0.002	2017	5	1.9	1.9	0.6	
(% of community)	ANOVA	10910(X11)	120	0.002	2017	5	3.3	4.1	1.0	a,c
					2019	5	2.4	1.9	0.7	a,c a,c
					2020	5	4.3	3.1	1.3	a,c a,b,c
					2020	3	100.0	8.6	-	
						5	71.9	8.2	-3.3	a
					2015		77.9	8.2	-3.3 -2.6	b b.c
Chironomidae	ANOVA	nono	YES	0.001	2016	5 5	75.3	10.3	-2.6 -2.9	b,c
(% of community)	ANOVA	none	123	0.001	2017	5	83.2	9.2	-2.9 -2.0	b a h c
							92.9	7.2	-2.0 -0.8	a,b,c
					2019	5				a,c
					2020	5	69.9	13.6	-3.5	b
					2007	3	6.6	3.0	- 0.4	a
					2015	5	7.9	4.9	0.4	a
Metal Sensitive	ANOV:	1. 464	VEO	-0.00	2016	5	8.8	5.9	0.7	a
Taxa (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	46.9	12.6	13.3	b
					2018	5	32.5	21.5	8.5	b,c
					2019	5	17.4	11.2	3.5	a,c
					2020	5	12.3	5.8	1.9	а

Table F.52: Statistical Comparison of Benthic Invertebrate Community Metrics at Mary River Upstream of the Mine (G0-03) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	, post-hoc co	mparisons ^a	
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2007	Pairwise Comparison
					2007	3	0.0	4.6	-	a
					2015	5	18.0	8.4	3.9	b
					2016	5	8.3	7.3	1.8	а
Tipulidae (% of community)	ANOVA	none	YES	<0.001	2017	5	2.9	2.0	0.6	а
(% or community)					2018	5	1.8	1.7	0.4	а
					2019	5	2.5	3.6	0.5	а
					2020	5	6.2	5.1	1.3	а
					2007	3	93.3	5.8	-	а
					2015	5	62.1	11.0	-5.4	b
Collector-Gatherer					2016	5	63.5	6.4	-5.2	b,c
FFG	ANOVA	none	YES	0.002	2017	5	74.2	10.6	-3.3	a,b,c
(% of community)					2018	5	80.7	11.4	-2.2	a,c
					2019	5	68.9	10.8	-4.2	b,c
					2020	5	63.7	14.9	-5.1	b,c
					2007	3	0.0	2.2	-	а
					2015	5	0.0	0.0	0.0	а
					2016	5	0.3	0.7	0.1	а
Filterer FFG (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	15.2	5.4	6.8	b
					2018	5	3.7	5.1	1.6	а
					2019	5	0.0	0.0	0.0	а
					2020	5	3.1	2.8	1.4	а
					2007	3	6.7	5.8	-	a,b
					2015	5	30.0	7.1	4.0	С
					2016	5	20.7	5.5	2.4	c,d
Shredder FFG (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	5.7	2.2	-0.2	b
					2018	5	11.7	8.2	0.9	a,b,d
					2019	5	22.2	5.6	2.7	c,d
					2020	5	16.0	4.6	1.6	a,d

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.53: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Upper Mine-Exposed (EO-01) Study Area, August 2020

Taxa	Study Area	EO-01 (Upper	Mine-Exposed)			
Tuxu	Replicate Station	B1	B2	B3	B4	B5
ROUNDWORMS						
P. Nemata		-	4	11	-	-
<u>ANNELIDS</u>						
P. Annelida						
WORMS						
Cl. Oligochaeta			_	_		
F. Enchytraeidae		25	4	7	-	-
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
F. Sperchonidae		00	4.4	00	4	
Sperchon SEED SHRIMPS		36	14	29	4	-
Cl. Ostracoda			4	_		
SPRINGTAILS		-	4	-	-	-
Cl. Entognatha						
O. Collembola		4	_	_	_	_
		·				
INSECTS						
CI. Insecta MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus	:	_	4	4	_	_
STONEFLIES	•		·	•		
O. Plecoptera						
F. Capniidae						
immature		-	-	-	-	-
TRUE FLIES						
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae						
indeterminate		4	-	-	-	-
MIDGES F. Chironomidae						
chironomid pupae		108	29	22	11	29
S.F. Chironominae		100	29	22	• • • • • • • • • • • • • • • • • • • •	29
Micropsectra		_	18	7	29	14
Stictochironomus		-	-	-	-	-
S.F. Diamesinae						
Diamesa		18	-	-	11	7
Pseudokiefferiella		129	18	18	4	-
S.F. Orthocladiinae						
Cardiocladius		36	4	4	14	32
Chaetocladius		-	-	-	4	-
Corynoneura		7	-	4	14	4
Cricotopus	-l'	151	61	14	54 57	22
Cricotopus/Orthoclad	aius	251	29	50	57	22
Diplocladius Eukiefferielle		-	-	-	-	-
Eukiefferiella		-	-	-	-	-

Table F.53: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Upper Mine-Exposed (EO-01) Study Area, August 2020

Study Ard			1	1		
Replicate Station	on B1	B2	В3	B4	B5	
Hydrobaenus	22	7	-	4	4	
Hydrosmittia	11	11	11	4	-	
Krenosmittia	-	11	14	14	7	
Limnophyes	7	4	-	4	-	
Metriocnemus	36	-	-	-	-	
Orthocladius (Euorthocladius)	65	18	39	32	11	
Synorthocladius	-	-	-	-	-	
Tokunagaia _	100	11	18	29	25	
Tvetenia	158	50	39	39	54	
indeterminate	79	-	50	14	-	
S.F. Tanypodinae						
Thienemannimyia complex	-	-	-	-	-	
F. Empididae Clinocera						
F. Simuliidae	-	-	-	-	-	
Gymnopais	_	_	_	_	_	
Metacnephia	_	_	4	_	_	
Prosimulium	_	-	-	_	4	
F. Tipulidae					•	
Dicranota	-	-	-	-	_	
Ormosia	-	-	-	-	-	
Tipula	14	25	47	11	11	
Density (No. organisms per m²)	1,258	323	391	351	244	
Richness (total number of taxa) ^a	17	17	16	16	12	
Simpson's Evenness (E)	0.889	0.912	0.917	0.916	0.933	
Shannon-Wiener Diversity	3.070	3.350	3.280	3.250	3.090	
Oominant Group Composition						
% Nemata	0.0	1.1	2.8	0.0	0.0	
% Oligochaeta	2.0	1.1	1.8	0.0	0.0	
_						
% Hydracarina	2.9	4.4	7.3	1.0	0.0	
% Ephemeroptera	0.0	1.1	0.9	0.0	0.0	
% Ostracods	0.0	1.1	0.0	0.0	0.0	
% Chironomids	93.5	83.3	74.3	95.9	94.1	
% Metal Sensitive Chironmids	12.9	12.4	6.9	12.6	10.1	
% Simuliidae	0.0	0.0	0.9	0.0	1.5	
% Tipulidae	1.1	7.8	11.9	3.1	4.4	
unctional Feeding Group Composition		-	-			
% Collector - Gatherers	64.0	51.5	69.2	56.9	55.5	
% Filterers	0.0	6.2	2.9	8.4	8.2	
% Shredders	29.7	36.6	19.6	29.4	21.2	
labitat Preference Group Composition						
% Clingers	31.4	39.5	17.9	35.8	25.0	
% Sprawlers	58.6	49.3	64.6	56.9	55.5	
% Burrowers	9.7	11.2	17.5	7.3	19.5	

^a Bold entries excluded from taxa count

Table F.54: Statistical Comparison of Benthic Invertebrate Community Metrics at the Mary River Upper Mine-Exposed Area (E0-01) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	, post-hoc co	mparisons	
Metric	04-41-411		Significant						Effect Size	
Weth	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	Pairwise Comparison
					2007	3	797	648	-	a,b
					2015	5	116	97	-1.1	a,b
					2016	5	230	109	-0.9	a,b
Density (No. per m²)	ANOVA	log10	YES	0.011	2017	5	126	106	-1.0	a,b
(110) p 0) ,					2018	5	119	164	-1.0	а
					2019	5	312	115	-0.7	a,b
					2020	5	513	420	-0.4	b
					2007	3	16.3	8.1	-	a,b
					2015	5	7.8	2.7	-1.0	а
					2016	5	13.2	4.1	-0.4	a,b
Richness (No. of Taxa)	ANOVA	none	YES	0.025	2017	5	10.6	5.3	-0.7	a,b
(No. of Taxa)					2018	5	7.8	4.9	-1.0	а
					2019	5	11.0	0.7	-0.7	a,b
					2020	5	15.6	2.07	-0.1	b
					2007	3	0.698	0.059	-	а
					2015	5	0.873	0.095	3.0	b
					2016	5	0.865	0.037	2.8	b
Simpson's	ANOVA	log10	YES	<0.001	2017	5	0.940	0.053	4.1	b
Evenness		1.3.1			2018	5	0.926	0.037	3.9	b
					2019	5	0.898	0.028	3.4	b
					2020	5	0.913	0.0159	3.7	b
					2007	3	2.1	3.6	-	a
					2015	5	2.0	4.5	0.0	
					2016	5	1.3	1.3	-0.2	а
Nemata	K-W	ronk	NO	0.467						а
(% of community)	K-VV	rank	NO	0.467	2017	5	0.8	1.8	-0.4	a
					2018	5	7.8	10.7	1.6	а
					2019	5	1.3	1.6	-0.2	а
					2020	5	0.8	1.2	-0.4	а
					2007	3	3.3	5.8	-	а
					2015	5	2.0	4.5	-0.2	а
Hydracarina					2016	5	7.2	4.6	0.7	а
(% of community)	ANOVA	none	NO	0.271	2017	5	2.2	2.1	-0.2	а
					2018	5	4.4	5.2	0.2	а
					2019	5	4.1	2.5	0.1	а
					2020	5	3.1	2.9	0.0	a
					2007	3	90.0	0.1	-	a,b,c
					2015	5	82.5	8.3	-74.8	a,b,c
Chironomidae					2016	5	82.9	7.3	-70.9	a,b,c
(% of community)	ANOVA	none	YES	0.013	2017	5	78.1	7.2	-118.7	b,c
					2018	5	72.0	16.0	-179.8	С
					2019	5	93.7	3.4	36.8	а
					2020	5	88.2	9.2	-18.0	a,b
					2007	3	36.4	32.0	-	a,b
					2015	5	7.4	7.7	-0.9	a,c
Metal Sensitive					2016	5	5.7	4.7	-1.0	С
Taxa (% of community)	K-W	rank	YES	0.031	2017	5	29.0	8.2	-0.2	b
t /o or community)					2018	5	35.2	20.2	0.0	b
					2019	5	5.1	4.0	-1.0	С
					2020	5	11.0	2.5	-0.8	a,b,c

Table F.54: Statistical Comparison of Benthic Invertebrate Community Metrics at the Mary River Upper Mine-Exposed Area (E0-01) Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

		Overall 7-Year	Comparison				Pair-wise	e, post-hoc co	mparisons	
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2007	Pairwise Comparison
					2007	3	3.3	5.8	-	a,b,c
					2015	5	10.0	7.1	1.2	а
					2016	5	2.5	2.6	-0.2	a,b
Tipulidae (% of community)	K-W	rank	YES	0.002	2017	5	0.3	0.6	-0.5	d
(,, o e e e e e e e e e e e e e e e e e e					2018	5	0.3	0.8	-0.5	c,d
					2019	5	0.7	0.9	-0.5	b,c,d
					2020	5	5.7	4.3	0.4	а
					2007	3	40.0	26.5	-	а
					2015	5	72.2	16.5	1.2	a,b
Collector-Gatherer					2016	5	77.9	6.9	1.4	b
FFG	K-W	rank	YES	0.069	2017	5	80.3	8.5	1.5	b
(% of community)					2018	5	62.4	37.2	0.8	a,b
					2019	5	64.0	2.1	0.9	а
					2020	5	59.4	7.1	0.7	а
					2007	3	36.7	32.1	-	a,b
					2015	5	0.0	0.0	-1.1	С
					2016	5	0.9	8.0	-1.1	a,c,d
Filterer FFG (% of community)	K-W	rank	YES	0.011	2017	5	14.0	11.2	-0.7	b
					2018	5	7.0	8.6	-0.9	a,b,d
					2019	5	0.4	8.0	-1.1	c,d
					2020	5	5.2	3.6	-1.0	a,b
					2007	3	6.7	11.5	-	a,b
					2015	5	18.0	17.9	1.0	a,c
					2016	5	7.4	7.6	0.1	a,b
Shredder FFG (% of community)	K-W	rank	YES	0.006	2017	5	2.5	5.5	-0.4	b
					2018	5	15.6	13.5	0.8	a,c
					2019	5	24.3	3.4	1.5	С
					2020	5	27.3	7.0	1.8	С

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.55: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Middle Mine-Exposed (EO-20) Study Area, August 2020

Taxa	Study Area	EO-20 (Middle	Mine-Exposed)			
Tuxu	Replicate Station	B1	B2	B3	B4	B5
ROUNDWORMS						
P. Nemata		-	4	-	-	-
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta						
F. Enchytraeidae		-	-	4	-	22
ARTHROPODS						
P. Arthropoda						
MITES						
Cl. Arachnida						
O. Acarina						
F. Sperchonidae		18	4	11	14	7
Sperchon SEED SHRIMPS		10	4	1.1	14	,
Cl. Ostracoda		_	_	4	_	_
SPRINGTAILS				•		
Cl. Entognatha						
O. Collembola		-	4	-	-	-
INSECTS						
Cl. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus		-	-	-	-	-
STONEFLIES						
O. Plecoptera						
F. Capniidae						
immature		-	-	-	-	-
TRUE FLIES						
O. Diptera BITING-MIDGE						
F. Ceratopogonidae						
indeterminate		22	7	7	14	_
MIDGES						
F. Chironomidae						
chironomid pupae		240	161	50	72	140
S.F. Chironominae						
Micropsectra		201	72	-	-	-
Stictochironomus		-	-	-	-	-
S.F. Diamesinae		0.4	00	_	50	50
Diamesa Basudakiaffarialla		61	36 57	7	50	50
Pseudokiefferiella S.F. Orthocladiinae		244	57	7	4	-
Cardiocladius		244	258	394	237	208
Chaetocladius		29	-	-	-	-
Corynoneura		4	-	-	-	-
Cricotopus		272	86	79	54	65
Cricotopus/Orthoclad	ius	530	272	115	36	93
Diplocladius		-	-	-	-	-
Eukiefferiella		-	-	-	-	-

Table F.55: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Middle Mine-Exposed (EO-20) Study Area, August 2020

axa Study Area	EO-20 (Middle	Mine-Exposed)			
Replicate Station	B1	B2	В3	B4	B5
Hydrobaenus	14	-	7	-	-
Hydrosmittia	-	-	-	-	-
Krenosmittia	14	-	22	-	-
Limnophyes	-	-	-	-	-
Metriocnemus	-	-	-	-	-
Orthocladius (Euorthocladius)	115	143	79	72	75
Synorthocladius	-	-	-	-	- 0.47
Tokunagaia Turkania	158	369	36	355	247
<i>Tvetenia</i> indeterminate	115	43 115	79 29	147	237 11
	-	115	29	-	11
S.F. Tanypodinae Thienemannimyia complex					
F. Empididae	-	-	-	-	-
Clinocera	_	_	_	_	_
F. Simuliidae		_	_	_	_
Gymnopais	_	_	_	11	_
Metacnephia	25	7	4	22	7
Prosimulium	4	4	7	32	-
F. Tipulidae	•	•	-		
Dicranota	-	-	-	-	4
Ormosia	-	-	-	-	-
Tipula	7	-	4	-	22
ensity (No. organisms per m²)	2,315	1,642	943	1,118	1,186
ichness (total number of taxa) ^a	17	14	16	12	11
impson's Evenness (E)	0.890	0.894	0.789	0.868	0.900
hannon-Wiener Diversity	3.060	2.810	2.500	2.710	2.690
ominant Group Composition					
% Nemata	0.0	0.2	0.0	0.0	0.0
% Oligochaeta	0.0	0.0	0.4	0.0	1.8
_					
% Hydracarina	0.8	0.2	1.1	1.3	0.6
% Ephemeroptera	0.0	0.0	0.0	0.0	0.0
% Ostracods	0.0	0.0	0.4	0.0	0.0
% Chironomids	96.8	98.2	95.8	91.7	94.9
% Metal Sensitive Chironmids	24.4	11.2	1.6	5.2	4.8
% Simuliidae	1.2	0.7	1.1	5.8	0.6
% Tipulidae	0.3	0.0	0.4	0.0	2.1
unctional Feeding Group Composition		-		-	
% Collector - Gatherers	44.0	63.6	37.0	62.3	66.3
% Filterers	10.9	5.5	1.1	4.8	0.6
% Shredders	31.5	12.7	15.7	6.7	12.2
abitat Preference Group Composition					
% Clingers	43.0	18.5	17.6	13.7	11.6
% Sprawlers	44.0	63.2	36.6	62.3	64.8
76 Sprawiers	77.0	00.2	00.0	O <u>L</u> .0	

^a Bold entries excluded from taxa count

Table F.56: Statistical Comparison of Benthic Invertebrate Community Metrics at the Mary River Middle Mine-Exposed Area (E0-20) Among Years of Mine Operation (2015 to 2020) and Baseline (2011) for the Mary River Project CREMP

		Overall 7-Year 0	Comparison				Pair-wise	e, post-hoc co	omparisons	
Madaila			Significant						Effect Size	
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2011	Pairwise Comparison
					2007	3	854	348	-	a,b
					2015	5	278	146	-1.7	b,c
					2016	5	283	118	-1.6	b,c
Density (No. per m ²)	K-W	rank	YES	<0.001	2017	5	382	665	-1.4	С
					2018	5	61	23	-2.3	С
					2019	5	2,939	3,175	6.0	а
					2020	5	1,441	553	1.7	а
					2007	3	14.0	2.6	-	а
					2015	5	11.6	2.2	-0.9	a,b
					2016	5	13.6	3.1	-0.2	а
Richness (No. of Taxa)	ANOVA	none	YES	0.005	2017	5	12.4	5.0	-0.6	а
(itor or runa)					2018	5	6.8	1.9	-2.7	b
					2019	5	14.8	2.0	0.3	а
					2020	5	14	2.55	0.0	а
					2007	3	0.483	0.247	-	а
					2015	5	0.726	0.140	1.0	a,b
					2016	5	0.835	0.038	1.4	a,b,c
Simpson's Evenness	K-W	rank	YES	0.025	2017	5	0.902	0.103	1.7	С
Everiness					2018	5	0.895	0.047	1.7	С
					2019	5	0.863	0.049	1.5	b,c
					2020	5	0.868	0.046	1.6	С
					2007	3	0.0	0.0	-	а
					2015	5	0.0	0.0	not calculable	a
					2016	5	1.4	0.9	not calculable	a
Nemata	K-W	rank	NO	0.237	2017	5	0.6	1.4	not calculable	a
(% of community)					2018	5	1.5	3.4	not calculable	a
					2019	5	1.1	1.4	not calculable	a
					2020	5	0.0	0.1	not calculable	a
					2007	3	0.2	0.4	-	a,b
					2015	5	2.0	4.5	4.3	C
					2016	5	7.2	3.3	17.1	С
Hydracarina	K-W	rank	YES	0.006	2017	5	4.1	2.8	9.6	a,c
(% of community)					2018	5	0.9	2.0	1.6	b
					2019	5	0.9	1.1	1.7	b
					2020	5	0.8	0.4	1.4	a,b
					2007	3	96.7	5.8	-	a,b
					2015	5	88.6	5.0	-1.4	a,b
					2016	5	86.1	6.3	-1.8	a,b
Chironomidae	ANOVA	none	YES	<0.001	2017	5	71.4	11.7	-4.4	C
(% of community)					2018	5	81.3	8.0	-2.7	a,c
					2019	5	96.5	1.5	0.0	b
					2020	5	95.5	2.5	-0.2	b
					2007	3	3.1	5.4	-	a
					2015	5	4.2	4.0	0.2	a
					2016	5	4.3	2.9	0.2	a
Metal Sensitive Taxa	ANOVA	log10(x+1)	YES	<0.001	2017	5	31.4	22.5	5.2	b,c
(% of community)		-9:2(* ')			2018	5	49.0	12.9	8.4	b
					2019	5	19.7	20.0	3.0	a,c
					2020	5	9.4	9.1	1.2	a,c a,c
					2020	J	3.4	J. I	1.2	a,c

Table F.56: Statistical Comparison of Benthic Invertebrate Community Metrics at the Mary River Middle Mine-Exposed Area (E0-20) Among Years of Mine Operation (2015 to 2020) and Baseline (2011) for the Mary River Project CREMP

		Overall 7-Year 0	Comparison				Pair-wise	, post-hoc co	mparisons	
Madria			Significant						Effect Size	
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2011	Pairwise Comparison
					2007	3	0.0	0.0	-	а
					2015	5	4.0	5.5	not calculable	а
					2016	5	3.9	5.1	not calculable	а
Tipulidae (% of community)	K-W	rank	NO	0.127	2017	5	2.7	3.3	not calculable	а
					2018	5	2.2	3.1	not calculable	а
					2019	5	0.3	0.4	not calculable	а
					2020	5	0.6	0.9	not calculable	а
					2007	3	23.3	15.3	-	а
					2015	5	78.3	8.5	3.6	b
Collector-Gatherer					2016	5	70.2	7.5	3.1	b,c
FFG	ANOVA	none	YES	<0.001	2017	5	68.2	5.1	2.9	b,c
(% of community)					2018	5	78.2	6.6	3.6	b
					2019	5	63.4	8.7	2.6	b,c
					2020	5	54.6	13.2	2.0	С
					2007	3	3.3	5.8	-	a,b,c
					2015	5	0.0	0.0	-0.6	b,c
					2016	5	0.4	0.8	-0.5	С
Filterer FFG (% of community)	K-W	rank	YES	0.004	2017	5	17.0	7.1	2.4	d
					2018	5	9.2	8.5	1.0	a,d
					2019	5	0.7	0.8	-0.5	b,c
					2020	5	4.6	4.2	0.2	a,b,d
					2007	3	6.7	11.5	-	а
					2015	5	12.0	4.5	0.5	а
					2016	5	7.7	6.3	0.1	а
Shredder FFG (% of community)	ANOVA	log10(x+1)	YES	<0.001	2017	5	7.0	4.1	0.0	а
, ,,,					2018	5	11.7	8.2	0.4	а
					2019	5	32.4	5.5	2.2	b
					2020	5	15.8	9.4	0.8	а

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.57: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Lower Mine-Exposed (CO-05) Study Area, August 2020

Таха	Study Area Replicate Station	CO-05 (Lowe	er Mine-Exposed) B2	B3	B4	B5
ROUNDWORMS						
P. Nemata		4	4	32	43	4
ANNELIDS						
P. Annelida						
WORMS						
Cl. Oligochaeta				4	4.4	4
F. Enchytraeidae		-	-	4	11	4
ARTHROPODS						
P. Arthropoda						
MITES Cl. Arachnida						
O. Acarina						
F. Sperchonidae						
Sperchon		50	14	57	68	11
SEED SHRIMPS		00	1-7	01	00	• • • • • • • • • • • • • • • • • • • •
Cl. Ostracoda		4	7	_	4	-
SPRINGTAILS						
Cl. Entognatha						
O. Collembola		-	-	-	-	-
INSECTS						
CI. Insecta						
MAYFLIES						
O. Ephemeroptera						
F. Baetidae						
Acentrella feropagus		-	14	-	-	-
STONEFLIES						
O. Plecoptera						
F. Capniidae						
immature TRUE FLIES		-	-	-	-	-
O. Diptera						
BITING-MIDGE						
F. Ceratopogonidae						
indeterminate		-	-	-	-	-
MIDGES						
F. Chironomidae						
chironomid pupae		4	4	4	14	4
S.F. Chironominae						
Micropsectra		-	-	14	-	-
Stictochironomus		-	-	4	-	-
S.F. Diamesinae						
Diamesa Pseudokiefferiella		- 29	- 54	- 581	- 448	36
S.F. Orthocladiinae		29	04	501	440	30
Cardiocladius		14	22	14	14	7
Chaetocladius		-	-	-	-	-
Corynoneura		-	-	_	-	-
Cricotopus		7	11	143	341	18
Cricotopus/Orthoclad	lius	4	11	100	168	11
Diplocladius		-	-	-	-	-
Eukiefferiella						4

Table F.57: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for the Mary River Lower Mine-Exposed (CO-05) Study Area, August 2020

Study A	Area CO-05 (Lower M	Mine-Exposed)			
Replicate Sta		B2	В3	B4	B5
Hydrobaenus	11	7	-	-	-
Hydrosmittia	7	-	190	61	14
Krenosmittia	18	-	-	-	25
Limnophyes	-	-	-	-	4
Metriocnemus	-	-	-	-	-
Orthocladius (Euorthocladius)	-	4	14	-	7
Synorthocladius	<u>-</u>	-	-	79	-
Tokunagaia	7	-	14	-	4
Tvetenia	165	122	638	434	86
indeterminate	-	-	-	-	-
S.F. Tanypodinae	7	7		70	4
Thienemannimyia complex	7	7	-	79	4
F. Empididae Clinocera					
F. Simuliidae	-	-	-	-	-
Gymnopais	_	_	_	_	_
Metacnephia	4	- 11	_	_	- 7
Prosimulium	-	22	7	_	18
F. Tipulidae			,		10
Dicranota	-	_	4	_	_
Ormosia	-	_	<u>.</u>	_	_
Tipula	7	7	18	-	4
Density (No. organisms per m²)	341	319	1,839	1,763	269
Richness (total number of taxa) ^a	14	14	15	11	17
Simpson's Evenness (E)	0.777	0.861	0.804	0.859	0.897
Shannon-Wiener Diversity	2.630	2.980	2.430	2.520	3.290
Oominant Group Composition					
% Nemata	1.1	1.1	1.8	2.4	1.3
			0.2		
% Oligochaeta	0.0	0.0		0.6	1.3
% Hydracarina	14.7	4.5	3.1	3.9	4.0
% Ephemeroptera	0.0	4.5	0.0	0.0	0.0
% Ostracods	1.1	2.3	0.0	0.2	0.0
% Chironomids	80.0	75.3	93.4	92.9	82.7
% Metal Sensitive Chironmids	8.5	17.1	32.4	25.6	13.6
% Simuliidae	1.1	10.1	0.4	0.0	9.3
% Tipulidae	2.1	2.3	1.2	0.0	1.3
unctional Feeding Group Composition			· · _		
% Collector - Gatherers	72.5	68.0	81.0	61.7	71.6
% Filterers	1.1	10.1	1.2	0.0	9.3
% Shredders	5.3	8.2	13.8	29.1	11.0
labitat Preference Group Composition					
% Clingers	19.0	20.6	17.1	33.0	23.0
% Sprawlers	73.6	69.2	79.0	63.1	70.3
70 Opiawioio					

^a Bold entries excluded from taxa count

Table F.58: Statistical Comparison of Benthic Metrics at the Mary River Lower Mine-Exposed Area (C0-05) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2011) for the Mary River Project CREMP

		Overall 8-Year	Comparison					Pair-wise, p	ost-hoc comparis	ons	
Metric	Statistical	D. (Significant			01		0111	Effec	t Size	B. C. C.
metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2011	Pairwise Comparison
					2006	3	311	230	-	-0.4	а
					2007	3	491	455	0.8	-	а
					2015	5	234	168	-0.3	-0.6	а
Density (No. per m²)	ANOVA	none	YES	0.059	2016	5	1,161	584	3.7	1.5	а
(No. per III)					2017	5	1,214	654	3.9	1.6	a
					2018	5	1,391	1,083 693	5.0	2.0	а
					2019	5	906	818	2.6	0.9	a
					2006	3	10.7	3.8		-2.1	a
					2007	3	19.0	4.0	2.2	-	b,c,d
					2015	5	13.2	2.7	0.7	-1.5	ac
Richness	ANOVA	log10	YES	<0.001	2016	5	19.6	3.3	2.4	0.2	b,d
(No. of Taxa)	7.11.0 771	10910	120	0.001	2017	5	22.0	3.2	3.0	0.8	b
					2018	5	18.6	0.9	2.1	-0.1	b,d
					2019	5	15.8	2.9	1.4	-0.8	b,c,d
					2020	5	14.2	2.2	0.9	-1.2	a,c,d
					2006	3	0.668	0.022	9.8	-2.7	a b,c
					2007	5	0.923	0.079	11.8	0.6	b,c
Simpson's					2016	5	0.849	0.015	8.4	-0.4	b,c
Evenness	K-W	rank	YES	0.003	2017	5	0.798	0.161	6.0	-1.0	a,c,d
					2018	5	0.675	0.149	0.4	-2.6	а
					2019	5	0.716	0.092	2.3	-2.1	a,d
					2020	5	0.839	0.048	7.9	-0.5	c,d
					2006	3	0.2	0.4	-	-0.5	a,b
					2007	3	1.6	2.7	3.2	-	а
					2015	5	2.0	4.5	4.3	0.2	a,b
Nemata (% of community)	ANOVA	log10(x+1)	YES	0.043	2016	5	1.0	1.0	1.9	-0.2	a,b
(/o o. coa					2017	5	2.1	1.6 1.9	4.5	0.2	a,b a,b
					2019	5	0.6	0.3	0.9	-0.4	b
					2020	5	1.5	0.6	3.1	0.0	a,b
					2006	3	0.5	0.4	-	3.6	a
					2007	3	0.1	0.1	-1.0	-	а
					2015	5	2.0	4.5	3.7	16.9	а
Hydracarina	K-W	rank	YES	0.02	2016	5	5.5	3.9	12.2	47.8	b
(% of community)					2017	5	3.9	4.7	8.2	33.2	a,b,c
					2018	5	1.5	2.3	2.4	12.3	а
					2019	5	2.0	1.1	3.6	16.9	a,c
					2020	5 3	99.0	4.9 0.8	13.4	52.3 90.4	b,c
					2006	3	90.0	0.6	-10.9	90.4	a a,b
					2015	5	80.4	11.4	-22.4	-95.8	b
Chironomidae					2016	5	87.8	3.0	-13.5	-21.7	a,b
(% of community)	ANOVA	none	YES	<0.001	2017	5	63.8	12.6	-42.5	-262.1	С
					2018	5	85.6	7.0	-16.2	-44.2	a,b
					2019	5	95.1	1.8	-4.8	50.7	а
					2020	5	84.8	8.0	-17.2	-52.0	a,b
					2006	3	37.2	16.0	-	2.2	a,b,c
					2007	3	14.4	10.4	-1.4	-	С
Metal Sensitive					2015	5	15.9	11.5	-1.3	0.1	C
Taxa	ANOVA	none	YES	<0.001	2016	5	29.2 39.0	13.6 23.3	-0.5 0.1	1.4 2.4	b,c
(% of community)					2017	5	59.6	11.3	1.4	4.3	a,b,c a
					2019	5	49.3	16.6	0.8	3.4	a,b
					2020	5	19.4	9.6	-1.1	0.5	C
					2006	3	0.0	0.1	-	0.0	a
					2007	3	0.0	0.1	0.0	-	а
					2015	5	6.0	8.9	60.0	60.0	а
Tipulidae	K-W	rank	NO	0.121	2016	5	1.7	1.2	17.1	17.1	а
(% of community)	,	, suit		J., 2	2017	5	1.1	1.6	11.0	11.0	a
					2018	5	0.6	0.5	6.1	6.1	а
					2019	5	0.5	0.5	5.3	5.3	a
					2020	5	1.4	0.9	13.7	13.7	а

Table F.58: Statistical Comparison of Benthic Metrics at the Mary River Lower Mine-Exposed Area (C0-05) Among Years of Mine Operation (2015 to 2020) and Baseline (2007, 2011) for the Mary River Project CREMP

		Overall 8-Year	Comparison					Pair-wise, p	oost-hoc comparis	ons	
			Significant						Effec	t Size	
Metric	Statistical Test ^a	Data Transformation	Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	vs. Baseline Year 2007	vs. Baseline Year 2011	Pairwise Comparison
					2006	3	35.0	15.3	-	-2.7	а
					2007	3	66.7	11.5	2.1	-	b
					2015	5	82.9	13.0	3.1	1.4	b
Collector- Gatherer FFG	ANOVA	log10	YES	<0.001	2016	5	59.0	10.2	1.6	-0.7	b
(% of community)	_	10910	120	40.001	2017	5	63.9	13.5	1.9	-0.2	b
					2018	5	83.7	8.2	3.2	1.5	b
					2019	5	67.0	15.7	2.1	0.0	b
					2020	5	71.0	7.0	2.4	0.4	b
					2006	3	21.0	28.3	-	0.7	a,b,c
					2007	3	13.3	11.5	-0.3	-	a,b
					2015	5	0.0	0.0	-0.7	-1.2	d
Filterer FFG	K-W	rank	YES	0.002	2016	5	0.6	0.7	-0.7	-1.1	d
(% of community)	1000	raint	120	0.002	2017	5	19.9	10.4	0.0	0.6	а
					2018	5	6.1	4.2	-0.5	-0.6	a,b
					2019	5	0.9	0.7	-0.7	-1.1	c,d
					2020	5	4.3	5.0	-0.6	-0.8	b,c,d
					2006	3	40.2	20.9	-	5.8	а
					2007	3	6.7	5.8	-1.6	-	b,c
					2015	5	16.0	11.4	-1.2	1.6	a,b
Shredder FFG	ANOVA	log10	YES	0.001	2016	5	8.9	6.8	-1.5	0.4	a,b,c
(% of community)	711077	10910	120	0.001	2017	5	6.7	3.1	-1.6	0.01	b,c
					2018	5	4.2	2.5	-1.7	-0.4	С
					2019	5	18.0	3.5	-1.1	2.0	a,b
					2020	5	13.5	9.3	-1.3	1.2	a,b,c

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of a ± 2 SD effect size of respective baseline year mean indicating an ecologically meaningful difference between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.59: Statistical Comparison of Sediment Physical Properties Between Mary Lake (BL0) and Reference Lake 3 Stations Collected at Littoral and Profundal Depths, Mary River Project CREMP, August 2020

			Statistical Tes	t Results				Sum	mary Statistic	cs		
Lake Zone	Sediment Variable	Statistical Test ^a	Data Transformation	Significant Difference between Areas?	P-value	Study Lake	Sample Size (n)	Mean	Standard Deviation	Standard Error	Minimum	Maximum
	Sand-Sized Material (%)	tequal	none	NO	0.926	Reference	5	29.6	7.52	3.36	23.4	40.4
Su	Sand-Sized Material (%)	tequal	none	NO	0.920	Mary	4	28.1	34.5	15.4	5.20	78.6
Littoral (Shallow) Stations	Silt-Sized Material (%)	tegual	none	NO	0.459	Reference	5	62.2	6.33	2.83	53.4	68.4
Sta	Siit-Sizeu Materiai (%)	tequal	none	NO	0.459	Mary	4	53.6	24.0	10.7	18.0	69.9
NO.	Clay-Sized Material (%)	tequal	none	NO	0.166	Reference	5	8.22	3.00	1.34	6.20	13.4
Shal	Clay-Sized Waterial (76)	tequal	none	NO	0.100	Mary	4	18.3	14.5	6.48	3.40	32.0
(S	Moisture (%)	tequal	nono	YES	0.005	Reference	5	87.9	4.60	2.06	80.2	92.3
ffor	. ,	tequal	none	YES	0.005	Mary	4	50.7	19.9	8.91	27.3	67.3
Ē	Total Organic Carbon	tequal	none	YES	0.005	Reference	5	4.80	1.96	0.876	2.26	6.95
	(TOC) Content (%)	tequal	none	TLO	0.003	Mary	4	0.765	0.450	0.201	0.220	1.31
	Sand-Sized Material (%)	tegual	none	NO	0.920	Reference	5	31.6	22.3	10.0	13.9	56.6
ω	Sand-Sized Material (78)	tequal	none	NO	0.920	Mary	6	29.9	30.9	13.8	7.70	91.9
tion	Silt-Sized Material (%)	tequal	none	NO	0.608	Reference	5	57.4	18.1	8.10	36.9	71.9
Sta	Siit-Sizeu Material (76)	tequal	none	NO	0.000	Mary	6	50.4	24.4	10.9	6.00	73.4
(dee	Clay-Sized Material (%)	tequal	none	NO	0.149	Reference	5	11.0	4.28	1.92	6.30	15.1
<u>o</u>	Clay-Sized Material (70)	tequal	none	NO	0.149	Mary	6	19.7	11.6	5.19	2.10	33.2
Profundal (Deep) Stations	Moisture (%)	tequal	none	YES	0.004	Reference	5	82.6	3.60	1.61	78.3	86.6
rofi	WOIStufe (70)	icquai	HOHE	TLO	0.004	Mary	6	49.7	18.9	8.46	16.6	68.4
_ "	Total Organic Carbon	tequal	none	YES	<0.001	Reference	5	3.42	1.08	0.484	2.20	4.52
	(TOC) Content (%)	ıequai	Hone	TES	<u> </u>	Mary	6	0.688	0.275	0.123	0.220	0.930

Highlighted values indicate significant difference between study areas based on statistical p-value less than 0.10.

^a Statistical tests included tequal (t-test assuming equal variance), tunequal (t-test assuming unequal variance), and M-W (Mann-Whitney U-test).

Table F.60: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Mary Lake, August 2020

I	0, 1, 4		M1	:44 1 O4 - 4'				D-	-fl-l Ot-4:-		
Taxa	Study Area Replicate Station	BLO-1	Mary Lake - L BLO-11	ittoral Station: BLO-7	BLO-6	BLO-3	BLO-15	ary Lake - Pro BLO-14	BLO-13	BLO-4	BLO-5
POLINE	DWORMS	BLO-1	BLO-11	BLO-7	BLU-0	BLU-3	BLO-15	BLO-14	BLU-13	BLU-4	BLU-5
			00		0.4	4.4					0.4
P. Nem	nata	=	86	-	34	14	-	-	-	-	34
ANNEL	<u>.IDS</u>										
P. Anne											
WOF											
	Dligochaeta										
	Enchytraeidae		_								_
	Lumbriculidae	-	-	-	-	-	-	-	-	-	-
'	Lumbriculus	-	-	-	-	-	-	-	-	-	-
ARTHR	ROPODS										
P. Arth											
MITE											
	vrachnida										
	Acarina										
	immature		17								
		-	17	-	-	-	-	-	-	-	-
	Acalyptonotidae										
	Acalyptonotus	60	34	86	34	-	17	17	17	17	17
	Hygrobatidae										
	Hygrobates	17	52	-	-	14	-	-	-	-	17
	Lebertiidae										
I	Lebertia	9	34	-	-	43	-	-	9	17	-
F. 8	Sperchontidae										
,	Sperchon	-	17	-	-	-	-	-	-	-	-
HAR	PACTICOIDS										
O. H	arpacticoida	-	-	-	-	-	-	-	-	-	-
SEE	D SHRIMPS										
CI. O	Ostracoda	1,172	4,741	526	474	417	164	17	155	17	17
INSECT	<u>TS</u>										
Cl. In	nsecta										
CAD	DISFLIES										
O. Tr	richoptera										
F. /	Apataniidae										
/	Apatania	-	-	-	-	-	-	-	-	-	-
F. I	Limnephilidae										
(Grensia praeterita	-	-	-	-	-	-	-	-	-	-
TRUE F											
	iptera										
MIDO											
	Chironomidae										
	chironomid pupae	17	17	-	-	14		-	_	9	69
		17	17	-	-	14	-	-	-	9	03
	F. Chironominae										
	Chironomus	-	86	-	-	-	-	-	-	-	397
	Micropsectra	422	241	-	-	172	9	-	-	-	17
	Paratanytarsus	86	34	-	-	-	-	-	-	-	-
	Sergentia	-	34	-	-	-	-	-	-	-	362
	Stictochironomus	250	2,414	-	-	-	-	-	-	-	310
	Tanytarsus	353	121	-	-	-	-	-	-	-	-
S.F	Diamesinae										
1	Diamesa	17	-	-	-	-	-	-	-	-	-
1	Protanypus	-	69	26	26	14	9	26	17	-	17
,	Pseudodiamesa	-	-	17	26	-	-	9	-	-	-
S.F	Orthocladiinae										
	Abiskomyia	138	948	9	26	14	9	-	-	-	34
	Heterotrissocladius	103	328	207	138	517	-	500	388	466	-
	Hydrobaenus	-	-	-	-	-	-	-	-	-	17
	Mesocricotopus										
		17	- 60	-	-	-	-	-	-	-	-
	Paracladius	17	69	-	9	-	-	-	-	-	-
	Parakiefferiella	-	-	-	-	-	-	-	-	-	-
/	Psectrocladius	-	-	-	-	-	=	-	-	-	-
	Zalutschia	17	-	-	-	57	-	-	-	-	-
							1	i	İ	1	
2	Orthocladiinae indeterminate	-	-	-	-	-	-	-	-	-	-
2	Orthocladiinae indeterminate Tanypodinae	-	-	-	-	-	-	-	-	-	<u>-</u>
S.F		-	-	-	-	-	-	-	-	-	-

^a Bold entries excluded from taxa count^a

Table F.60: Benthic Invertebrate Community Data, Expressed in Number of Organisms per Square Metre, for Mary Lake, August 2020

Taxa	Study Area	Mary Lake - Littoral Stations				Mary Lake - Profundal Stations						
Таха	Replicate Station	BLO-1	BLO-11	BLO-7	BLO-6	BLO-3	BLO-15	BLO-14	BLO-13	BLO-4	BLO-5	
Densit	ty (No. organisms per m²)	4,922	9,345	1,112	966	1,298	216	641	1,368	615	554	
Richn	ess (total number of taxa) ^a	14	16	7	9	10	6	6	12	6	5	
Simpson's Evenness (E)		0.772	0.707	0.802	0.778	0.787	0.492	0.445	0.834	0.637	0.322	
Shannon-Wiener Diversity		2.38	2.14	2.00	2.20	2.17	1.34	1.18	2.48	1.49	0.867	
Domin	ant Taxonomic Group Com	position			,	,						
% N	lemata	0	0.923	0	3.57	1.11	0	0	2.53	0	0	
% H	% Hydracarina		1.66	7.75	3.57	4.44	8.00	2.70	2.53	4.23	6.25	
% C	Ostracods	23.8	50.7	47.3	49.1	32.2	76.0	2.70	1.27	25.4	3.13	
% C	Chironomids	74.4	46.7	45.0	43.8	62.2	16.0	94.6	93.7	70.4	90.6	
% N	letal Sensitive Chironmids	17.9	5.00	3.88	5.36	14.7	8.00	5.41	2.68	2.82	0	
% T	% Tipulidae											
Functi	onal Feeding Group Compo	sition										
% C	Collector - Gatherers	34.6	94.1	70.5	75.9	76.3	84.0	86.5	92.1	91.5	89.0	
% F	ilterers	17.6	4.26	0	0	13.6	4.00	0	1.34	0	0	
% S	hredders	0.352	0	0	0	4.53	0	0	0	0	0	
Habita	t Preference Group Compo	sition										
% C	Clingers	17.6	5.92	7.75	3.57	18.0	12.0	2.70	32.0	4.23	6.25	
% S	prawlers	77.3	65.6	89.9	90.2	79.7	84.0	93.2	9.29	93.0	93.8	
% B	urrowers	5.10	28.5	2.33	6.25	2.24	4.00	4.05	58.7	2.82	0	

^a Bold entries excluded from taxa count[.]

Table F.61: Statistical Comparison of Benthic Invertebrate Community Metrics at Mary Lake Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

	Overall 7-Year Comparison					Pair-wise, post-hoc comparisons ^a							
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year	Pairwise Comparison			
			Years?			(,			2007				
					2007	3	2,667	1,454	-	а			
					2015	4	2,453	2,186	-0.1	а			
Density					2016	6	1,947	1,591	-0.5	а			
(No. per m²)	ANOVA	none	NO	0.780	2017	4	1,839	1,853	-0.6	а			
					2018	4	1,718	1,418	-0.7	а			
					2019	4	2,448	2,313	-0.2	а			
					2020	4	4,086	3,955	1.0	а			
					2007	3	8.0	2.0	-	а			
					2015	4	9.0	1.8	0.5	a			
Richness	ANIO)/A	la =40	NO	0.000	2016	6	8.7	0.5	0.3	a			
(No. of Taxa)	ANOVA	log10	NO	0.668	2017	4	9.5	2.1	0.8	a			
					2018	4	9.3	2.2	0.6	a			
					2019	4	11.5	5.0	1.8	a			
					2020	4	11.5	4.2	1.8	a			
					2007	3	0.718	0.041	- 1 1	а			
					2015	4	0.761	0.058	1.1	a			
Simpson's	ANO. (A		NO	0.444	2016	6	0.574	0.299	-3.5	a			
Evenness	ANOVA	none	NO	0.411	2017	4	0.818	0.110	2.4	a			
					2018	4	0.575	0.293	-3.5	a			
					2019	4	0.663	0.169	-1.3	a			
					2020	4	0.765	0.041	1.2	a			
					2007	3	7.3	11.2	-	а			
					2015	4	5.6	6.3	-0.1	a			
Nemata	12.107	rould	NO	0.700	2016	6	3.6	7.5	-0.3	a			
(% of community)	K-W	rank	NO	0.708	2017	4	3.5	6.2	-0.3	a			
					2018	4	3.5	6.4	-0.3	a			
					2019	4	2.4	2.4	-0.4	a			
					2020	4	1.1	1.7	-0.6	a			
					2007	3	0.2	0.4	-	a			
					2015	4	1.9	2.2	4.3	ab			
Ostracoda	14.104		VEO	0.000	2016	6	2.3	2.2	5.5	ab			
(% of community)	K-W	rank	YES	0.020	2017	4	2.1	2.2	5.0	ab			
					2018	4	8.9	10.9	22.8	bc			
					2019	4	2.0	1.1	4.8	ab			
					2020	4	42.7	12.7	112.4	С			
					2007	3	90.8	11.8	-	a			
					2015	4	91.1	7.7	0.0	а			
Chironomidae	17.147	wo rede	VEC	0.040	2016	6	90.6	12.2	0.0	a			
(% of community)	ty) K-W	rank	YES	0.013	2017	4	85.7	13.1	-0.4	a			
					2018	4	86.2	18.7	-0.4	a			
					2019	4	93.4	4.0	0.2	a			
					2020	4	52.5	14.7	-3.2	b			
					2007	3	22.4	13.8	- 0.5	a			
					2015	4	15.8	14.6	-0.5	a			
Metal Sensitive	A N.O. / A	L40	NO	0.054	2016	6	19.2	13.3	-0.2	a			
Taxa (% of community)	ANOVA	log10	NO	0.654	2017	4	21.3	7.7	-0.1	a			
					2018	4	11.6	9.8	-0.8	a			
					2019	4	14.2	12.2	-0.6	a			
					2020	4	8.1	6.6	-1.0	a			
					2007	3	66.0	26.7	-	а			
					2015	4	72.8	23.1	0.3	а			
Collector-Gatherer					2016	6	73.5	24.7	0.3	а			
FFG (% of community)	K-W	rank	NO	0.641	2017	4	52.2	23.6	-0.5	а			
,					2018	4	76.1	36.4	0.4	а			
					2019	4	65.1	24.9	0.0	а			
					2020	4	68.8	24.9	0.1	а			

Table F.61: Statistical Comparison of Benthic Invertebrate Community Metrics at Mary Lake Littoral (Shallow) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

	Overall 7-Year Comparison				Pair-wise, post-hoc comparisons ^a						
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2007	Pairwise Comparison	
) K-W	V rank	NO	0.544	2007	3	22.0	14.5	-	а	
					2015	4	14.4	16.2	-0.5	а	
					2016	6	12.4	13.2	-0.7	а	
Filterer FFG (% of community)					2017	4	13.3	16.0	-0.6	а	
					2018	4	4.1	7.3	-1.2	а	
					2019	4	11.5	13.8	-0.7	а	
					2020	4	5.5	8.3	-1.1	а	

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

Table F.62: Statistical Comparison of Benthic Invertebrate Community Metrics at Mary Lake Profundal (Deep) Stations Among Years of Mine Operation (2015 to 2020) and Baseline (2007) for the Mary River Project CREMP

	Overall 6-Year Comparison					Pair-wise, post-hoc comparisons ^a							
Metric	Statistical Test ^a	Data Transformation	Significant Difference Among Years?	P-value	Year	Sample Size (n)	Mean	Standard Deviation	Effect Size vs. Baseline Year 2007	Pairwise Comparison			
					2007	4	3,512	3,257	=	а			
					2015	6	775	748	-0.8	bc			
Density	ANOVA	log10	YES	0.005	2017	6	536	497	-0.9	С			
(No. per m²)	ANOVA	log 10	123	0.005	2018	6	1,521	599	-0.6	ab			
					2019	6	1,428	506	-0.6	ab			
					2020	6	779	452	-0.8	abc			
					2007	4	8.0	6.2	-	а			
					2015	6	7.7	4.1	0.0	а			
Richness	ANOVA	log10	NO	0.992	2017	6	7.0	1.5	-0.2	а			
(No. of Taxa)	ANOVA	log10	NO	0.992	2018	6	8.2	4.4	0.0	а			
					2019	6	8.2	4.5	0.0	а			
					2020	6	7.5	2.8	-0.1	а			
					2007	4	0.453	0.268	-	а			
					2015	6	0.696	0.142	0.9	а			
Simpson's	,				2017	6	0.604	0.236	0.6	а			
Evenness	ANOVA	log10	NO	0.161	2018	6	0.387	0.359	-0.2	а			
					2019	6	0.479	0.273	0.1	а			
					2020	6	0.586	0.201	0.5	а			
					2007	4	1.3	1.8	<u> </u>	а			
		rank	NO	0.417	2015	6	2.0	2.6	0.4	а			
V4					2017	6	2.4	1.9	0.6	а			
Nemata (% of community)	K-W				2018	6	1.7	1.9	0.2	а			
					2019	6	0.7	0.9	-0.3	а			
					2020	6	0.6	1.0	-0.4				
										a			
		rank	NO	0.215	2007	4	1.6	2.2	-	a			
					2015	6	11.1	10.9	4.4	a			
Ostracoda (% of community)	K-W				2017	6	3.2	6.2	0.7	а			
(70 Or Community)	y)				2018	6	3.5	3.2	0.9	а			
					2019	6	10.9	17.4	4.3	а			
					2020	6	23.4	28.9	10.0	а			
					2007	4	96.4	4.7	-	а			
					2015	6	83.8	12.2	-2.7	а			
Chironomidae	K-W	rank	NO	0.254	2017	6	84.9	13.8	-2.5	а			
(% of community))				2018	6	93.8	4.1	-0.6	а			
					2019	6	86.6	17.4	-2.1	а			
					2020	6	71.3	30.2	-5.4	а			
					2007	4	33.7	27.9	-	а			
		K-W rank	NO	0.522	2015	6	9.5	8.2	-0.9	а			
Metal Sensitive Taxa	K-W				2017	6	5.6	3.2	-1.0	а			
(% of community)	12-44				2018	6	8.6	11.2	-0.9	а			
					2019	6	4.5	4.5	-1.1	а			
					2020	6	5.6	5.2	-1.0	а			
					2007	4	64.4	27.7	-	а			
					2015	6	82.7	5.9	0.7	а			
Collector-Gatherer		rank			2017	6	80.7	18.2	0.6	а			
FFG (% of community)	K-W		NO	0.142	2018	6	90.0	13.2	0.9	а			
•,					2019	6	92.3	4.2	1.0	а			
					2020	6	86.6	5.9	0.8	а			
					2007	4	33.1	27.8	-	а			
					2015	6	9.4	7.9	-0.9	а			
				0.230	2017	6	3.8	2.7	-0.9	a			
Filterer FFG (% of community)	K-W	rank	NO		2017		7.8	11.4	-0.9				
						6				а			
					2019	6	2.9	4.1	-1.1	a			
					2020	6	3.2	5.3	-1.1	а			

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Indicates magnitude of difference outside of the Critical Effect Size of ± 2 SD of respective baseline year mean, suggesting an ecologically meaningful difference in endpoint value between study years.

Note: "-" indicates not applicable.

^a Statistical tests include Analysis of Variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) post hoc tests, or Kruskal-Wallis H-test (K-W) followed by Mann-Whitney U-test (M-W).

APPENDIX G FISH POPULATION SURVEY DATA

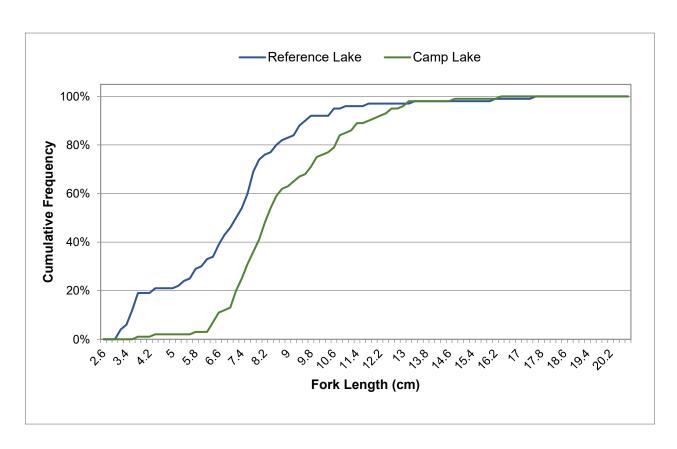


Figure G.1: Cumulative Length-frequency Distributions for Juvenile Arctic Charr Captured by Electrofishing at Nearshore Areas of Camp Lake and Reference Lake 3, Mary River Project CREMP, August 2020

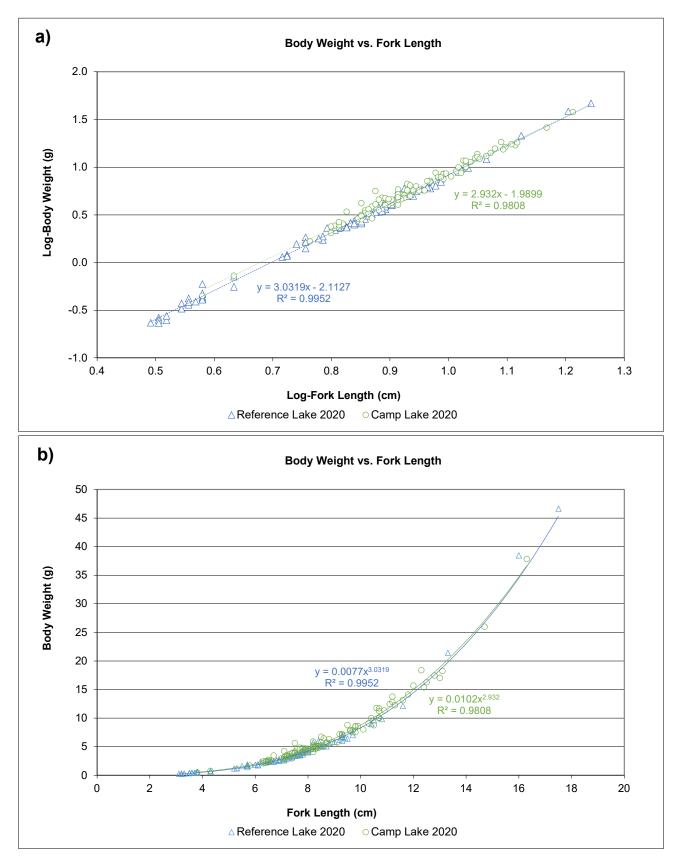


Figure G.2: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at the Nearshore Area of Camp Lake and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

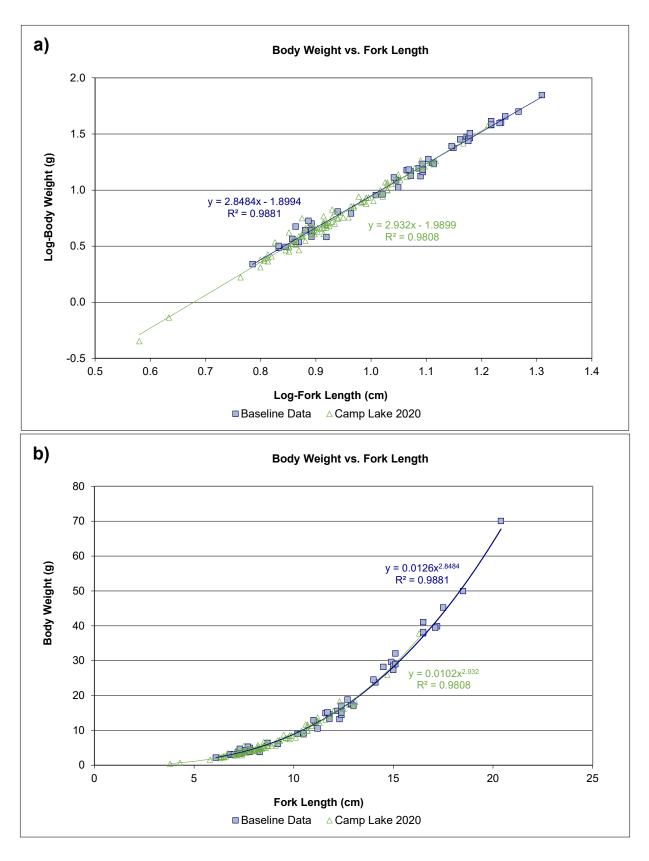



Figure G.3: Comparison of Condition (Weight-at-fork length Relationship) for Arctic Charr Collected in Fall (August-September) at Camp Lake Nearshore Areas in 2019 and during the Mine Baseline Period (2013) using Log-transformed (a) and Untransformed (b) Data

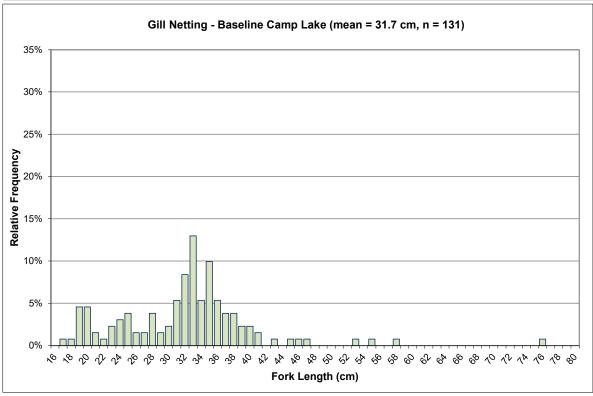


Figure G.4: Length-Frequency Distributions for Arctic Charr Captured by Gill Netting at Camp Lake (JLO) in 2020 and Baseline Studies Conducted in Fall, Mary River Project CREMP

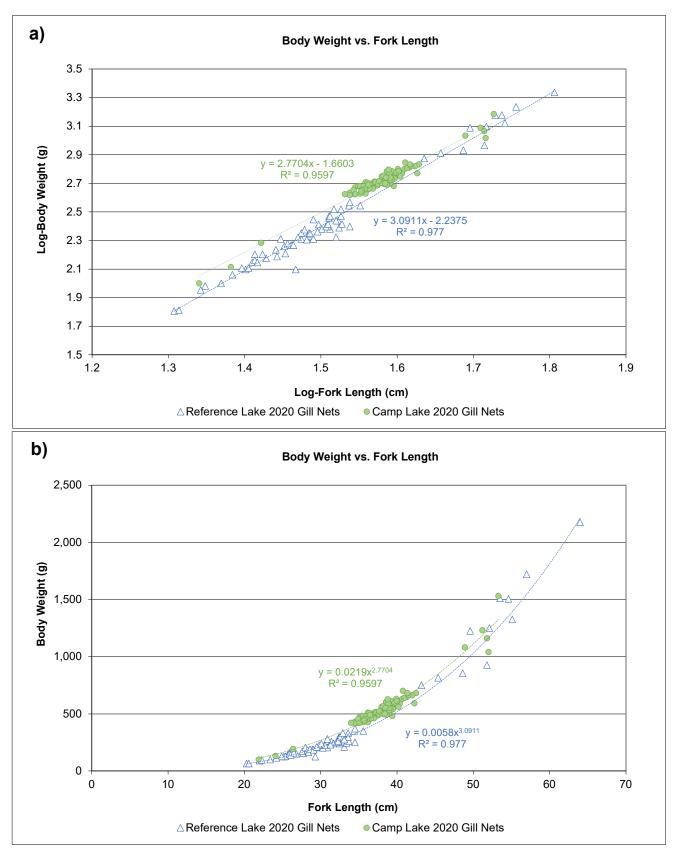


Figure G.5: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at Littoral/Profundal Areas of Camp Lake and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

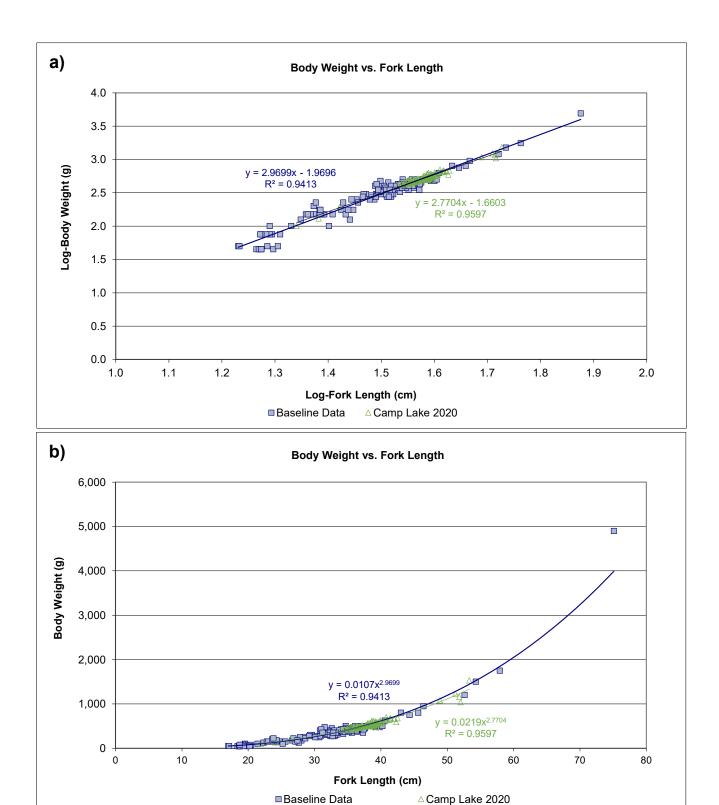


Figure G.6: Comparison of Condition (Weight-at-fork Length Relationship) for Arctic Charr Collected in Fall (August-September) at Camp Lake Littoral/Profundal Areas in 2020 and during the Mine Baseline Period (2006, 2007, 2008, 2013) using Log-transformed (a) and Untransformed (b) Data

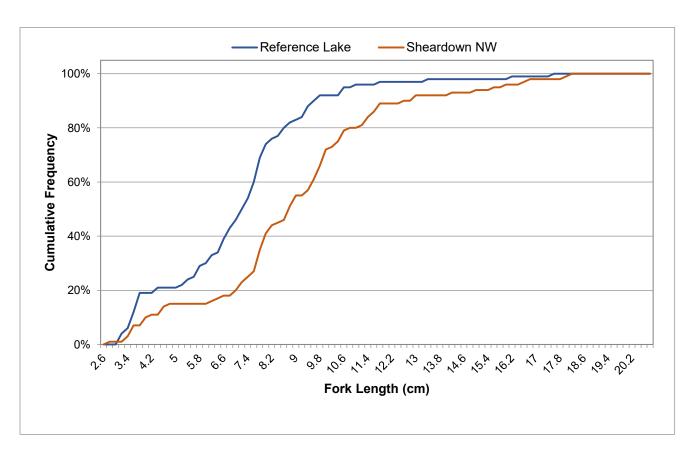


Figure G.7: Cumulative Length-frequency Distributions for Juvenile Arctic Charr Captured by Electrofishing at Nearshore Areas of Sheardown Lake NW and Reference Lake 3, Mary River Project CREMP, August 2020

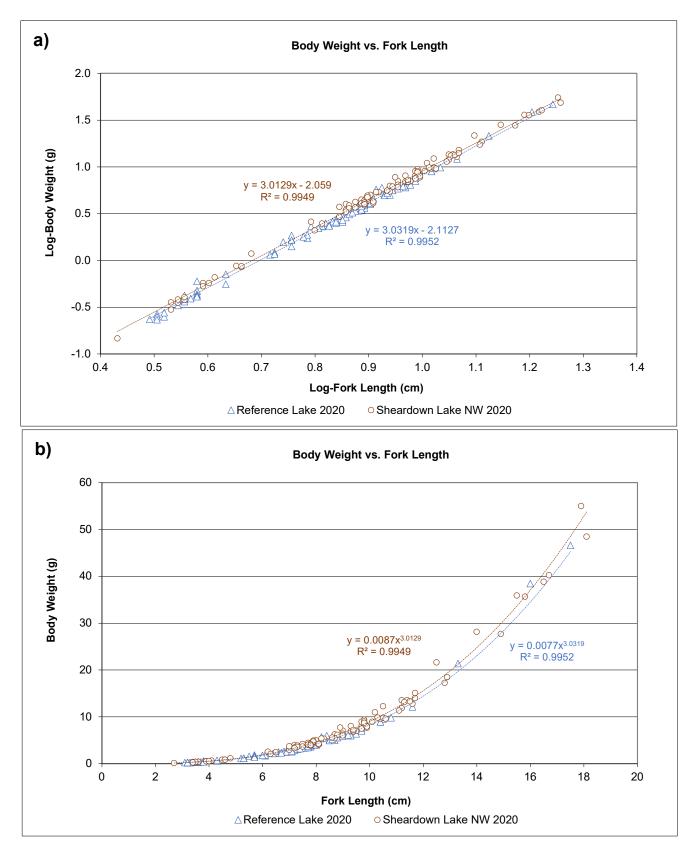


Figure G.8: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at the Nearshore Area of Sheardown Lake NW and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

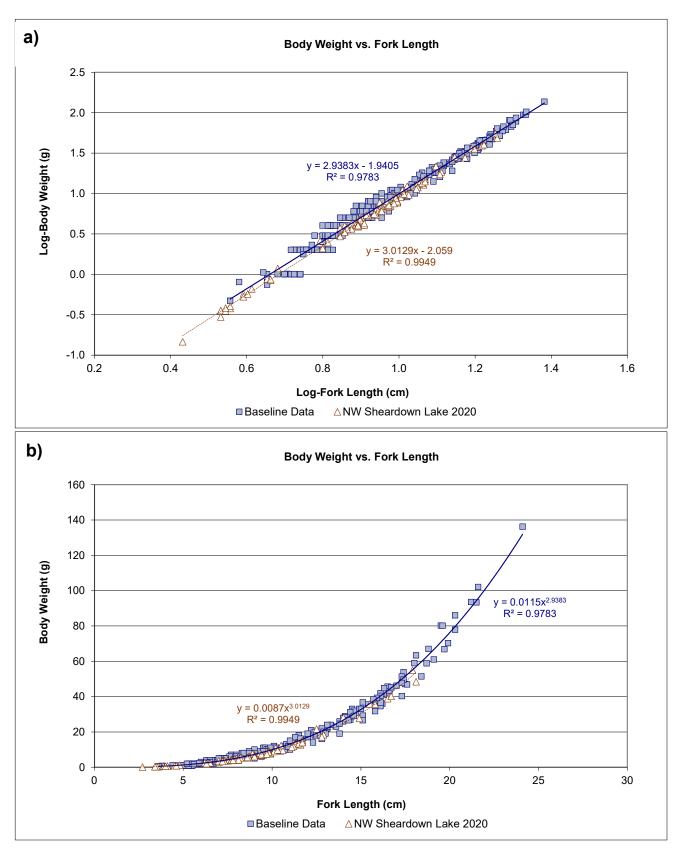


Figure G.9: Comparison of Condition (Weight-at-fork length Relationship) for Arctic Charr Collected in Fall (August-September) at Sheardown Lake NW Nearshore Areas in 2020 and During the Mine Baseline Period (2007, 2008, 2013) using Log-transformed (a) and Untransformed (b) Data, Mary River Project CREMP

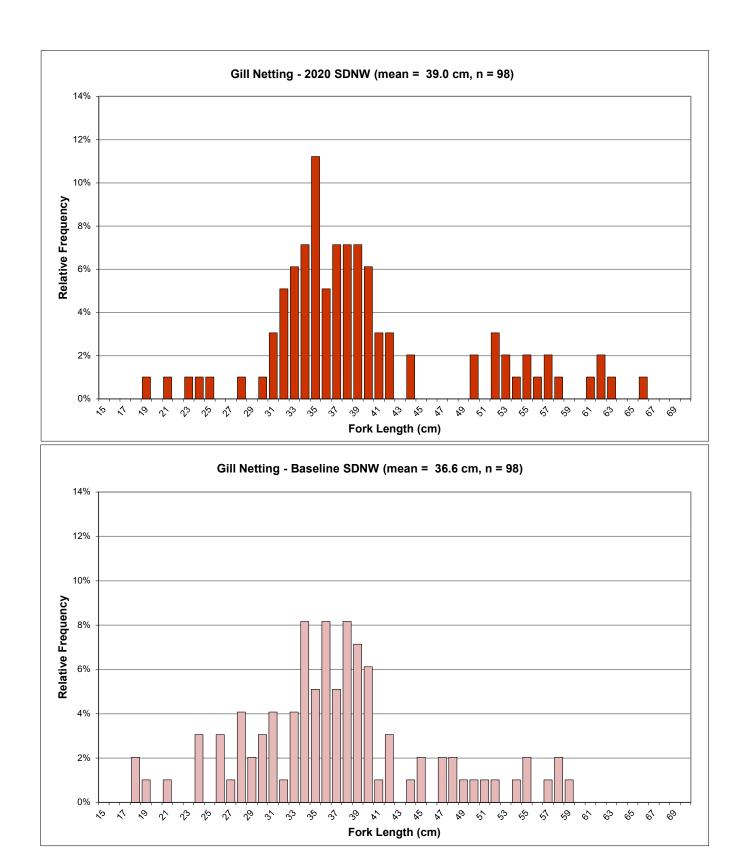


Figure G.10: Length-Frequency Distributions for Arctic Charr Captured by Gill Netting at Sheardown Lake NW (DLO-01) in 2019 and Baseline Studies Conducted in Fall, Mary River Project CREMP

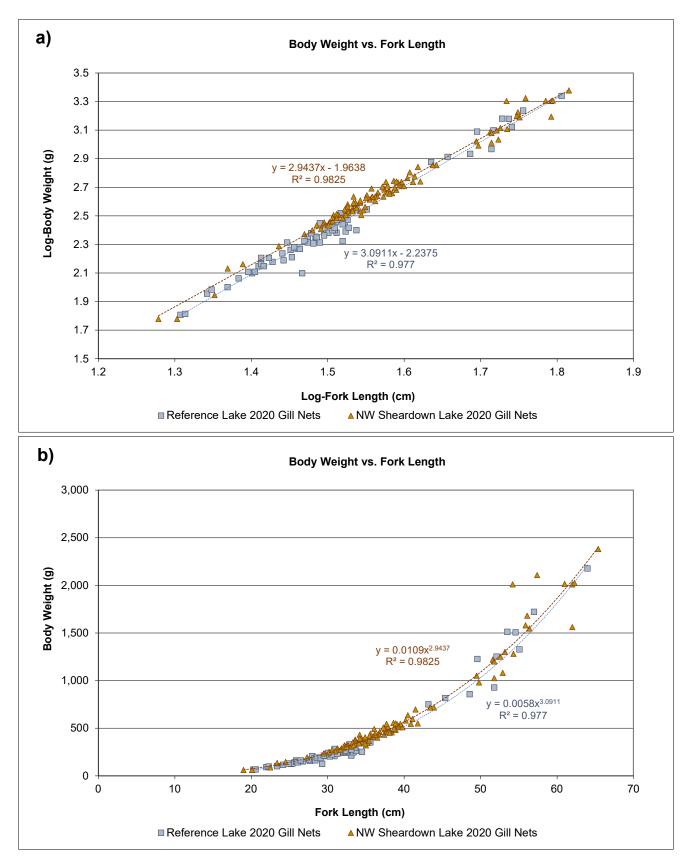


Figure G.11: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at Littoral/Profundal Areas of Sheardown Lake NW and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

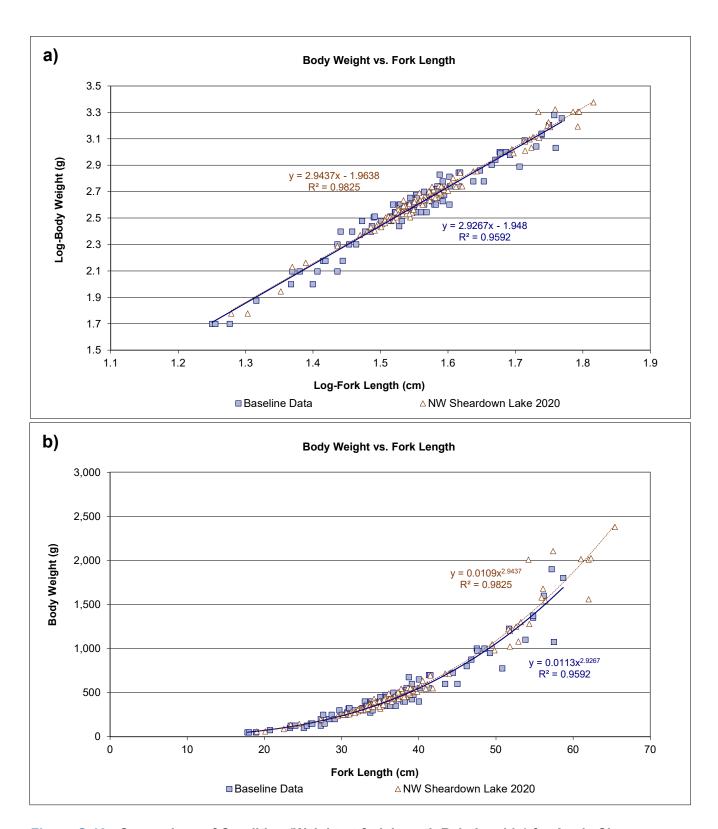


Figure G.12: Comparison of Condition (Weight-at-fork Length Relationship) for Arctic Charr Collected in Fall (August-September) at Sheardown Lake NW Nearshore Areas in 2020 and during the Mine Baseline Period (2006, 2007, 2008, 2013) using Log-transformed (a) and Untransformed (b) Data, Mary River Project CREMP

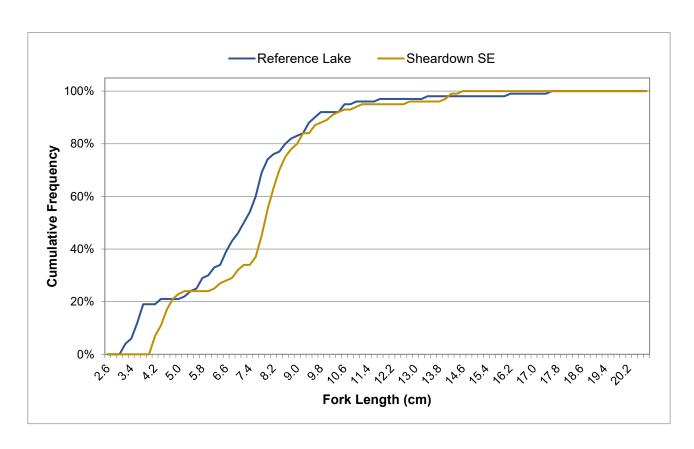


Figure G.13: Cumulative Length-frequency Distributions for Juvenile Arctic Charr Captured by Electrofishing at Nearshore Areas of Sheardown Lake SE and Reference Lake 3, Mary River Project CREMP, August 2020

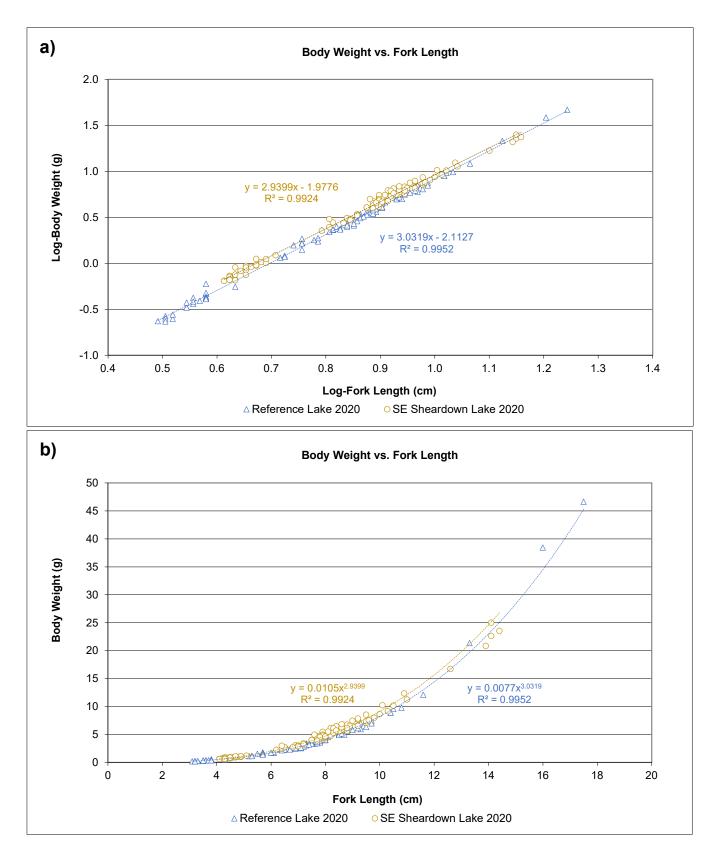


Figure G.14: Comparison of Condition (Weight-at-fork Length Relationship) for Arctic Charr Collected at the Nearshore Area of Sheardown Lake SE and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

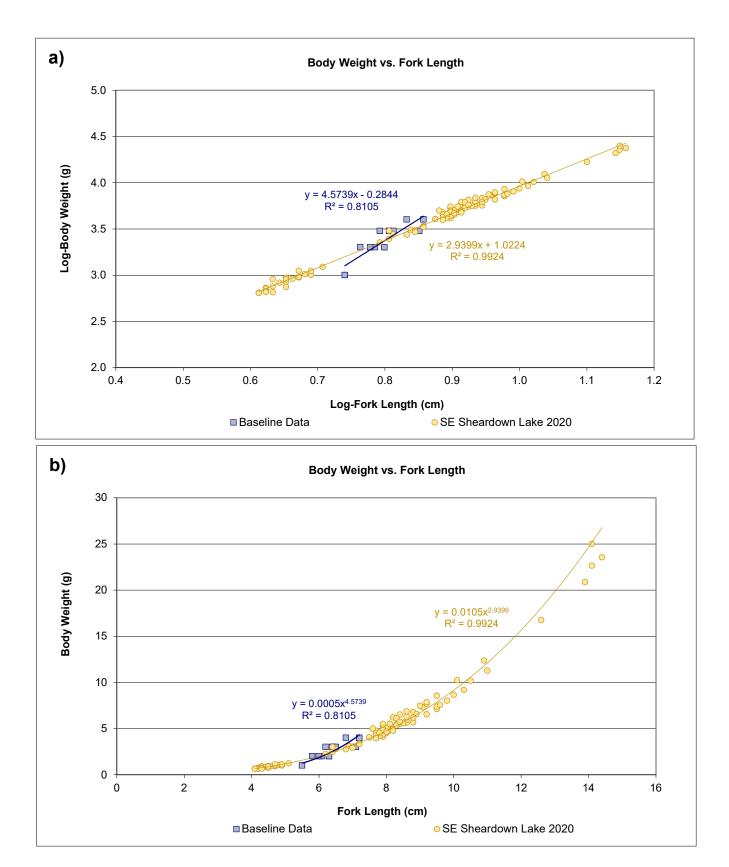
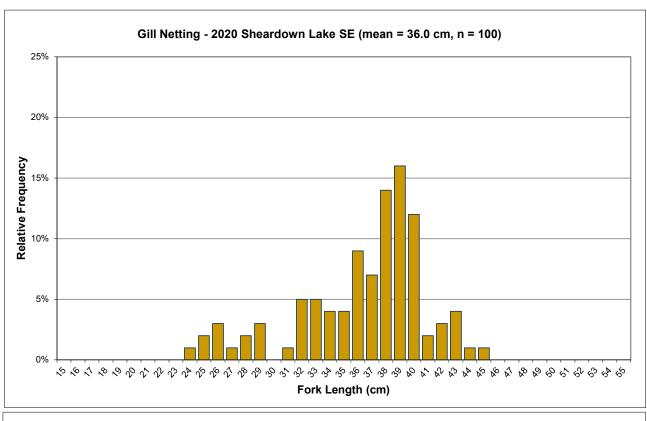



Figure G.15: Comparison of Condition (Weight-at-fork Length Relationship) for Arctic Charr Collected in Fall (August-September) at Sheardown Lake SE Nearshore Areas in 2020 and During the Mine Baseline Period (2007) using Log-transformed (a) and Untransformed (b) Data, Mary River Project CREMP

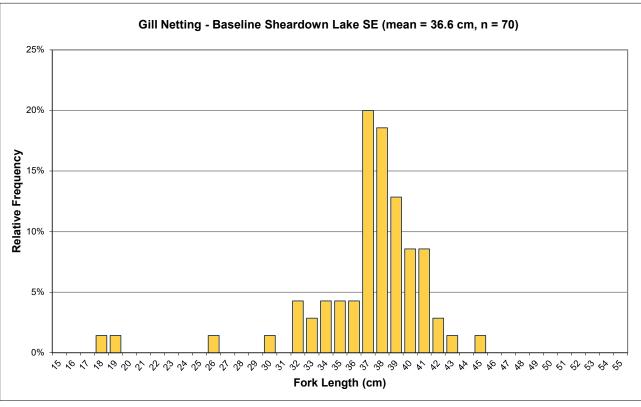


Figure G.16: Length-Frequency Distributions for Arctic Charr Captured by Gill Netting at Sheardown Lake SE (DLO-02) in 2020 and Baseline Studies Conducted in Fall, Mary River Project CREMP

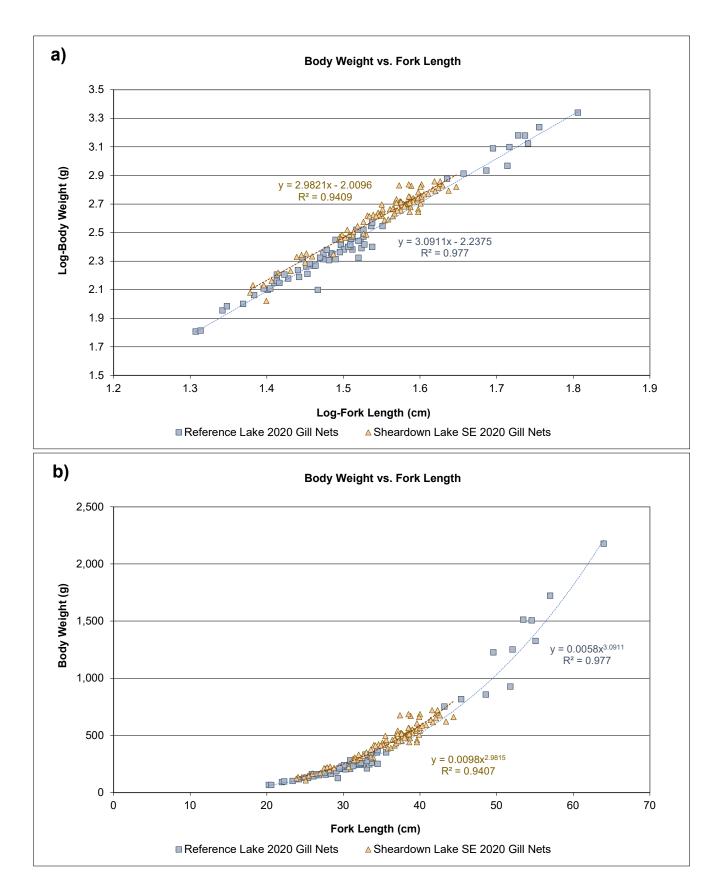


Figure G.17: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at Littoral/Profundal Areas of Sheardown Lake SE and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

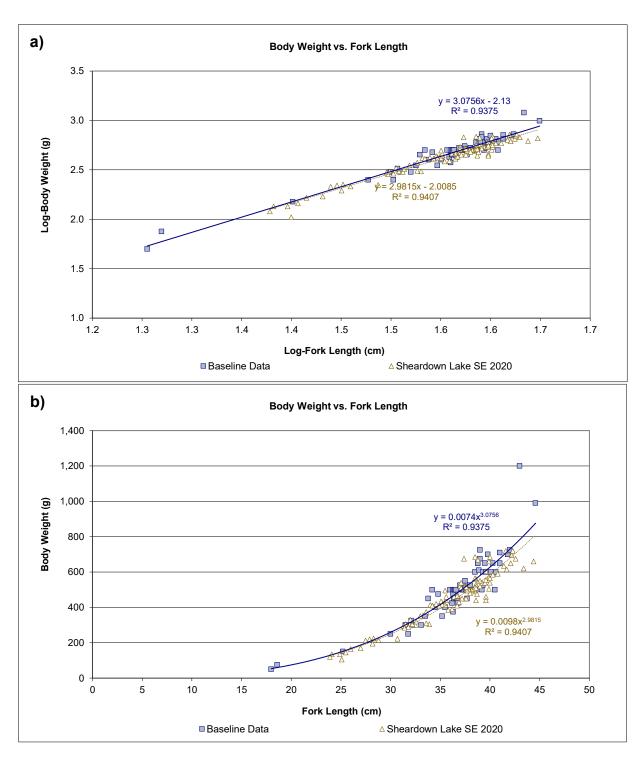


Figure G.18: Comparison of Condition (Weight-at-fork Length Relationship) for Arctic Charr collected in Fall (August-September) at Sheardown Lake SE Nearshore Areas in 2020 and During the Mine Baseline Period (2007, 2008) using Log-transformed (a) and Untransformed (b) Data, Mary River Project CREMP

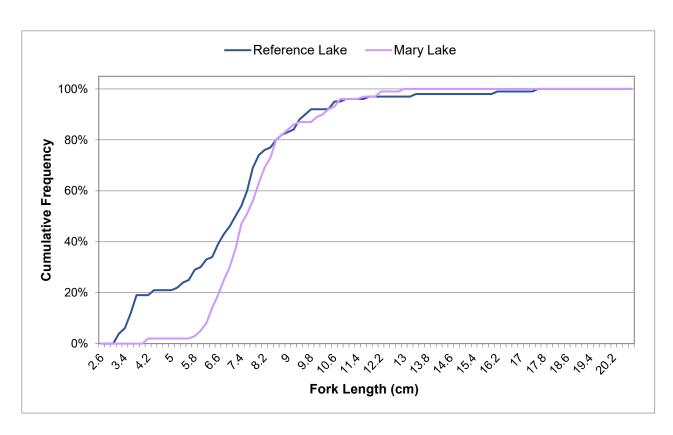
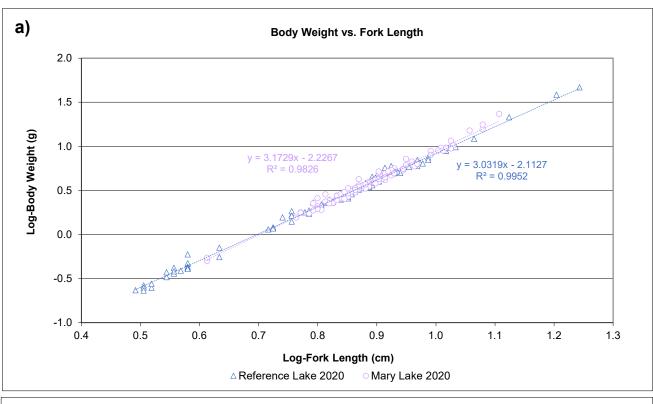



Figure G.19: Cumulative Length-frequency Distributions for Juvenile Arctic Charr Captured by Electrofishing at Nearshore Areas of Mary Lake and Reference Lake 3, Mary River Project CREMP, August 2020

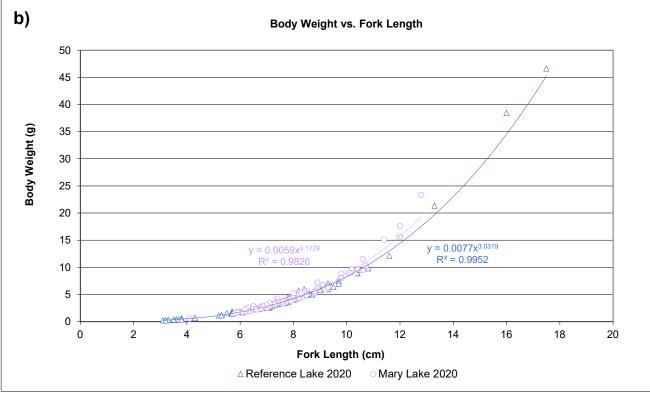


Figure G.20: Comparison of Condition (Weight-at-fork-Length Relationship) for Arctic Charr Collected at the Nearshore Area of Mary Lake and Reference Lake 3 in August 2019 using Log-Transformed (a) and Untransformed (b) Data, Mary River Project 2020 CREMP

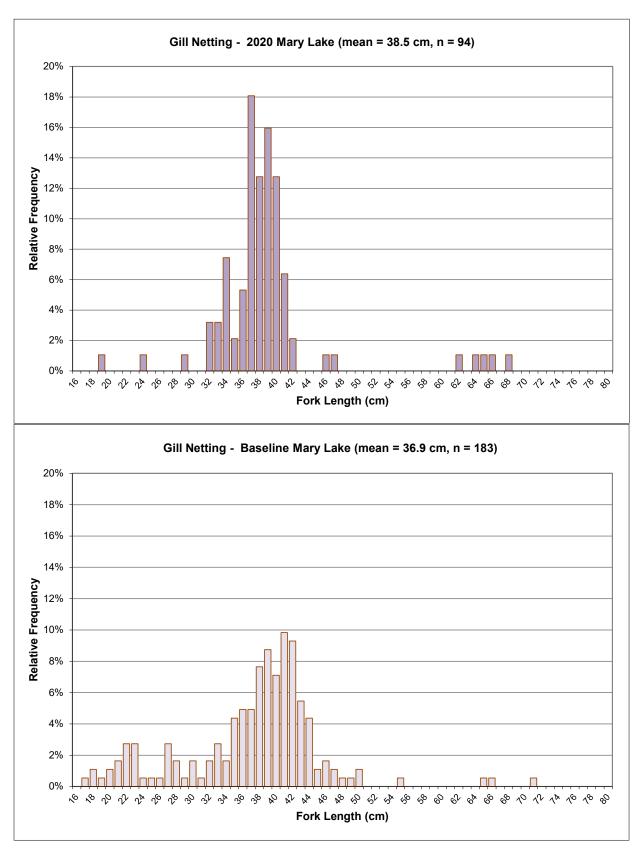


Figure G.21: Length-Frequency Distributions for Arctic Charr Captured by Gill Netting at Mary Lake (BLO) in 2020 and Baseline Studies Conducted in Fall

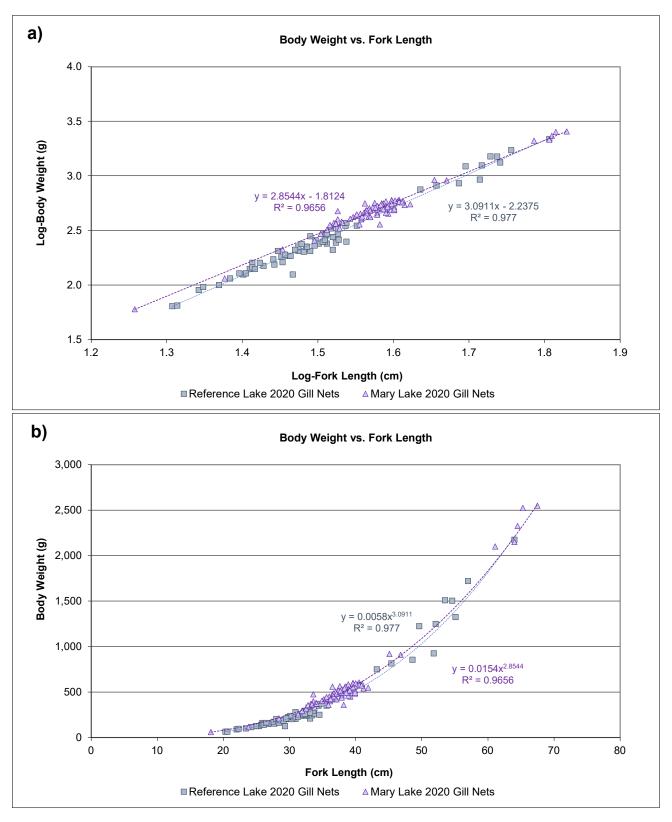


Figure G.22: Comparison of Condition (Weight-at-fork-length Relationship) for Arctic Charr Collected at Littoral/Profundal Areas of Mary Lake and Reference Lake 3 in August 2020 using Log-transformed (a) and Untransformed (b) Data

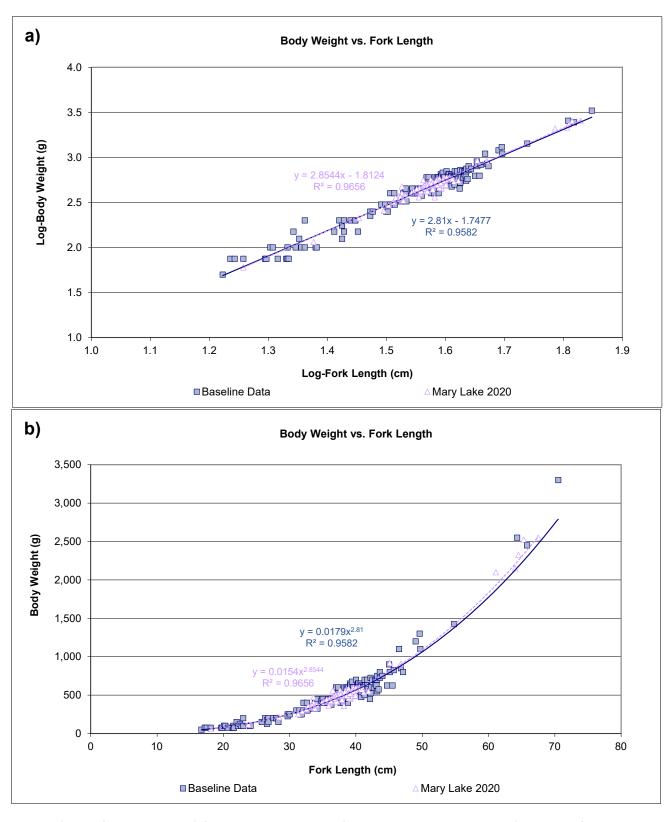


Figure G.23: Comparison of Condition (Weight-at-fork Length Relationship) for Arctic Charr Collected in Fall (August-September) at Mary Lake Nearshore Areas in 2020 and During the Mine Baseline Period (2006, 2007) using Log-transformed (a) and Untransformed (b) Data

Table G.1: Electrofishing Catch Records, Mary River Project CREMP, August 2020

	O. Walter		Loca	ation										Fish S	Species			Total	
Waterbody	Sample Station	1)	NAD83, UTN		V)	Fishing	Electr	ofisher Se	ttings	No. of	Effort		Arctic Charr			Nine-spine Stickleback			pecies)
	Identifier	St	art	Fin	ish	Date	Output Voltage	Output Cycle Duty Oltage Freq. Cycle	Passes	(seconds)	No.	No. Mortalities /	CPUE	No.	No. Mortalities /	CPUE	Total	CPUE	
		Easting	Northing	Easting	Northing		(volts) (Hz) (%)			Captured	Captured Retained		Captured	Retained		Catch			
Reference Lake 3	REF3-20-EF-1	574891	7853038	575033	7853053	14-Aug-20	500	30	12	1	3,845	134	11	2.09	1	0	0.02	135	2.11
Camp Lake	JLO-20-EF-1	557802	7914653	557805	7914617	10-Aug-20	500	30	12	2	1,326	109	10	4.93	18	0	0.81	127	5.75
Sheardown Lake NW	DL01-20-EF-1	560206	7913484	560309	7913475	10-Aug-20	500	30	12	1	1,588	118	10	4.46	6	0	0.23	124	4.69
Sheardown Lake SE	DL02-20-EF-1	560709	7912330	560725	7912310	11-Aug-20	500	30	12	1	1,611	115	10	4.28	63	0	2.35	178	6.63
Mary Lake	BLO-20-EF-1	555410	7905139	555481	7905040	11-Aug-20	500	30	12	1	2,091	105	10	3.01	26	0	0.75	131	3.76

Note: Catch-per-unit-effort (CPUE) represents the number of fish captured per electrofishing minute.

Table G.2: Gill Netting Catch Records for Reference Lake 3, Mary River Project CREMP, August 2020

Gill Net Set ID	(NAD83, I	ation JTM Zone W)	Length (m)	Set Date	Lift Date	Set Time	Lift Time	Fishing Hours	Effort (m*hrs/100 m)		c Charr r Mesh S		Total Catch	CPUE
50(12	Easting	Northing	(,	24.0	2410			110410	(6, 166)	1½"	2"	3"		
REF3-20-GN-1A	574556	7853020	91.4	12-Aug-20	12-Aug-20	10:30	12:21	1.85	1.69	0	4	0	4	2.36
REF3-20-GN-1B	574556	7853020	91.4	12-Aug-20	12-Aug-20	12:37	14:16	1.65	1.51	0	2	0	2	1.33
REF3-20-GN-1C	574556	7853020	91.4	12-Aug-20	12-Aug-20	14:27	15:41	1.23	1.13	0	2	1	3	2.66
REF3-20-GN-1D	574556	7853020	91.4	12-Aug-20	12-Aug-20	15:57	17:46	1.82	1.66	1	3	1	5	3.01
REF3-20-GN-2A	574524	7853031	91.4	12-Aug-20	12-Aug-20	10:36	12:39	2.05	1.87	0	3	0	3	1.60
REF3-20-GN-2B	574524	7853031	91.4	12-Aug-20	12-Aug-20	12:51	14:07	1.27	1.16	1	0	0	1	0.863
REF3-20-GN-2C	574524	7853031	91.4	12-Aug-20	12-Aug-20	14:31	15:59	1.47	1.34	0	0	0	0	0
REF3-20-GN-2D	574524	7853031	91.4	12-Aug-20	12-Aug-20	16:07	18:01	1.90	1.74	0	2	1	3	1.73
REF3-20-GN-3A	573853	7852739	91.4	12-Aug-20	12-Aug-20	10:42	12:56	2.23	2.04	0	5	0	5	2.45
REF3-20-GN-3B	573853	7852739	91.4	12-Aug-20	12-Aug-20	13:12	14:37	1.42	1.30	1	0	0	1	0.772
REF3-20-GN-3C	573853	7852739	91.4	12-Aug-20	12-Aug-20	14:47	16:12	1.42	1.30	1	0	0	1	0.772
REF3-20-GN-3D	573853	7852739	91.4	12-Aug-20	12-Aug-20	16:23	17:32	1.15	1.05	0	0	0	0	0
REF3-20-GN-4A	574320	7853695	61.0	12-Aug-20	12-Aug-20	10:51	13:20	2.48	1.51	1	-	0	1	0.661
REF3-20-GN-4B	574320	7853695	61.0	12-Aug-20	12-Aug-20	13:25	15:00	1.58	0.965	0	-	0	0	0
REF3-20-GN-4C	574320	7853695	61.0	12-Aug-20	12-Aug-20	15:07	16:28	1.35	0.823	0	-	0	0	0
REF3-20-GN-4D	574320	7853695	61.0	12-Aug-20	12-Aug-20	16:33	17:05	0.53	0.325	0	-	0	0	0
REF3-20-GN-5A	574259	7853606	91.4	12-Aug-20	12-Aug-20	10:56	13:28	2.53	2.32	3	4	0	7	3.02
REF3-20-GN-5B	574259	7853606	91.4	12-Aug-20	12-Aug-20	13:47	15:08	1.35	1.23	0	0	0	0	0

Table G.2: Gill Netting Catch Records for Reference Lake 3, Mary River Project CREMP, August 2020

Gill Net Set ID	(NAD83, U	ation JTM Zone W)	Length (m)	Set Date	Lift Date	Set Time	Lift Time	Fishing Hours	Effort (m*hrs/100 m)		c Charr r Mesh \$		Total Catch	CPUE
OCCID	Easting	Northing	(''')	Dute	Dute	111110	11110	liouis	(111 111 3/ 100 111)	11/2"	2"	3"	Gaten	
REF3-20-GN-5C	574259	7853606	91.4	12-Aug-20	12-Aug-20	15:21	16:52	1.52	1.39	1	1	0	2	1.44
REF3-20-GN-6A	573984	7853562	91.4	12-Aug-20	12-Aug-20	11:05	13:57	2.87	2.62	0	0	1	1	0.381
REF3-20-GN-6B	573984	7853562	91.4	12-Aug-20	12-Aug-20	13:59	15:25	1.43	1.31	0	1	0	1	0.763
REF3-20-GN-6C	573984	7853562	91.4	12-Aug-20	12-Aug-20	15:35	17:05	1.50	1.37	1	2	0	3	2.19
REF3-20-GN-7A	574568	7853018	91.4	14-Aug-20	14-Aug-20	10:31	11:41	1.17	1.07	1	1	0	2	1.87
REF3-20-GN-7B	574568	7853018	91.4	14-Aug-20	14-Aug-20	11:51	13:09	1.30	1.19	0	0	1	1	0.841
REF3-20-GN-7C	574568	7853018	91.4	14-Aug-20	14-Aug-20	13:20	15:00	1.67	1.52	0	0	0	0	0
REF3-20-GN-7D	574568	7853018	91.4	14-Aug-20	14-Aug-20	15:09	16:43	1.57	1.43	0	2	0	2	1.40
REF3-20-GN-7E	574568	7853018	91.4	14-Aug-20	14-Aug-20	16:55	17:55	1.00	0.914	0	0	0	0	0
REF3-20-GN-8A	574532	7853048	61.0	14-Aug-20	14-Aug-20	10:35	11:53	1.30	0.792	0	-	0	0	0
REF3-20-GN-8B	574532	7853048	61.0	14-Aug-20	14-Aug-20	12:01	13:24	1.38	0.843	0	-	0	0	0
REF3-20-GN-8C	574532	7853048	91.4	14-Aug-20	14-Aug-20	14:56	16:56	2.00	1.83	0	0	0	0	0
REF3-20-GN-8D	574532	7853048	91.4	14-Aug-20	14-Aug-20	17:08	18:02	0.90	0.823	0	0	0	0	0
REF3-20-GN-9A	573788	7852693	91.4	14-Aug-20	14-Aug-20	10:43	12:07	1.40	1.28	0	0	0	0	0
REF3-20-GN-9B	573788	7852693	91.4	14-Aug-20	14-Aug-20	12:15	13:40	1.42	1.30	0	4	1	5	3.86
REF3-20-GN-9C	573788	7852693	91.4	14-Aug-20	14-Aug-20	13:57	15:25	1.47	1.34	0	1	0	1	0.746
REF3-20-GN-9D	573788	7852693	91.4	14-Aug-20	14-Aug-20	15:33	17:14	1.68	1.54	0	2	0	2	1.30
REF3-20-GN-10A	574293	7853675	91.4	14-Aug-20	14-Aug-20	10:52	12:19	1.45	1.33	0	0	0	0	0
REF3-20-GN-10B	574293	7853675	91.4	14-Aug-20	14-Aug-20	12:28	14:04	1.60	1.46	0	0	0	0	0

Table G.2: Gill Netting Catch Records for Reference Lake 3, Mary River Project CREMP, August 2020

Gill Net Set ID	Location (NAD83, UTM Zone 17W)		Length (m)	Set Date			Lift Time	Fishing Hours	Effort (m*hrs/100 m)	, i			Total Catch	CPUE
	Easting	Northing	,						,	1½"	2"	3"		
REF3-20-GN-10C	574293	7853675	61.0	14-Aug-20	14-Aug-20	14:10	15:52	1.70	1.04	0	-	0	0	0
REF3-20-GN-10D	574293	7853675	61.0	14-Aug-20	14-Aug-20	16:03	17:27	1.40	0.853	0	-	0	0	0
REF3-20-GN-11A	574205	7853558	91.4	14-Aug-20	14-Aug-20	11:00	12:31	1.52	1.39	0	0	0	0	0
REF3-20-GN-11B	574205	7853558	91.4	14-Aug-20	14-Aug-20	12:38	14:12	1.57	1.43	0	3	1	4	2.79
REF3-20-GN-11C	574205	7853558	91.4	14-Aug-20	14-Aug-20	14:32	16:05	1.55	1.42	0	3	0	3	2.12
REF3-20-GN-11D	574205	7853558	91.4	14-Aug-20	14-Aug-20	16:23	17:33	1.17	1.07	0	0	0	0	0
REF3-20-GN-12A	574050	7853557	91.4	14-Aug-20	14-Aug-20	11:05	12:50	1.75	1.60	0	0	1	1	0.625
REF3-20-GN-12B	574050	7853557	91.4	14-Aug-20	14-Aug-20	13:02	14:36	1.57	1.43	0	2	0	2	1.40
REF3-20-GN-12C	574050	7853557	91.4	14-Aug-20	14-Aug-20	14:46	16:26	1.67	1.52	1	2	0	3	1.97
REF3-20-GN-12D	574050	7853557	91.4	14-Aug-20	14-Aug-20	16:39	17:40	1.02	0.930	0	0	0	0	0
								Total	63.0	12	49	8	69	0.956

Table G.3: Summary of Arctic Charr Gill Net Catches by Mesh Size, Mary River Project CREMP, August 2020

Waterbody	Effort		tic Charr Ca er Mesh Siz		Total Catch	CPUE	Mortalities
,	(m*hrs/100 m)	11/2"	2"	3"	Catch		
Reference Lake 3	63.0	12	49	8	69	0.956	16
Camp Lake	6.35	13	35	46	94	14.8	18
Sheardown Lake NW	30.4	17	56	25	98	3.34	21
Sheardown Lake SE	28.3	20	42	45	107	3.81	27
Mary Lake	21.4	14	41	39	94	4.60	18
Total	149.5	76	223	163	462	5.50	100

Table G.4: Arctic Charr Measurements from Fish Captured at Reference Lake 3 by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
REF3-20-ACJ-01	6.6	7.1	2.374	-	0.826
REF3-20-ACJ-02	6.9	7.3	2.497	-	0.760
REF3-20-ACJ-03	7.7	8.2	3.548	-	0.777
REF3-20-ACJ-04	7.7	8.2	3.514	-	0.770
REF3-20-ACJ-05	3.8	3.9	0.464	-	0.846
REF3-20-ACJ-06	3.8	3.9	0.474	-	0.864
REF3-20-ACJ-07	3.5	3.6	0.330	-	0.770
REF3-20-ACJ-08	3.8	3.9	0.433	-	0.789
REF3-20-ACJ-09	5.3	5.5	1.207	-	0.811
REF3-20-ACJ-10	3.1	3.2	0.234	-	0.785
REF3-20-ACJ-11	7.3	7.8	3.401	-	0.874
REF3-20-ACJ-12	7.5	8.1	3.411	-	0.809
REF3-20-ACJ-13	9.3	10.0	6.643	-	0.826
REF3-20-ACJ-14	9.3	10.1	6.740	-	0.838
REF3-20-ACJ-15	3.6	3.7	0.361	-	0.774
REF3-20-ACJ-16	6.2	6.6	2.306	-	0.968
REF3-20-ACJ-17	8.5	9.3	5.120	-	0.834
REF3-20-ACJ-18	8.5	9.1	4.955	-	0.807
REF3-20-ACJ-19	9.3	10.0	7.018	-	0.872
REF3-20-ACJ-20	7.8	8.4	3.618	-	0.762
REF3-20-ACJ-21	3.5	3.6	0.329	-	0.767
REF3-20-ACJ-22	5.5	5.8	1.566	-	0.941
REF3-20-ACJ-23	8.1	8.8	4.593	-	0.864
REF3-20-ACJ-24	8.7	9.3	5.003	-	0.760
REF3-20-ACJ-25	7.6	8.2	3.825	-	0.871
REF3-20-ACJ-26	7.3	7.9	3.225	-	0.829
REF3-20-ACJ-27	3.6	3.7	0.420	0	0.900
REF3-20-ACJ-28	3.2	3.3	0.265	0	0.809
REF3-20-ACJ-29	5.2	5.4	1.146	1	0.815
REF3-20-ACJ-30	6.1	6.5	1.722	1	0.759
REF3-20-ACJ-31	7.6	8.1	3.387	2	0.772
REF3-20-ACJ-32	7.8	8.4	4.526	3	0.954
REF3-20-ACJ-33	7.6	8.1	3.534	2	0.805
REF3-20-ACJ-34	8.4	9.0	5.972	3	1.008
REF3-20-ACJ-35	10.8	11.7	9.803	3	0.778
REF3-20-ACJ-36	16.0	17.3	38.457	6	0.939
REF3-20-ACJ-37	3.3	3.4	0.249	-	0.693
REF3-20-ACJ-38	7.9	8.6	4.419	-	0.896
REF3-20-ACJ-39	7.8	8.3	3.971	-	0.837
REF3-20-ACJ-40	17.5	19.0	46.623	-	0.870
REF3-20-ACJ-41	6.8	7.3	2.607	-	0.829
REF3-20-ACJ-42	6.5	7.0	2.305	-	0.839
REF3-20-ACJ-43	3.6	3.7	0.383	-	0.821
REF3-20-ACJ-44	7.1	7.6	2.950	-	0.824
REF3-20-ACJ-45	4.3	4.4	0.555	-	0.698
REF3-20-ACJ-46	5.7	6.0	1.667	-	0.900
REF3-20-ACJ-47	8.8	9.5	5.587	-	0.820
REF3-20-ACJ-48	6.5	7.0	2.306	-	0.840
REF3-20-ACJ-49	7.5	8.0	3.624	-	0.859

Table G.4: Arctic Charr Measurements from Fish Captured at Reference Lake 3 by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
REF3-20-ACJ-50	9.7	10.4	7.506	-	0.822
REF3-20-ACJ-51	6.9	7.4	2.715	-	0.826
REF3-20-ACJ-52	6.1	6.4	1.876	-	0.827
REF3-20-ACJ-53	6.8	7.3	2.589	-	0.823
REF3-20-ACJ-54	3.2	3.3	0.250	-	0.763
REF3-20-ACJ-55	3.8	4.0	0.596	-	1.086
REF3-20-ACJ-56	3.3	3.4	0.276	-	0.768
REF3-20-ACJ-57	7.8	8.3	4.133	-	0.871
REF3-20-ACJ-58	5.3	5.6	1.171	-	0.787
REF3-20-ACJ-59	8.2	8.8	5.716	-	1.037
REF3-20-ACJ-60	6.0	6.4	1.785	_	0.826
REF3-20-ACJ-61	8.0	8.6	4.441	_	0.867
REF3-20-ACJ-62	3.8	3.9	0.418	-	0.762
REF3-20-ACJ-63	6.6	7.0	2.491	_	0.866
REF3-20-ACJ-64	4.3	4.5	0.710	-	0.893
REF3-20-ACJ-65	9.0	9.7	5.839		0.801
REF3-20-ACJ-66	10.4	11.2	8.930	-	0.794
REF3-20-ACJ-67	6.5	6.9	2.319	-	0.794
REF3-20-ACJ-68	5.7	6.1	1.842	-	0.995
REF3-20-ACJ-69	7.2	7.7	2.869		0.769
REF3-20-ACJ-70	9.4	10.1	6.535	-	
REF3-20-ACJ-70	-	-		-	0.787
REF3-20-ACJ-71	7.5	8.2	3.360	-	0.796
	13.3	14.2	21.380	-	0.909
REF3-20-ACJ-73	3.7	3.8	0.389	-	0.768
REF3-20-ACJ-74	6.9	7.4	2.580	-	0.785
REF3-20-ACJ-75	6.7	7.2	2.377	-	0.790
REF3-20-ACJ-76	7.8	8.3	3.865	-	0.814
REF3-20-ACJ-77	7.1	7.5	2.568	-	0.717
REF3-20-ACJ-78	8.6	9.1	5.214	-	0.820
REF3-20-ACJ-79	8.0	8.6	4.073	-	0.796
REF3-20-ACJ-80	9.3	9.9	5.988	-	0.744
REF3-20-ACJ-81	9.2	9.9	6.163	-	0.791
REF3-20-ACJ-82	7.3	7.8	3.094	-	0.795
REF3-20-ACJ-83	7.7	8.2	3.463	-	0.759
REF3-20-ACJ-84	3.8	3.9	0.408	-	0.744
REF3-20-ACJ-85	5.7	6.0	1.641	-	0.886
REF3-20-ACJ-86	7.4	7.9	3.226	-	0.796
REF3-20-ACJ-87	10.5	11.3	9.575	-	0.827
REF3-20-ACJ-88	7.7	8.2	3.765	-	0.825
REF3-20-ACJ-89	8.0	8.6	3.992	-	0.780
REF3-20-ACJ-90	7.1	7.6	2.688	-	0.751
REF3-20-ACJ-91	6.7	7.1	2.332	-	0.775
REF3-20-ACJ-92	6.4	6.8	2.195	-	0.837
REF3-20-ACJ-93	10.4	11.2	8.924	-	0.793
REF3-20-ACJ-94	11.6	12.5	12.139	-	0.778
REF3-20-ACJ-95	9.7	10.4	7.013	-	0.768
REF3-20-ACJ-96	9.5	10.2	6.383	-	0.744
REF3-20-ACJ-97	8.0	8.5	4.064	-	0.794
REF3-20-ACJ-98	3.2	3.3	0.232	-	0.708
REF3-20-ACJ-99	3.5	3.6	0.373	-	0.870
REF3-20-ACJ-100	5.7	6.0	1.405	1	0.759

Table G.4: Arctic Charr Measurements from Fish Captured at Reference Lake 3 by Electrofishing, Mary River Project CREMP, August 2020

	Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
	Sample Size (N)	100	100	100	11	100
등 .	Average	7.1	7.5	4.235	2.0	0.822
Catch nary	Median	7.3	7.8	3.022	2.0	0.813
	Standard Deviation	2.6	2.8	6.318	1.7	0.069
Overall	Standard Error	0.26	0.28	0.632	0.52	0.007
ó"	Minimum	3.1	3.2	0.232	0	0.693
	Maximum	17.5	19.0	46.623	6	1.086
	proportion of YOY			21%		
-of-the-Year Summary	Sample Size (N)	21	21	21	2	21
e ma	Average	3.6	3.7	0.388	0	0.804
of-the-) Summa	Median	3.6	3.7	0.383	0	0.774
ک د	Standard Deviation	0.3	0.3	0.125	-	0.088
ung- atch	Standard Error	0.1	0.1	0.027	-	0.019
Young- Catch	Minimum	3.1	3.2	0.232	0	0.693
	Maximum	4.3	4.5	0.710	0	1.086

Table G.5: Arctic Charr Measurements from Fish Captured at Camp Lake by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length	Total Length	Body Weight	Age	Fulton's Condition Factor
	(cm)	(cm)	(g)	(years)	(K)
JLO-20-ACJ-01	9.3	10.1	7.186	_	0.893
JLO-20-ACJ-02	4.3	4.5	0.729	-	0.917
JLO-20-ACJ-03	11.2	12.2	13.732	_	0.977
JLO-20-ACJ-04	13.0	14.0	16.986	-	0.773
JLO-20-ACJ-05	7.1	7.6	4.186	-	1.170
JLO-20-ACJ-06	8.5	9.2	5.197	-	0.846
JLO-20-ACJ-07	9.3	10.1	6.998	-	0.870
JLO-20-ACJ-08	9.8	10.5	8.531	-	0.906
JLO-20-ACJ-09	7.2	7.6	3.510	-	0.940
JLO-20-ACJ-10	7.8	8.3	4.064	-	0.856
JLO-20-ACJ-11	8.5	9.2	6.695	_	1.090
JLO-20-ACJ-12	8.3	8.8	4.908	_	0.858
JLO-20-ACJ-13	8.2	8.9	5.841	_	1.059
JLO-20-ACJ-14	11.1	12.0	12.446	-	0.910
JLO-20-ACJ-15	7.1	7.5	2.833	_	0.792
JLO-20-ACJ-16	7.9	8.4	4.044	_	0.820
JLO-20-ACJ-17	9.8	10.5	7.502	-	0.797
JLO-20-ACJ-18	7.5	8.1	3.902	-	0.925
JLO-20-ACJ-19	9.5	10.3	8.743	-	1.020
JLO-20-ACJ-20	12.8	13.9	17.405	_	0.830
JLO-20-ACJ-21	9.6	10.3	7.735	-	0.874
JLO-20-ACJ-22	9.8	10.5	8.475	-	0.900
JLO-20-ACJ-23	8.0	8.5	4.253	-	0.831
JLO-20-ACJ-24	10.3	11.1	9.037	2	0.827
JLO-20-ACJ-25	10.9	11.8	11.322	2	0.874
JLO-20-ACJ-26	9.1	9.7	5.705	-	0.757
JLO-20-ACJ-27	9.9	10.7	8.577	-	0.884
JLO-20-ACJ-28	7.7	8.2	4.786	_	1.048
JLO-20-ACJ-29	7.8	8.3	4.034	-	0.850
JLO-20-ACJ-30	10.1	10.8	7.973	_	0.774
JLO-20-ACJ-31	7.0	7.4	2.895	_	0.844
JLO-20-ACJ-32	8.5	9.2	5.711	_	0.930
JLO-20-ACJ-33	10.7	11.5	9.929	-	0.811
JLO-20-ACJ-34	7.2	7.7	3.296	-	0.883
JLO-20-ACJ-35	7.2	7.6	3.315	-	0.888
JLO-20-ACJ-36	10.6	11.5	11.713	-	0.983
JLO-20-ACJ-37	7.5	8.1	3.810	-	0.903
JLO-20-ACJ-38	7.4	7.8	2.906	-	0.717
JLO-20-ACJ-39	8.1	8.6	4.490	-	0.845
JLO-20-ACJ-40	5.8	6.1	1.664	-	0.853
JLO-20-ACJ-41	7.4	7.9	3.868	-	0.955
JLO-20-ACJ-42	7.6	8.2	3.534	-	0.805
JLO-20-ACJ-43	7.8	8.4	4.740	-	0.999
JLO-20-ACJ-44	8.8	9.4	6.283	-	0.922
JLO-20-ACJ-45	10.4	11.2	9.964	-	0.886
JLO-20-ACJ-46	6.7	7.2	3.416	-	1.136
JLO-20-ACJ-47	6.4	6.7	2.324	-	0.887
JLO-20-ACJ-48	11.8	12.7	14.093	-	0.858

Table G.5: Arctic Charr Measurements from Fish Captured at Camp Lake by Electrofishing, Mary River Project CREMP, August 2020

	Fork	Total	Body	Age	Fulton's
Specimen ID	Length	Length	Weight	(years)	Condition Factor
	(cm)	(cm)	(g)	(years)	(K)
JLO-20-ACJ-49	9.2	9.8	7.143	-	0.917
JLO-20-ACJ-50	8.6	9.2	6.426	-	1.010
JLO-20-ACJ-51	6.3	6.6	2.045	1	0.818
JLO-20-ACJ-52	16.3	18.2	37.810	4	0.873
JLO-20-ACJ-53	8.9	9.5	5.688	-	0.807
JLO-20-ACJ-54	8.3	8.9	4.819	-	0.843
JLO-20-ACJ-55	8.6	9.1	5.014	-	0.788
JLO-20-ACJ-56	9.6	10.3	7.905	-	0.893
JLO-20-ACJ-57	6.6	7.0	2.557	-	0.889
JLO-20-ACJ-58	3.8	4.0	0.448	-	0.816
JLO-20-ACJ-59	7.3	7.7	3.275	-	0.842
JLO-20-ACJ-60	10.7	11.5	11.206	-	0.915
JLO-20-ACJ-61	8.3	8.8	5.126	-	0.896
JLO-20-ACJ-62	6.4	6.8	2.429	-	0.927
JLO-20-ACJ-63	8.2	8.6	4.046	-	0.734
JLO-20-ACJ-64	14.7	15.9	25.966	-	0.817
JLO-20-ACJ-65	12.5	13.6	16.247	-	0.832
JLO-20-ACJ-66	8.4	8.9	5.073	-	0.856
JLO-20-ACJ-67	7.5	8.0	5.612	-	1.33
JLO-20-ACJ-68	8.2	8.7	4.992	-	0.905
JLO-20-ACJ-69	8.4	9.0	4.766	-	0.804
JLO-20-ACJ-70	7.5	8.0	4.079	-	0.967
JLO-20-ACJ-71	6.5	7.0	2.307	-	0.840
JLO-20-ACJ-72	7.9	8.4	4.366	-	0.886
JLO-20-ACJ-73	11.2	12.1	12.801	-	0.911
JLO-20-ACJ-74	12.3	13.3	18.347	3	0.986
JLO-20-ACJ-75	6.5	6.9	2.467	1	0.898
JLO-20-ACJ-76	8.0	8.5	4.587	1	0.896
JLO-20-ACJ-77	7.6	8.2	4.553	1	1.037
JLO-20-ACJ-78	10.5	11.3	8.709	3	0.752
JLO-20-ACJ-79	10.7	11.5	10.053	2	0.821
JLO-20-ACJ-80	6.5	6.8	2.660	-	0.969
JLO-20-ACJ-81	6.3	6.6	2.387	-	0.955
JLO-20-ACJ-82	8.3	8.8	4.620	-	0.808
JLO-20-ACJ-83	7.1	7.4	3.145	-	0.879
JLO-20-ACJ-84	13.1	14.2	18.222	-	0.811
JLO-20-ACJ-85	10.7	11.7	11.668	-	0.952
JLO-20-ACJ-86	7.3	7.8	3.259	-	0.838
JLO-20-ACJ-87	7.1	7.5	3.077	-	0.860
JLO-20-ACJ-88	8.2	8.8	5.174	-	0.938
JLO-20-ACJ-89	7.8	8.4	4.002	-	0.843
JLO-20-ACJ-90	8.7	9.3	5.544	-	0.842
JLO-20-ACJ-91	9.7	10.3	7.831	-	0.858
JLO-20-ACJ-92	7.9	8.5	4.623	-	0.938
JLO-20-ACJ-93	12.0	12.9	15.662	-	0.906
JLO-20-ACJ-94	8.7	9.3	5.680	-	0.863
JLO-20-ACJ-95	11.3	12.2	12.209	-	0.846
JLO-20-ACJ-96	8.2	8.7	4.572	-	0.829
JLO-20-ACJ-97	8.2	8.7	4.841	-	0.878
JLO-20-ACJ-98	11.6	12.6	13.096	_	0.839
JLO-20-ACJ-99	7.3	7.8	3.620	-	0.931
JLO-20-ACJ-100	12.4	13.2	15.353	-	0.805
020 20 700 100	14.7	10.2	10.000	_	0.000

Table G.5: Arctic Charr Measurements from Fish Captured at Camp Lake by Electrofishing, Mary River Project CREMP, August 2020

;	Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
	Sample Size (N)	100	100	100	10	100
ب	Average	8.8	9.5	7.074	2.0	0.889
Catch nary	Median	8.3	8.9	5.044	2.0	0.876
	Standard Deviation	2.1	2.3	5.524	1.1	0.092
Overall Cate Summary	Standard Error	0.21	0.23	0.552	0.33	0.009
δ°	Minimum	3.8	4.0	0.448	1.0	0.717
	Maximum	16.3	18.2	37.810	4.0	1.330
	proportion of YOY			2%		
-of-the-Year Summary	Sample Size (N)	2	2	2	0	2
e-Y ma	Average	0.0	0.0	0.000	0	0.000
of-the-Yea Summary	Median	0.0	0.0	0.000	0	0.000
	Standard Deviation	0.0	0.0	0.000	-	0.000
Young- Catch	Standard Error	0.0	0.0	0.000	-	0.000
ي څ	Minimum	3.8	4.0	0.448	0	0.816
	Maximum	4.3	4.5	0.729	0	0.917

Table G.6: Results of Nearshore Arctic Charr Non-Young-of-the-Year (YOY) Health Endpoint Statistical Comparisons between Camp Lake (JLO) and Reference Lake 3 (REF), Mary River Project CREMP, August 2020

			Varie	ables	Samn	le Size		ANCC	VA Model	Statistics					
Group	Indicator	Endpoint	Varie	ables	Camp	0126	Test	Interaction Model	Parallel Slope Model	Covariate Value for	Summ	ary Stati	stics ^b	Test P-value	MOD
			Response	Covariate	REF	JLO		Interaction P-value			Statistic	REF	JLO	r-value	(%) ^{c,d}
All Fish	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	- 100	100 100		-	-	-	-	-	-	<0.001	-
	Survival	Length Frequency Distribution	Fork Length (cm)	-	79	98	K-S	-	-	-	-	-	-	0.003	-
	Dady Cina	Fork Length	Fork Length (cm)	-	79	98	M-W	-	-	-	Median	7.70	8.30	<0.001	7.8
Non-YOY	Body Size	Body Weight	Body Weight (g)	-	79	98	M-W	-	-	-	Median	3.55	5.10	<0.001	44
	Energy	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	79	98	ANCOVA	0.110	<0.001	8.28	Adjusted Mean	4.66	5.03	<0.001	7.9
	Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	79	97°	ANCOVA	0.147	<0.001	8.28	Adjusted Mean	4.67	5.02	<0.001	7.4

Area P-value < 0.1 or Interaction P-value < 0.05

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint)

Notes: YOY = young-of-year. MOD = magnitude of difference.

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the

^b The median, mean (geometric mean for log₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CFRDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CFRDs was observed.

e ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9884 and R2 of parallel slope model = 0.9882; a difference < 0.02) following Environment Canada (2012).

f One outlier (JLO-20-ACJ-67, Stdnt resid: 4.474) removed from analysis.

⁹ ANCOVA proceeded under the assumption that the slopes are practically parallel (R² of interaction model = 0.9894 and R² of parallel slope model = 0.9892; a difference < 0.02) following Environment Canada (2012).

Table G.7: Results of Nearshore Arctic Charr Non-Young-of-the-Year (Non-YOY) Health Endpoint Statistical Comparisons between Samples Collected in 2020 and the Baseline Period at Individual Mine-Exposed Lakes, Mary River Project 2020 CREMP

				Varia	ables	Sample	e Size		ANCO	OVA Model S	Statistics					
								<u> </u>	Interaction	Parallel Slope	Covariate	Sumr	nary Statist	ics ^b	Test	Magnitude of
Lake	Group	Indicator	Endpoint	Response	Covariate	Baseline	2020	Test	Model Interaction P-value	Model Covariate P-value	Value for Comparisons ^a	Statistic	Baseline	2020	P-value	Difference (%) ^{c,d}
		Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	51	98	K-S	-	-	-	-	-	-	<0.001	-
		Body Size	Fork Length	Fork Length (cm)	-	51	98	tunequal	-	-	-	Geometric Mean	11.2	8.72	<0.001	-22
Camp (JLO)	Non-YOY	_	Body Weight	Body Weight(g)	-	51	98	tunequal	-	-	-	Geometric Mean	12.3	5.87	<0.001	-52
		Energy	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	51	98	ANCOVA	0.39	<0.001	9.5	Adjusted Mean	7.66	7.51	0.302	-
		Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	51	97 ^e	ANCOVA	0.254	<0.001	9.52	Adjusted Mean	7.69	7.52	0.220	-
	Non-YOY	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	244	85	K-S	-	-	-	-	-	-	<0.001	-
Sheardown NW		Body Size	Fork Length	Fork Length (cm)	-	244	85	M-W	-	-	-	Median	8.30	9.40	0.074	13
(DLO-01)	NOII-101	Body Size	Body Weight	Body Weight (g)	-	244	85	M-W	-	-	-	Median	6.00	7.05	0.316	-
		Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	244	85	ANCOVA	0.921	<0.001	9.29	Adjusted Mean	7.91	7.23	<0.001	-8.6
		Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	16	76	K-S	-	-	-	-	-	-	<0.001	-87
		Dody Cizo	Fork Length	log[Fork Length (cm)]	-	16	76	M-W	-	-	-	Median	6.30	8.20	<0.001	30
Sheardown SE (DLO-02) ^g	Non-YOY	Body Size	Body Weight	Body Weight(g)	-	16	76	M-W	-	-	-	Median	2.50	5.43	<0.001	117
(DLO-02)		Energy	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	16	76	ANCOVA	<0.001 ^f	<0.001	8.09	Adjusted Mean	4.84	4.98	0.496	-
		Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	14 ^g	76	ANCOVA	<0.001 ^h	<0.001	8.16	Adjusted Mean	5.23	5.12	0.519	-

Area P-value < 0.1 or Interaction P-value < 0.05.

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint).

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(2018 mean - baseline mean) / baseline area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(2018 predicted mean - baseline predicted mean) / baseline predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between groups. A negative difference implies that 2018 has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that 2017 has fewer fish less than the length where the maximum difference in CFRDs was observed.

^e One outlier (JLO-20-ACJ-67, Stdnt resid: 4.277) removed from analysis.

^f ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9687 and R2 of parallel slope model = 0.9583; a difference < 0.02) following Environment Canada (2012).

⁹ One outlier (SLSE-07-1 Stdnt resid:-4.398; SLSE-07-2 Stdnt resid: -4.398) removed from analysis.

hANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9687 and R2 of parallel slope model = 0.9583; a difference < 0.02) following Environment Canada (2012).

Table G.8: Arctic Charr Estimated Sample Sizes to Detect Various Effect Sizes as a Percentage Change in Respective Fish Health Endpoints at Camp Lake Using 2020 Data Relative to Reference Lake 3 Data (2020) or Camp Lake Baseline Data (2006 to 2013) with α=β=0.1, Mary River Project 2020 CREMP

				Varia	bles				Minimum Sa	ample Size	to Detect a	n Effect Siz	e (% Increa	se/Decreas	se Relative	to Referen	ce) with α=	β=0.1
Comparison	Group	Indicator	Endpoint	Response	Covariate	Test ^a	S ^b	(%) ^c	log(Response)	5% -5%	10%	20%	25% -20%	30%	33%	40% -29%	50% -33%	100%
<u></u>				Fork Length					Response	±5%	±10%	±20%	±25%	±30%	±33%	±40%	±50%	±100%
Charr us Rei		Body Size	Fork Length	(cm)	-	M-W	0.0941	25.4	Response	393	105	29	20	16	13	10	7	4
Arctic C g) versu 020 Da	Non-YOY		Body Weight	Body Weight (g)	-	M-W	0.28	116	Response	3,469	910	250	167	122	101	75	53	19
Nearshore Arctic Charr (Electrofishing) versus Ref. Lake 3, 2020 Data	Non-101	Energy	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0378	-	log(Response)	57	17	6	5	4	4	4	4	3
Nea (Electr La		Storage	Condition ^d	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0355	-	log(Response)	50	15	6	5	4	4	4	3	3
harr versus		Dady Cina	Fork Length	Fork Length (cm)	-	tunequal	0.110	-	Response	463	122	34	23	17	15	11	8	4
Arctic C) 2020 '	Non-YOY	Body Size	Body Weight	Body Weight (g)	-	tunequal	0.319	-	Response	3,886	1,019	279	187	136	113	83	57	20
Nearshore Arctic Charr (Electrofishing) 2020 versus Baseline		Energy	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0425	-	log(Response)	71	20	7	6	5	5	4	4	3
Near (Electro		Storage	Condition ^d	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0403	-	log(Response)	64	18	7	5	5	4	4	4	3
vrctic 2020		Body Size	Fork Length	Fork Length (cm)	-	M-W	0.0804	20.9	Response	288	77	22	16	12	10	7	5	4
undal A arr etting) ake 3, 3	A11 6 1	Body Size	Body Weight	Body Weight (g)	-	M-W	0.246	83.1	Response	2,671	701	193	129	94	79	58	41	16
Littoral/Profundal Arctic Charr (Gill Netting) ersus Ref. Lake 3, 202(Data	All fish	Energy	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0417	-	log(Response)	69	20	7	6	5	4	4	4	3
Littoral ((Storage	Condition ^d	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0386	-	log(Response)	59	17	6	5	4	4	4	4	3
indal arr ig) us		Body Size	Fork Length	Fork Length (cm)	-	M-W	0.0915	21.9	Response	371	98	26	17	12	11	7	6	4
Littoral/Profundal Arctic Charr (Gill Netting) 2020 versus Baseline	All fish	bouy Size	Body Weight	Body Weight (g)	-	M-W	0.277	99.1	Response	3,396	892	245	164	120	100	73	51	19
Littor Arr (Gi 203		Energy Storage	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0664	-	log(Response)	170	46	14	10	8	7	6	5	4

^a Sample size estimates for the M-W test were estimated based for a two-sample t-test using sample sizes multiplied by 0.864. The 0.864 is the lower bound of the asymptotic relative efficiency of the Mann-Whitney test and the two-sample t-test (Hodges and Lehmann 1956). Estimates were generated for the response variable on the untransformed and log₁₀-transformed scales and the lowest sample size is reported.

^b Pooled standard deviation of the regression residuals⁻

^c Coefficient of variation (pooled standard deviation/reference mean)×100%

^d Outliers removed from analysis.

Table G.9: Arctic Charr Measurements from Fish Captured at Reference Lake 3 by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
REF3-20-AC-01	REF3-GN-1A	2	33.1	35.1	210	-	0.579
REF3-20-AC-02	REF3-GN-1A	2	32.4	35.0	295	Mortality	0.867
REF3-20-AC-03	REF3-GN-1A	2	29.3	31.5	125	-	0.497
REF3-20-AC-04	REF3-GN-1A	2	33.4	36.4	245	-	0.658
REF3-20-AC-05	REF3-GN-2A	2	25.7	28.1	140	-	0.825
REF3-20-AC-06	REF3-GN-2A	2	29.0	31.2	185	-	0.759
REF3-20-AC-07	REF3-GN-2A	2	33.3	35.6	275	Mortality	0.745
REF3-20-AC-08	REF3-GN-3A	2	29.8	32.3	205	-	0.775
REF3-20-AC-09	REF3-GN-3A	2	30.6	33.0	215	Mortality	0.750
REF3-20-AC-10	REF3-GN-3A	2	25.2	27.4	125	Mortality	0.781
REF3-20-AC-11	REF3-GN-3A	2	30.6	33.3	220	-	0.768
REF3-20-AC-12	REF3-GN-3A	2	32.4	34.8	285	-	0.838
REF3-20-AC-13	REF3-GN-4A	1½	22.0	23.8	90	Mortality	0.845
REF3-20-AC-14	REF3-GN-5A	2	27.7	30.1	154	-	0.725
REF3-20-AC-15	REF3-GN-5A	2	27.6	30.0	172	-	0.818
REF3-20-AC-16	REF3-GN-5A	2	30.9	33.1	205	_	0.695
REF3-20-AC-17	REF3-GN-5A	2	30.3	32.6	202	Mortality	0.726
REF3-20-AC-18	REF3-GN-5A	11/2	26.8	29.0	150	-	0.779
REF3-20-AC-19	REF3-GN-5A	1½	25.9	28.6	160	_	0.921
REF3-20-AC-20	REF3-GN-5A	1½	25.4	27.7	128	_	0.781
REF3-20-AC-21	REF3-GN-6A	3	57.0	60.5	1,720	Mortality	0.929
REF3-20-AC-22	REF3-GN-2B	1½	22.3	24.2	96	-	0.866
REF3-20-AC-23	REF3-GN-1B	2	28.0	30.4	205	_	0.934
REF3-20-AC-24	REF3-GN-1B	2	29.8	32.5	225	_	0.850
REF3-20-AC-25	REF3-GN-3B	1½	32.5	35.5	295	Mortality	0.859
REF3-20-AC-26	REF3-GN-6B	2	24.9	27.1	128	-	0.829
REF3-20-AC-27	REF3-GN-1C	3	43.2	46.5	750	Gill parasite	0.930
REF3-20-AC-28	REF3-GN-1C	2	33.7	36.3	260	-	0.679
REF3-20-AC-29	REF3-GN-1C	2	30.5	33.0	225	_	0.793
REF3-20-AC-30	REF3-GN-3C	1½	20.3	22.0	64	_	0.765
REF3-20-AC-31	REF3-GN-5C	2	34.5	39.4	250	_	0.609
REF3-20-AC-32	REF3-GN-5C	1½	28.9	30.4	185	_	0.766
REF3-20-AC-33	REF3-GN-6C	1½	45.4	48.5	815	_	0.871
REF3-20-AC-34	REF3-GN-6C	2	28.3	31.4	182	_	0.803
REF3-20-AC-35	REF3-GN-6C	2	28.4	30.7	162	Mortality	0.707
REF3-20-AC-36	REF3-GN-1D	3	53.5	57.5	1,510	-	0.986
REF3-20-AC-37	REF3-GN-1D	2	31.4	34.1	258	_	0.833
REF3-20-AC-38	REF3-GN-1D	2	28.6	31.2	190	_	0.812
REF3-20-AC-39	REF3-GN-1D	2	30.6	32.9	224	_	0.782
REF3-20-AC-40	REF3-GN-1D	1½	23.4	25.9	100	_	0.780
REF3-20-AC-41	REF3-GN-2D	3	48.6	51.5	855	_	0.745
REF3-20-AC-42	REF3-GN-2D	2	32.5	35.2	240	_	0.699
REF3-20-AC-43	REF3-GN-2D	2	33.6	36.1	330	Mortality	0.870
REF3-20-AC-44	REF3-GN-7A	2	35.6	38.5	350	-	0.776
REF3-20-AC-45	REF3-GN-7A	1½	52.1	55.2	1,250	_	0.884
REF3-20-AC-46	REF3-GN-12A	3	54.6	58.1	1,505	Mortality	0.925
REF3-20-AC-47	REF3-GN-7B	3	49.6	52.7	1,225	- 1	1.004

Table G.9: Arctic Charr Measurements from Fish Captured at Reference Lake 3 by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)	
REF3-20-AC-48	REF3-GN-9B	2	32.9	35.7	330	-	0.927	
REF3-20-AC-49			51.8	55.2	925	Mortality	0.666	
REF3-20-AC-50			25.9	28.0	145	-	0.835	
REF3-20-AC-51	REF3-GN-9B 2		33.6	36.2	295	-	0.778	
REF3-20-AC-52	REF3-GN-9B	2	31.7	34.2	240	Mortality	0.753	
REF3-20-AC-53	REF3-GN-11B	3	55.1	58.5	1,325	-	0.792	
REF3-20-AC-54	REF3-GN-11B	2	64.0	68.4	2,175	-	0.830	
REF3-20-AC-55	REF3-GN-11B	2	33.1	25.6	275	-	0.758	
REF3-20-AC-56	REF3-GN-11B	2	34.4	37.1	350	Mortality	0.860	
REF3-20-AC-57	REF3-GN-12B	2	30.9	33.2	280	-	0.949	
REF3-20-AC-58	REF3-GN-12B	2	26.1	28.3	140	Mortality	0.787	
REF3-20-AC-59	REF3-GN-9C	2	32.3	35.0	250	-	0.742	
REF3-20-AC-60	REF3-GN-11C	2	32.1	34.9	250	-	0.756	
REF3-20-AC-61	REF3-GN-11C	2	32.3	34.8	260	Caudal fin split at fork	0.772	
REF3-20-AC-62	REF3-GN-11C	2	29.1	31.9	185	-	0.751	
REF3-20-AC-63	REF3-GN-12C	2	26.5	28.7	160	-	0.860	
REF3-20-AC-64	REF3-GN-12C	2	24.2	26.2	115	-	0.811	
REF3-20-AC-65	REF3-GN-12C	11/2	20.6	22.4	65	-	0.744	
REF3-20-AC-66	REF3-GN-7D	2	34.5	38.7	370	Mortality	0.901	
REF3-20-AC-67	REF3-GN-7D	2	30.1	32.6	238	-	0.873	
REF3-20-AC-68	REF3-GN-9D	2	29.5	31.8	210	-	0.818	
REF3-20-AC-69	REF3-GN-9D	2	31.3	33.8	230	-	0.750	
	Sar	mple Size (N)	69	69	69	-	69	
		Average	33.1	35.6	380	-	0.799	
Overall Catch		Median	30.9	33.1	225	-	0.787	
Summary		ard Deviation	9.3	9.8	433	-	0.091	
Janinia, y	St	andard Error	1.1	1.2	52	-	0.011	
		Minimum	20.3	22.0	64	-	0.497	
		Maximum	64.0	68.4	2,175	-	1.004	

Table G.10: Gill Netting Catch Records for Camp Lake, Mary River Project CREMP, August 2020

Gill Net Set ID	Location (NAD83, UTM Zone 17W)		Length (m)	Set Date	Lift Set				Effort (m*hrs/100		ic Charr C er Mesh S	Total Catch	CPUE	
	Easting	Northing	()						m)	11/2"	2"	3"		
JLO-20-GN-01	557514	7914792	91.4	8-Aug-20	8-Aug-20	15:30	16:30	1.00	0.914	2	6	5	13	14.2
JLO-20-GN-02	557694	7914771	91.4	8-Aug-20	8-Aug-20	15:35	17:04	1.48	1.36	2	9	10	21	15.5
JLO-20-GN-03	557766	7914552	91.4	8-Aug-20	8-Aug-20	15:41	17:54	2.22	2.03	3	16	26	45	22.2
JLO-20-GN-04	557656	7914433	91.4	8-Aug-20	8-Aug-20	15:45	18:00	2.25	2.06	6	4	5	15	7.29
								Total	6.35	13	35	46	94	14.8

Table G.11: Arctic Charr Measurements from Fish Captured at Camp Lake by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
JLO-20-AC-01	JLO-GN-1	3	51.2	54.7	1,230	-	0.916
JLO-20-AC-02	JLO-GN-1	3	42.3	45.8	590	-	0.780
JLO-20-AC-03	JLO-GN-1	3	36.7	39.4	485	-	0.981
JLO-20-AC-04	JLO-GN-1	3	38.0	43.5	540	-	0.984
JLO-20-AC-05	JLO-GN-1	3	38.6	41.9	505	-	0.878
JLO-20-AC-06	JLO-GN-1	2	39.4	42.6	480	-	0.785
JLO-20-AC-07	JLO-GN-1	2	40.4	43.8	590	-	0.895
JLO-20-AC-08	JLO-GN-1	2	39.9	43.0	570	-	0.897
JLO-20-AC-09	JLO-GN-1	2	35.5	38.5	480	-	1.073
JLO-20-AC-10	JLO-GN-1	2	40.7	43.9	630	-	0.934
JLO-20-AC-11	JLO-GN-1	2	39.2	42.8	575	-	0.955
JLO-20-AC-12	JLO-GN-1	1½	38.4	41.7	500	-	0.883
JLO-20-AC-13	JLO-GN-1	1½	21.9	23.6	100	-	0.952
JLO-20-AC-14	JLO-GN-2	1½	39.0	43.2	505	-	0.851
JLO-20-AC-15	JLO-GN-2	1½	38.8	42.4	520	-	0.890
JLO-20-AC-16	JLO-GN-2	2	35.0	37.7	420	-	0.980
JLO-20-AC-17	JLO-GN-2	2	39.2	42.2	550	-	0.913
JLO-20-AC-18	JLO-GN-2	2	37.8	41.2	515	_	0.954
JLO-20-AC-19	JLO-GN-2	2	35.6	38.2	425	_	0.942
JLO-20-AC-20	JLO-GN-2	2	37.1	40.5	475	_	0.930
JLO-20-AC-21	JLO-GN-2	2	38.4	42.2	510	_	0.901
JLO-20-AC-22	JLO-GN-2	2	34.5	37.5	430	_	1.047
JLO-20-AC-23	JLO-GN-2	2	41.3	45.3	645	_	0.916
JLO-20-AC-24	JLO-GN-2	2	39.3	42.7	580	_	0.956
JLO-20-AC-25	JLO-GN-2	3	38.3	42.2	495	_	0.881
JLO-20-AC-26	JLO-GN-2	3	38.6	41.8	605	-	1.052
JLO-20-AC-27	JLO-GN-2	3	40.0	43.4	600	_	0.938
JLO-20-AC-28	JLO-GN-2	3	39.9	43.3	630	Tagged green NSC103986	0.992
JLO-20-AC-29	JLO-GN-2	3	35.1	38.4	470	-	1.087
JLO-20-AC-30	JLO-GN-2	3	39.5	43.1	550	-	0.892
JLO-20-AC-31	JLO-GN-2	3	39.5	43.1	585	-	0.949
JLO-20-AC-32	JLO-GN-2	3	36.8	40.5	480	-	0.963
JLO-20-AC-33	JLO-GN-2	3	38.0	41.4	560	-	1.021
JLO-20-AC-34	JLO-GN-2	3	39.2	42.9	550	-	0.913
JLO-20-AC-35	JLO-GN-3	1½	34.5	37.2	415	-	1.011
JLO-20-AC-36	JLO-GN-3	1½	26.4	28.7	192	-	1.043
JLO-20-AC-37	JLO-GN-3	1½	38.6	42.9	600	-	1.043
JLO-20-AC-38	JLO-GN-3	2	37.0	40.5	505	-	0.997
JLO-20-AC-39	JLO-GN-3	2	51.8	55.0	1,160	-	0.835
JLO-20-AC-40	JLO-GN-3	2	41.0	44.8	640	-	0.929
JLO-20-AC-41	JLO-GN-3	2	35.4	38.6	480	-	1.082
JLO-20-AC-42	JLO-GN-3	2 36.2		39.3	425	-	0.896
JLO-20-AC-43	JLO-GN-3	2	37.2	41.1	515	-	1.000
JLO-20-AC-44	JLO-GN-3	2	36.2	39.3	510	-	1.075
JLO-20-AC-45	JLO-GN-3	2	36.8	40.2	485	-	0.973
JLO-20-AC-46	JLO-GN-3	2	35.9	38.7	445	-	0.962
JLO-20-AC-47	JLO-GN-3			490	-	0.929	
JLO-20-AC-48			35.6	38.9	480	-	1.064
JLO-20-AC-49	JLO-GN-3	2	36.8	40.0	465	-	0.933
JLO-20-AC-50	JLO-GN-3	2	36.0	39.3	480	-	1.029
JLO-20-AC-51	JLO-GN-3	2	37.5	40.4	485	-	0.920
JLO-20-AC-52	JLO-GN-3	2	37.0	40.3	465	-	0.918

Table G.11: Arctic Charr Measurements from Fish Captured at Camp Lake by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
JLO-20-AC-53	JLO-GN-3	2	36.5	40.1	455	-	0.936
JLO-20-AC-54	JLO-GN-3	3	42.5	46.2	680	-	0.886
JLO-20-AC-55	JLO-GN-3	3	40.8	44.3	700	-	1.031
JLO-20-AC-56	JLO-GN-3	3	38.2	41.7	515	-	0.924
JLO-20-AC-57	JLO-GN-3	3	37.0	39.8	460	-	0.908
JLO-20-AC-58	JLO-GN-3	3	38.7	42.4	545	_	0.940
JLO-20-AC-59	JLO-GN-3	3	37.3	40.4	510	-	0.983
JLO-20-AC-60	JLO-GN-3	3	34.0	37.1	420	-	1.069
JLO-20-AC-61	JLO-GN-3	3	39.2	42.6	610	_	1.013
JLO-20-AC-62	JLO-GN-3	3	39.5	42.6	540	_	0.876
JLO-20-AC-63	JLO-GN-3	3	38.7	42.8	525	_	0.906
JLO-20-AC-64	JLO-GN-3	3	52.0	59.6	1,040	_	0.740
JLO-20-AC-65	JLO-GN-3	3	38.5	42.0	545	_	0.955
JLO-20-AC-66	JLO-GN-3	3	39.2	43.0	530	_	0.880
JLO-20-AC-67	JLO-GN-3	3	36.6	40.0	460	_	0.938
JLO-20-AC-68	JLO-GN-3	3	38.2	41.4	565	_	1.014
JLO-20-AC-69	JLO-GN-3	3	36.1	39.2	455	_	0.967
JLO-20-AC-70	JLO-GN-3	3	35.8	38.9	450	Jaw broken	0.981
JLO-20-AC-71	JLO-GN-3	3	37.6	40.7	495	-	0.931
JLO-20-AC-71	JLO-GN-3	3	38.9	42.6	590	_	1.002
JLO-20-AC-72	JLO-GN-3	3	34.9	37.9	450	_	1.059
JLO-20-AC-73	JLO-GN-3	3	40.2	43.5	560	_	0.862
JLO-20-AC-74 JLO-20-AC-75	JLO-GN-3	3	48.9	53.2	1.080	-	0.802
JLO-20-AC-76	JLO-GN-3	3	39.0	42.3	530	_	0.893
JLO-20-AC-76 JLO-20-AC-77	JLO-GN-3	3	36.4	39.6	505	_	1.047
JLO-20-AC-77	JLO-GN-3	3	39.7	43.4	595	-	0.951
JLO-20-AC-78 JLO-20-AC-79	JLO-GN-3	3	39.0	42.5	550	-	0.931
JLO-20-AC-79 JLO-20-AC-80	JLO-GN-3 JLO-GN-4	3	38.6	43.5	490	-	0.852
JLO-20-AC-80 JLO-20-AC-81	JLO-GN-4	3	53.3	57.3	1,530	-	1.010
JLO-20-AC-81 JLO-20-AC-82	JLO-GN-4	3	38.0	40.9	505	-	0.920
JLO-20-AC-82 JLO-20-AC-83	JLO-GN-4 JLO-GN-4	3	42.0	45.0	660	-	0.920
JLO-20-AC-84	JLO-GN-4	3	40.0	43.1	610	-	0.953
JLO-20-AC-85	JLO-GN-4 JLO-GN-4	2	37.7	40.9	520	-	0.953
JLO-20-AC-85 JLO-20-AC-86	JLO-GN-4 JLO-GN-4	2	35.1	38.0	420	-	0.970
JLO-20-AC-86 JLO-20-AC-87	JLO-GN-4 JLO-GN-4	2	38.8	43.3	625	-	1.070
JLO-20-AC-87 JLO-20-AC-88	JLO-GN-4 JLO-GN-4	11/2	41.5	45.3	665	-	0.930
JLO-20-AC-89	JLO-GN-4 JLO-GN-4	2	36.5	39.7	490	-	1.008
JLO-20-AC-89 JLO-20-AC-90	JLO-GN-4 JLO-GN-4	11/2	24.1	26.3	130	-	0.929
JLO-20-AC-90 JLO-20-AC-91	JLO-GN-4 JLO-GN-4	11/2	38.4	42.6	500	-	0.929
JLO-20-AC-91 JLO-20-AC-92	JLO-GN-4 JLO-GN-4	11/2	41.4	44.5	680	-	0.883
JLO-20-AC-92 JLO-20-AC-93	JLO-GN-4 JLO-GN-4	1½	38.5	44.5 42.4	550		0.958
		1½			440	-	
JLO-20-AC-94	JLO-GN-4	nple Size (N)	35.7 94	38.6 94	94	-	0.967 94
	San		38.3	41.8	551	-	0.950
		Average					
Overall Catch	Ctanda	Median rd Deviation	38.4 4.4	42.0 4.8	515 188	-	0.946 0.068
Summary			0.45		188	-	0.068
-	Sta	andard Error Minimum	21.9	0.50 23.6	100	-	0.007
		Maximum	53.3	59.6	1,530	-	1.087

Table G.12: Results of Littoral/Profundal Arctic Charr Health Endpoint Statistical Comparisons between 2020 Camp Lake (JLO) and 2020 Reference Lake 3 (REF) Data, and for Camp Lake between 2020 and the Mine Baseline Period (2005 to 2013), Mary River Project 2020 CREMP

			Varia	ihles	Sampl	e Size		ANC	OVA Model S	tatistics					
Comparison							=	Interaction	Parallel	Occupation	Sum	mary Statis	tics ^b	Test	Magnitude of
	Indicator	Endpoint	Boomonee	Coveriate	REF 2020	JLO	Test	Model	Slope Model	Covariate Value for		REF 2020		P-value	Difference (%) ^{c,d}
			Response	Covariate	or JLO Base	2020		Interaction P-value	Covariate P-value	Comparisons ^a	Statistic	or JLO Base	JLO 2020		
	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	69	94	K-S	-	-	-	-	-	-	<0.001	-
Camp Lake	Body Size	Fork Length	Fork Length (cm)	-	69	94	M-W	-	-	-	Median	30.9	38.4	<0.001	24
versus Reference Lake 3,		Body Weight	Body Weight (g)	-	69	94	M-W	-	-	-	Median	225	515	<0.001	129
2020	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	69	94	ANCOVA	<0.001 ^e	<0.001	35.4	Adjusted Mean	352	420	<0.001	19
		Condition	log[Body Weight (g)]	log[Fork Length (cm)]	68 ^f	94	ANCOVA	<0.001 ^g	<0.001	35.4	Adjusted Mean	356	422	<0.001	18
	Survival	Length Frequency Distribution	Fork Length (cm)	-	131	94	K-S	-	-	-	-	-	-	<0.001	-
Camp Lake 2020 versus	Body Size	Fork Length	Fork Length (cm)	-	131	94	M-W	-	-	-	Median	32.3	38.4	<0.001	19
Baseline	Dody Size	Body Weight	Body Weight (g)	-	131	94	M-W	-	-	-	Median	350	515	<0.001	47
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	131	94	ANCOVA	0.163	<0.001	33.6	Adjusted Mean	364	361	0.725	-

Area P-value < 0.1 or Interaction P-value < 0.05

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint)

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log 10-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CFRDs was observed.

e ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9806 and R2 of parallel slope model = 0.9792; a difference < 0.02) following Environment Canada (2012).

^fOne outlier (REF3-20-AC-03 Stdnt resid: -5.42) was removed from the analysis.

⁹ ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9834 and R2 of parallel slope model = 0.982; a difference < 0.02) following Environment Canada (2012).

Table G.13: Arctic Charr Measurements from Fish Captured at Sheardown Lake NW by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
DLO1-20-ACJ-01	4.6	4.8	0.846	-	0.869
DLO1-20-ACJ-02	8.7	9.4	6.086	-	0.924
DLO1-20-ACJ-03	3.6	3.9	0.378	-	0.810
DLO1-20-ACJ-04	9.3	10.1	6.937	-	0.862
DLO1-20-ACJ-05	3.6	3.8	0.404	-	0.866
DLO1-20-ACJ-06	8.0	8.6	5.002	-	0.977
DLO1-20-ACJ-07	11.7	12.6	15.090	-	0.942
DLO1-20-ACJ-08	10.4	11.2	9.541	-	0.848
DLO1-20-ACJ-09	7.5	7.9	4.201	-	0.996
DLO1-20-ACJ-10	3.4	3.6	0.355	-	0.903
DLO1-20-ACJ-11	8.7	9.3	5.961	-	0.905
DLO1-20-ACJ-12	7.8	8.3	3.871	-	0.816
DLO1-20-ACJ-13	7.7	8.2	4.450	-	0.975
DLO1-20-ACJ-14	4.5	4.7	0.872	-	0.957
DLO1-20-ACJ-15	11.6	12.5	12.792	-	0.820
DLO1-20-ACJ-16	3.5	3.6	0.351	-	0.819
DLO1-20-ACJ-17	8.7	9.3	6.246	-	0.949
DLO1-20-ACJ-18	3.5	3.6	0.380	-	0.886
DLO1-20-ACJ-19	7.9	8.5	4.402	-	0.893
DLO1-20-ACJ-20	11.4	12.3	13.568	-	0.916
DLO1-20-ACJ-21	7.9	8.4	4.313	-	0.875
DLO1-20-ACJ-22	8.8	9.3	6.146	-	0.902
DLO1-20-ACJ-23	8.1	8.6	4.077	-	0.767
DLO1-20-ACJ-24	9.7	10.4	7.574	-	0.830
DLO1-20-ACJ-25	9.9	10.7	8.083	_	0.833
DLO1-20-ACJ-26	7.2	7.6	4.003	-	1.072
DLO1-20-ACJ-27	6.2	6.6	2.580	-	1.083
DLO1-20-ACJ-28	9.4	10.0	6.832	-	0.823
DLO1-20-ACJ-29	9.3	9.9	8.018	-	0.997
DLO1-20-ACJ-30	3.9	4.1	0.570	-	0.961
DLO1-20-ACJ-31	4.1	4.3	0.659	-	0.956
DLO1-20-ACJ-32	9.5	10.1	7.012	-	0.818
DLO1-20-ACJ-33	9.0	9.7	7.049	-	0.967
DLO1-20-ACJ-34	7.8	8.4	4.345	-	0.916
DLO1-20-ACJ-35	8.9	9.7	7.711	-	1.094
DLO1-20-ACJ-36	11.2	12.0	13.525	-	0.963
DLO1-20-ACJ-37	10.5	11.2	9.821	-	0.848
DLO1-20-ACJ-38	3.4	3.5	0.297	-	0.756
DLO1-20-ACJ-39	3.9	4.1	0.527	-	0.888

Table G.13: Arctic Charr Measurements from Fish Captured at Sheardown Lake NW by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
DLO1-20-ACJ-40	11.3	12.1	13.146	-	0.911
DLO1-20-ACJ-41	7.5	8.2	3.661	-	0.868
DLO1-20-ACJ-42	8.3	8.8	5.322	-	0.931
DLO1-20-ACJ-43	4.8	5.0	1.181	-	1.068
DLO1-20-ACJ-44	6.5	6.8	2.470	-	0.899
DLO1-20-ACJ-45	4.6	4.8	0.862	-	0.886
DLO1-20-ACJ-46	7.9	8.5	4.548	-	0.922
DLO1-20-ACJ-47	9.0	9.7	6.408	-	0.879
DLO1-20-ACJ-48	9.4	10.0	6.905	-	0.831
DLO1-20-ACJ-49	10.5	11.2	9.789	-	0.846
DLO1-20-ACJ-50	8.2	8.7	5.365	-	0.973
DLO1-20-ACJ-51	7.9	8.4	4.912	1	0.996
DLO1-20-ACJ-52	7.3	7.9	3.852	1	0.990
DLO1-20-ACJ-53	7.0	7.4	2.932	1	0.855
DLO1-20-ACJ-54	9.9	10.7	7.688	2	0.792
DLO1-20-ACJ-55	10.2	11.2	10.960	2	1.033
DLO1-20-ACJ-56	12.9	14.0	18.496	4	0.862
DLO1-20-ACJ-57	11.5	12.3	13.339	4	0.877
DLO1-20-ACJ-58	11.7	12.6	14.005	3	0.874
DLO1-20-ACJ-59	15.5	16.7	35.893	4	0.964
DLO1-20-ACJ-60	18.1	19.5	48.450	7	0.817
DLO1-20-ACJ-61	9.7	10.3	7.779	-	0.852
DLO1-20-ACJ-62	7.7	8.2	4.041	-	0.885
DLO1-20-ACJ-63	7.0	7.5	3.726	-	1.086
DLO1-20-ACJ-64	7.9	8.4	4.725	-	0.958
DLO1-20-ACJ-65	9.7	10.4	8.076	-	0.885
DLO1-20-ACJ-66	10.6	11.4	9.587	-	0.805
DLO1-20-ACJ-67	14.0	15.3	28.142	-	1.026
DLO1-20-ACJ-68	16.5	17.7	38.846	-	0.865
DLO1-20-ACJ-69	9.9	10.6	7.934	-	0.818
DLO1-20-ACJ-70	11.2	12.1	11.861	-	0.844
DLO1-20-ACJ-71	2.7	2.8	0.146	-	0.742
DLO1-20-ACJ-72	7.2	7.7	3.448	-	0.924
DLO1-20-ACJ-73	7.7	8.2	4.062	-	0.890
DLO1-20-ACJ-74	16.7	18.0	40.241	-	0.864
DLO1-20-ACJ-75	10.1	10.9	8.970	-	0.871
DLO1-20-ACJ-76	8.1	8.6	4.241	-	0.798
DLO1-20-ACJ-77	12.8	13.8	17.240	-	0.822
DLO1-20-ACJ-78	9.8	10.5	9.389	-	0.998

Table G.13: Arctic Charr Measurements from Fish Captured at Sheardown Lake NW by Electrofishing, Mary River Project CREMP, August 2020

;	Specimen ID	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
DI	LO1-20-ACJ-79	9.7	10.5	8.959	-	0.982
DI	LO1-20-ACJ-80	4.0	4.2	0.570	-	0.891
DI	LO1-20-ACJ-81	7.3	7.8	3.598	-	0.925
DI	LO1-20-ACJ-82	7.8	8.3	4.148	-	0.874
DI	LO1-20-ACJ-83	14.9	16.3	27.709	-	0.838
DI	LO1-20-ACJ-84	7.8	8.3	3.976	-	0.838
DI	LO1-20-ACJ-85	8.7	9.3	5.436	-	0.826
DI	LO1-20-ACJ-86	9.8	10.4	9.015	-	0.958
DI	LO1-20-ACJ-87	15.8	17.2	35.652	-	0.904
DI	LO1-20-ACJ-88	9.4	10.1	7.207	-	0.868
DI	LO1-20-ACJ-89	12.5	13.6	21.609	-	1.106
DI	LO1-20-ACJ-90	7.8	8.3	4.004	-	0.844
DI	LO1-20-ACJ-91	17.9	19.6	54.993	-	0.959
DI	LO1-20-ACJ-92	7.2	7.6	3.313	-	0.888
DI	LO1-20-ACJ-93	6.3	6.7	2.087	-	0.835
DI	LO1-20-ACJ-94	10.5	11.5	12.259	-	1.059
DI	LO1-20-ACJ-95	9.0	9.6	6.038	-	0.828
DI	LO1-20-ACJ-96	9.8	10.6	8.714	-	0.926
DI	LO1-20-ACJ-97	11.1	12.0	11.346	-	0.830
DI	LO1-20-ACJ-98	8.6	9.3	5.571	-	0.876
	LO1-20-ACJ-99	10.3	11.1	9.832	-	0.900
DL	.O1-20-ACJ-100	9.7	10.3	7.492	-	0.821
	Sample Size (N)	100	100	100	10	100
ch ,	Average	8.9	10	8.910	2.9	0.901
Overall Catch Summary	Median	8.8	9.4	6.116	2.5	0.886
all m	Standard Deviation	3.2	3.5	10.121	1.9	0.079
ver	Standard Error	0.32	0.35	1.012	0.6	0.008
Ó	Minimum	2.7	2.8	0.146	1.0	0.742
	Maximum	18.1	19.6	54.993	7.0	1.106
	proportion of YOY			15%		
Young-of-the-Year Catch Summary	Sample Size (N)	15	15	15	0	15
oung-of-the-Yea Catch Summary	Average	3.9	4.1	0.6	-	0.9
f-th ;urr	Median	3.9	4.1	0.5	-	0.9
g-o h S	Standard Deviation	0.6	0.6	0.3	-	0.1
un atc	Standard Error	0.1	0.2	0.1	-	0.0
၄ ၁	Minimum	2.7	2.8	0.1	0.0	0.7
	Maximum	4.8	5.0	1.2	0.0	1.1

Table G.14: Results of Nearshore Arctic Charr Non-Young-of-the-Year (YOY) Health Endpoint Statistical Comparisons between Sheardown Lake NW (DLO1) and Reference Lake 3 (REF), Mary River Project CREMP, August 2020

			Varia	hles	Samn	le Size		ANC	COVA Model St	atistics					
Group	Indicator	Endnaint	Varia	D103	Oump		Toot	Interaction Model	Parallel Slope Model	Covariate	Summ	ary Statist	ics ^b	Test	Magnitude of
Group	Indicator	Endpoint	Response	Covariate	REF	REF DLO1	Test	Wiodei	Slope Woder	Value for				P-value	Difference (%) ^{c,d}
			Тобронов		KLI			Interaction P-value	Covariate P-value	Comparisons ^a	Statistic	REF	DLO1		(70)
All Fish	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	100	100	K-S	-	-	-	-	-	-	<0.001	-
	Body Size	Fork Length	Fork Length (cm)	-	21	15	tunequal	-	-	-	Mean	3.60	3.87	0.119	-
YOY	Body Cizo	Body Weight	Body Weight (g)	-	21	15	tunequal	-	-	-	Mean	0.388	0.560	0.038	44
101	Energy Storage	Condition	log[Body Weight	log[Fork Length	21	15	ANCOVA	0.534	<0.001	3.69	Adjusted Mean	0.406	0.435	0.030	7.2
	Lifely Clorage	Condition	(g)]	(cm)]	20 ^e	15	ANCOVA	0.217	<0.001	3.69	Adjusted Mean	0.399	0.435	0.002	9.0
	Survival	Length Frequency Distribution	Fork Length (cm)	-	79	85	K-S	-	-	-	-	-	-	<0.001	-
Non-YOY	Body Size	Fork Length	Fork Length (cm)	-	79	85	M-VV	-	-	-	Median	7.70	9.40	<0.001	22
14011-101	body Size	Body Weight	Body Weight (g)	-	79	85	M-VV	-	-	-	Median	3.55	7.05	<0.001	99
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	79	85	ANCOVA	0.400	<0.001	8.62	Adjusted Mean	5.27	5.78	<0.001	9.7

Area P-value < 0.1 or Interaction P-value < 0.05.

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint).

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log ₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CFRDs was observed.

^e One outlier (REF3-20-ACJ-55, Stdnt resid: 4.179) removed from analysis.

Table G.15: Arctic Charr Estimated Sample Sizes to Detect Various Effect Sizes as a Percentage Change in Respective Fish Health Endpoints at Sheardown Lake NW (DLO1) Using 2020 Data Relative to Reference Lake 3 Data (2020) or Sheardown Lake NW Baseline Data (2006 to 2013) with α=β=0.1, Mary River Project 2020 CREMP

			Indicator Endpoint	Varia	bles			201	Minimum Sam	ple Size to	Detect an	Effect Size	e (% Increa	se/Decreas	se Relative	to Refere	nce) with o	x=β=0.1
Comparison	Group	Indicator	Endpoint	D	O a consider to	Test ^a	Sb	COV (%) ^c	log(Response)	5%	10%	20%	25%	30%	33%	40%	50%	100%
				Response	Covariate				Response	-5% ±5%	-9% ±10%	-17% ±20%	-20% ±25%	-23% ±30%	-25% ±33%	-29% ±40%	-33% ±50%	-50% ±100%
Arctic r hing) Lake 3,		Dady Cina	Fork Length	Fork Length (cm)	-	M-W	0.101	29.5	Response	452	120	34	24	18	14	11	9	4
Nearshore Arctic Charr (Electrofishing) versus Ref. Lake 3 2020 Data	Non- YOY	Body Size	Body Weight	Body Weight (g)	-	M-W	0.302	167	Response	4,035	1,058	291	195	142	117	86	61	21
Near (Ele versus		Energy Storage	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0343	1	log(Response)	47	14	6	5	4	4	4	3	3
Arctic r hing) sus		Body Size	Fork Length	Fork Length (cm)	-	M-W	0.164	40.2	Response	1,185	312	82	54	38	31	22	14	5
Nearshore Arctic Charr (Electrofishing) 2020 versus Baseline	Non- YOY	Body Size	Body Weight	Body Weight (g)	-	M-W	0.487	118	Response	10,483	2,748	690	443	307	249	174	112	29
Near (Ele 20 E		Energy Storage	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0675	-	log(Response)	176	48	15	11	8	7	6	5	4
Arctic 2020		Body Size	Fork Length	Fork Length (cm)	-	M-W	0.105	28.6	Response	489	129	36	25	19	16	12	9	4
Littoral/Profundal Arctic Charr (Gill Netting) ersus Ref. Lake 3, 2020	All fish	Body Size	Body Weight	Body Weight (g)	-	M-W	0.319	126	Response	4,497	1,180	323	217	158	131	97	66	24
ral/Profu Cha (Gill Na Is Ref. L	All lish	Energy	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.046	-	log(Response)	83	23	8	6	5	5	4	4	3
Littora (versus		Storage	Condition ^d	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0416	-	log(Response)	68	20	7	6	5	4	4	4	3
Indal arr ig) us		Pody Size	Fork Length	Fork Length (cm)	-	M-W	0.105	25.0	Response	484	125	33	21	16	13	10	7	4
Littoral/Profundal Arctic Charr (Gill Netting) 2020 versus Baseline	All fish	Body Size	Body Weight	Body Weight (g)	-	M-W	0.312	88.6	Response	4,286	1,124	308	207	150	125	92	64	18
Littor An (Gi		Energy Storage	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0537	-	log(Response)	112	31	10	8	6	6	5	4	3

^a Sample size estimates for the M-W test were estimated based for a two-sample t-test using sample sizes multiplied by 0.864. The 0.864 is the lower bound of the asymptotic relative efficiency of the Mann-Whitney test and the two-sample t-test (Hodges and Lehmann 1956). Estimates were generated for the response variable on the untransformed and log 10-transformed scales and the lowest sample size is reported.

^b Pooled standard deviation of the regression residuals

^c Coefficient of variation (pooled standard deviation/reference mean)×100%

^d Two outliers (DLO1-20-AC-67 Stdnt resid: 4.045 and REF3-20-AC-03 Stdnt resid: -4.707) were removed from the analysis.

Table G.16: Gill Netting Catch Records for Sheardown Lake NW, Mary River Project CREMP, August 2020

Gill Net Set ID	Loca (NAD83, UTM		Length (m)	Set Date	Lift Date	Set Lift Fishing Time Time Hours (m		Effort (m*hrs/100 m)	Arctic Charr Catch Per Mesh Size			Total Catch	CPUE	
	Easting	Northing	, ,						,	11/2"	2"	3"		
DLO1-20-GN-1A	559838	791360	91.4	9-Aug-20	9-Aug-20	12:17	13:35	1.30	1.19	0	2	0	2	1.68
DLO1-20-GN-1B	559838	791360	91.4	9-Aug-20	9-Aug-20	13:50	15:05	1.25	1.14	2	0	1	3	2.63
DLO1-20-GN-2A	559731	7913629	91.4	9-Aug-20	9-Aug-20	12:21	13:52	1.52	1.39	2	6	2	10	7.21
DLO1-20-GN-2B	559731	7913629	91.4	9-Aug-20	9-Aug-20	14:20	15:23	1.05	0.960	0	3	2	5	5.21
DLO1-20-GN-2C	559731	7913629	91.4	9-Aug-20	9-Aug-20	15:50	17:23	1.55	1.42	0	4	0	4	2.82
DLO1-20-GN-3A	559686	7913536	91.4	9-Aug-20	9-Aug-20	12:25	14:22	1.95	1.78	0	5	4	9	5.05
DLO1-20-GN-3B	559686	7913536	91.4	9-Aug-20	9-Aug-20	14:47	16:33	1.77	1.61	2	2	2	6	3.72
DLO1-20-GN-4	559794	7913269	91.4	9-Aug-20	9-Aug-20	12:36	14:50	2.23	2.04	0	2	0	2	0.980
DLO1-20-GN-5	559686	7913374	91.4	9-Aug-20	9-Aug-20	15:00	16:54	1.90	1.74	1	2	0	3	1.73
DLO1-20-GN-6	559735	7913671	91.4	9-Aug-20	9-Aug-20	15:21	17:08	1.78	1.63	0	5	1	6	3.68
DLO1-20-GN-7A	559830	7913679	91.4	11-Aug-20	11-Aug-20	9:28	10:33	1.08	0.991	1	2	0	3	3.03
DLO1-20-GN-7B	559830	7913679	91.4	11-Aug-20	11-Aug-20	10:46	12:26	1.67	1.52	2	0	0	2	1.31
DLO1-20-GN-8A	559776	7913622	91.4	11-Aug-20	11-Aug-20	9:37	10:49	1.20	1.10	2	5	6	13	11.9
DLO1-20-GN-8B	559776	7913622	91.4	11-Aug-20	11-Aug-20	11:40	12:57	1.28	1.17	1	1	1	3	2.56
DLO1-20-GN-8C	559776	7913622	91.4	11-Aug-20	11-Aug-20	13:10	14:38	1.47	1.34	0	3	0	3	2.24
DLO1-20-GN-8D	559776	7913622	91.4	11-Aug-20	11-Aug-20	14:50	15:38	0.80	0.731	0	1	0	1	1.37
DLO1-20-GN-9A	559755	7913540	91.4	11-Aug-20	11-Aug-20	9:49	11:40	1.85	1.69	0	3	1	4	2.37
DLO1-20-GN-9B	559755	7913540	91.4	11-Aug-20	11-Aug-20	11:52	13:11	1.32	1.20	0	2	0	2	1.66
DLO1-20-GN-9C	559755	7913540	91.4	11-Aug-20	11-Aug-20	13:20	14:53	1.55	1.42	0	2	1	3	2.12
DLO1-20-GN-10A	559676	7913367	91.4	11-Aug-20	11-Aug-20	9:54	11:55	2.02	1.84	0	3	2	5	2.71
DLO1-20-GN-10B	559676	7913367	91.4	11-Aug-20	11-Aug-20	12:13	13:24	1.18	1.08	4	0	1	5	4.62
DLO1-20-GN-10C	559676	7913367	91.4	11-Aug-20	11-Aug-20	13:42	15:12	1.50	1.37	0	3	1	4	2.92
								Total	30.4	17	56	25	98	3.34

Note: Catch-per-unit-effort (CPUE) represents the number of fish captured per 100 m·hours of net.

Table G.17: Arctic Charr Measurements from Fish Captured at Sheardown Lake NW by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
DLO1-20-AC-01	DLO1-GN-1A	2	31.3	34.2	285	-	0.929
DLO1-20-AC-02	DLO1-GN-1A	2	31.8	34.4	285	Mortality	0.886
DLO1-20-AC-03	DLO1-GN-2A	3	54.3	58.5	1,280	-	0.799
DLO1-20-AC-04	DLO1-GN-2A	3	38.4	41.7	455	Very orange	0.804
DLO1-20-AC-05	DLO1-GN-2A	2	51.6	55.3	1,220	Gill parasites	0.888
DLO1-20-AC-06	DLO1-GN-2A	2	32.7	35.6	320	Mortality - upper caudal deformed	0.915
DLO1-20-AC-07	DLO1-GN-2A	2	36.1	39.0	425	-	0.903
DLO1-20-AC-08	DLO1-GN-2A	2	33.6	36.4	380	Mortality	1.002
DLO1-20-AC-09	DLO1-GN-2A	2	34.5	37.4	360	-	0.877
DLO1-20-AC-10	DLO1-GN-2A	2	56.1	60.1	1,680	-	0.952
DLO1-20-AC-11	DLO1-GN-2A	1½	31.8	34.9	285	-	0.886
DLO1-20-AC-12	DLO1-GN-2A	1½	19.0	20.7	60	-	0.875
DLO1-20-AC-13	DLO1-GN-3A	2	35.6	38.4	440	-	0.975
DLO1-20-AC-14	DLO1-GN-3A	2	49.8	53.4	980	-	0.793
DLO1-20-AC-15	DLO1-GN-3A	2	37.9	40.8	515	-	0.946
DLO1-20-AC-16	DLO1-GN-3A	2	33.5	36.4	330	-	0.878
DLO1-20-AC-17	DLO1-GN-3A	2	51.8	55.8	1,200	-	0.863
DLO1-20-AC-18	DLO1-GN-3A	3	62.0	66.4	1,560	-	0.655
DLO1-20-AC-19	DLO1-GN-3A	3	39.6	43.0	520	-	0.837
DLO1-20-AC-20	DLO1-GN-3A	3	39.5	43.2	510	-	0.828
DLO1-20-AC-21	DLO1-GN-3A	3	36.8	40.3	460	-	0.923
DLO1-20-AC-22	DLO1-GN-4	2	35.0	37.9	320	-	0.746
DLO1-20-AC-23	DLO1-GN-4	2	34.2	37.1	385	Mortality	0.962
DLO1-20-AC-24	DLO1-GN-1B	3	39.3	42.6	520	-	0.857
DLO1-20-AC-25	DLO1-GN-1B	1½	34.2	36.7	430	-	1.075
DLO1-20-AC-26	DLO1-GN-1B	1½	32.2	35.2	320	-	0.958
DLO1-20-AC-27	DLO1-GN-2B	3	52.9	56.3	1,080	-	0.730
DLO1-20-AC-28	DLO1-GN-2B	2	32.1	35.0	290	-	0.877
DLO1-20-AC-29	DLO1-GN-2B	3	39.8	43.0	510	-	0.809
DLO1-20-AC-30	DLO1-GN-2B	2	36.7	39.6	435	-	0.880
DLO1-20-AC-31	DLO1-GN-2B	2	38.6	42.1	555	-	0.965
DLO1-20-AC-32	DLO1-GN-3B	3	40.2	43.4	580	-	0.893
DLO1-20-AC-33	DLO1-GN-3B	3	34.9	37.9	390	-	0.917
DLO1-20-AC-34	DLO1-GN-3B	2	55.9	59.6	1,580	-	0.905
DLO1-20-AC-35	DLO1-GN-3B	2	34.4	37.5	390	Mortality	0.958
DLO1-20-AC-36	DLO1-GN-3B	1½	22.5	24.4	88	-	0.773
DLO1-20-AC-37	DLO1-GN-3B	1½	65.4	69.9	2,380	-	0.851
DLO1-20-AC-38	DLO1-GN-5	2	35.2	38.1	345	Mortality	0.791
DLO1-20-AC-39	DLO1-GN-5	2	34.9	37.6	340	Mortality	0.800
DLO1-20-AC-40	DLO1-GN-5	1½	35.9	38.6	410	-	0.886
DLO1-20-AC-41	DLO1-GN-6	3	32.5	35.6	325	-	0.947
DLO1-20-AC-42	DLO1-GN-6	2	29.5	32.3	235	-	0.915
DLO1-20-AC-43	DLO1-GN-6	2	39.5	42.9	545	-	0.884

Table G.17: Arctic Charr Measurements from Fish Captured at Sheardown Lake NW by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
DLO1-20-AC-44	DLO1-GN-6	2	35.4	38.2	365	Mortality	0.823
DLO1-20-AC-45	DLO1-GN-6	2	35.5	38.6	420	Mortality	0.939
DLO1-20-AC-46	DLO1-GN-6	2	37.4	40.7	430	Mortality	0.822
DLO1-20-AC-47	DLO1-GN-2C	2	49.5	54.0	1,050	-	0.866
DLO1-20-AC-48	DLO1-GN-2C	2	36.5	39.5	430	-	0.884
DLO1-20-AC-49	DLO1-GN-2C	2	27.3	29.7	194	-	0.953
DLO1-20-AC-50	DLO1-GN-2C	2	33.6	36.8	365	-	0.962
DLO1-20-AC-51	DLO1-GN-7A	2	30.2	32.6	250	Top caudal fin damaged	0.908
DLO1-20-AC-52	DLO1-GN-7A	2	31.2	34.3	275	Mortality	0.905
DLO1-20-AC-53	DLO1-GN-7A	1½	23.4	25.5	135	-	1.054
DLO1-20-AC-54	DLO1-GN-8A	3	38.9	42.0	480	-	0.815
DLO1-20-AC-55	DLO1-GN-8A	3	36.1	38.9	490	-	1.042
DLO1-20-AC-56	DLO1-GN-8A	3	31.7	34.6	270	-	0.848
DLO1-20-AC-57	DLO1-GN-8A	3	62.0	66.0	2,010	-	0.843
DLO1-20-AC-58	DLO1-GN-8A	3	41.1	45.7	595	-	0.857
DLO1-20-AC-59	DLO1-GN-8A	3	56.4	60.7	1,545	-	0.861
DLO1-20-AC-60	DLO1-GN-8A	2	51.8	56.0	1,025	Mortality	0.737
DLO1-20-AC-61	DLO1-GN-8A	2	32.1	35.0	305	-	0.922
DLO1-20-AC-62	DLO1-GN-8A	2	40.5	44.4	636	Mortality	0.957
DLO1-20-AC-63	DLO1-GN-8A	2	31.0	34.0	255	-	0.856
DLO1-20-AC-64	DLO1-GN-8A	2	41.8	44.8	550	-	0.753
DLO1-20-AC-65	DLO1-GN-8A	1½	61.0	64.7	2,015	-	0.888
DLO1-20-AC-66	DLO1-GN-8A	1½	32.5	35.5	305	-	0.888
DLO1-20-AC-67	DLO1-GN-9A	2	54.2	68.3	2,010	-	1.262
DLO1-20-AC-68	DLO1-GN-9A	2	34.1	37.0	355	Mortality	0.895
DLO1-20-AC-69	DLO1-GN-9A	2	37.7	41.1	460	Lateral sides scratched	0.858
DLO1-20-AC-70	DLO1-GN-9A	3	40.9	45.1	545	-	0.797
DLO1-20-AC-71	DLO1-GN-10A	3	38.1	41.4	470	-	0.850
DLO1-20-AC-72	DLO1-GN-10A	3	37.9	41.1	460	-	0.845
DLO1-20-AC-73	DLO1-GN-10A	2	34.9	38.2	405	-	0.953
DLO1-20-AC-74	DLO1-GN-10A	2	33.1	35.9	305	Mortality, lateral sides scratched	0.841
DLO1-20-AC-75	DLO1-GN-10A	2	33.3	36.0	350	Mortality	0.948
DLO1-20-AC-76	DLO1-GN-7B	1½	41.5	44.5	695	-	0.972
DLO1-20-AC-77	DLO1-GN-7B	1½	36.5	39.5	400	-	0.823
DLO1-20-AC-78	DLO1-GN-8B	3	62.3	69.9	2,025	-	0.837
DLO1-20-AC-79	DLO1-GN-8B	2	36.2	39.4	430	Mortality	0.906
DLO1-20-AC-80	DLO1-GN-8B	1½	34.2	37.0	390	-	0.975
DLO1-20-AC-81	DLO1-GN-9B	2	39.1	42.1	540	-	0.903
DLO1-20-AC-82	DLO1-GN-9B	2	52.6	56.7	1,250	-	0.859
DLO1-20-AC-83	DLO1-GN-10B	1½	20.1	21.7	60	-	0.739
DLO1-20-AC-84	DLO1-GN-10B	1½	24.5	26.6	145	-	0.986
DLO1-20-AC-85	DLO1-GN-10B	1½	38.7	41.7	495	-	0.854
DLO1-20-AC-86	DLO1-GN-10B	1½	30.6	33.1	270	Mortality	0.942

Table G.17: Arctic Charr Measurements from Fish Captured at Sheardown Lake NW by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
DLO1-20-AC-87	DLO1-GN-10B	3	43.9	47.9	715	-	0.845
DLO1-20-AC-88	DLO1-GN-8C	2	43.4	46.5	715	Lesion on left jaw	0.875
DLO1-20-AC-89	DLO1-GN-8C	2	57.4	60.0	2,106	-	1.114
DLO1-20-AC-90	DLO1-GN-8C	2	37.7	40.8	545	Mortality	1.017
DLO1-20-AC-91	DLO1-GN-9C	3	38.9	42.1	550	-	0.934
DLO1-20-AC-92	DLO1-GN-9C	2	33.6	36.6	340	Mortality	0.896
DLO1-20-AC-93	DLO1-GN-9C	2	53.2	56.7	1,300	-	0.863
DLO1-20-AC-94	DLO1-GN-10C	3	37.5	40.5	490	-	0.929
DLO1-20-AC-95	DLO1-GN-10C	2	38.1	41.0	450	-	0.814
DLO1-20-AC-96	DLO1-GN-10C	2	33.4	36.0	320	-	0.859
DLO1-20-AC-97	DLO1-GN-10C	2	37.3	40.2	505	Mortality	0.973
DLO1-20-AC-98	DLO1-GN-8D	2	34.1	37.1	340	-	0.857
	San	nple Size (N)	98	98	98	-	98
		Average	39.0	42.3	621		0.890
Overall Catch		Median	36.6	39.6	438	-	0.885
Summary	Standa	rd Deviation	9.56	10.4	506	-	0.085
Guillina y	Sta	andard Error	0.965	1.05	51	•	0.009
		Minimum	19.0	20.7	60	-	0.655
		Maximum	65.4	69.9	2,380	-	1.262

Table G.18: Results of Littoral/Profundal Arctic Charr Health Endpoint Statistical Comparisons between 2020 Sheardown Lake NW (DLO1) and 2020 Reference Lake 3 (REF) Data, and for Sheardown Lake NW between 2020 and the Mine Baseline Period (2006 to 2013), Mary River Project 2020 CREMP

			Varia	ahles	Sampl	e Size		ANCO	OVA Model S	Statistics					
					•			Interaction	Parallel Slope		Su	mmary Statisti	cs ^b		Magnitude of
Comparison	Indicator	Endpoint	Decrees	Occupate	REF 2020 or	DLO1	Test	Model	Model	Covariate Value for		DEE 0000	DI 04	Test P-value	Difference (%) ^{c,d}
			Response	Covariate	DLO1 Base	2020	2020	Interaction P-value	Covariate P-value	Comparisons ^a	Statistic	REF 2020 or DLO1 Base	DLO1 2020		(76)
	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	69	98	K-S	-	-	-	-	-	-	<0.001	-
Sheardown Lake NW	Body Size	Fork Length	Fork Length (cm)	-	69	98	M-W	-	-	-	Median	30.9	36.6	<0.001	18
versus Reference	Body Size	Body Weight	Body Weight (g)	-	69	98	M-W	-	-	-	Median	225	438	<0.001	94
Lake 3, 2020	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	69	98	ANCOVA	0.032 ^e	<0.001	35.4	Adjusted Mean	351	391	<0.001	12
	Ellergy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	68 ^f	97 ^g	ANCOVA	0.009 ^h	<0.001	35.3	Adjusted Mean	351	389	<0.001	11
	Survival	Length Frequency Distribution	Fork Length (cm)	-	98	98	K-S	-	-	-	ı	-	-	0.270	-
Sheardown Lake NW 2020	Body Size	Fork Length	Fork Length (cm)	-	98	98	M-W	-	-	-	Median	35.8	36.6	0.174	-
versus Baseline	Body Size	Body Weight	Body Weight (g)	-	98	98	M-W	-	-	-	Median	400	438	0.131	-
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	98	98	ANCOVA	0.818	<0.001	36.7	Adjusted Mean	428	439	0.160	-

Area P-value < 0.1 or Interaction P-value < 0.05

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint)

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log ₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CFRDs was observed.

e ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9829 and R2 of parallel slope model = 0.9824; a difference < 0.02) following Environment Canada (2012).

f One outlier (REF3-20-AC-03 Stdnt resid: -4.707) was removed from the analysis.

⁹ One outlier (DLO1-20-AC-67 Stdnt resid: 4.045) was removed from the analysis.

h ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9829 and R2 of parallel slope model = 0.9824; a difference < 0.02) following Environment Canada (2012).

Table G.19: Arctic Charr Measurements from Fish Captured at Sheardown Lake SE by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	(cm)		Body Weight (g)	Age (years)	Fulton's Condition Factor (K)
DLO2-20-ACJ-01	4.2	(cm) 4.4	0.685	-	0.925
DLO2-20-ACJ-02	4.3	4.5	0.901		1.133
DLO2-20-ACJ-03	7.7	8.2	4.064		0.890
DLO2-20-ACJ-04	4.7	4.9	0.942		0.907
DLO2-20-ACJ-05	7.2	7.6	3.403	-	0.912
DLO2-20-ACJ-06	14.1	15.4	22.644	5	0.808
DLO2-20-ACJ-07	9.1	9.9	7.282	-	0.966
DLO2-20-ACJ-08	8.6	9.2	5.606	_	0.881
DLO2-20-ACJ-09	8.1	8.7	4.791	-	0.902
DLO2-20-ACJ-10	7.9	8.4	4.118	-	0.835
DLO2-20-ACJ-11	9.0	9.7	7.466	_	1.024
DLO2-20-ACJ-12	7.9	8.5	5.209	-	1.057
DLO2-20-ACJ-13	8.2	8.9	5.031	_	0.912
DLO2-20-ACJ-14	8.1	8.7	5.241	-	0.986
DLO2-20-ACJ-15	8.4	8.9	5.496	_	0.927
DLO2-20-ACJ-16	8.0	8.5	4.501	_	0.879
DLO2-20-ACJ-17	8.6	9.2	5.900	-	0.928
DLO2-20-ACJ-18	7.5	7.9	4.037	-	0.957
DLO2-20-ACJ-19	8.2	8.8	5.069	-	0.919
DLO2-20-ACJ-20	4.2	4.3	0.727	-	0.981
DLO2-20-ACJ-21	4.4	4.5	0.826	-	0.970
DLO2-20-ACJ-22	8.0	8.5	4.777	-	0.933
DLO2-20-ACJ-23	4.6	4.8	0.911	-	0.936
DLO2-20-ACJ-24	4.7	4.9	0.953	-	0.918
DLO2-20-ACJ-25	4.1	4.2	0.644	-	0.934
DLO2-20-ACJ-26	8.0	8.6	5.042	-	0.985
DLO2-20-ACJ-27	4.2	4.3	0.712	-	0.961
DLO2-20-ACJ-28	7.2	7.6	3.324	-	0.891
DLO2-20-ACJ-29	8.5	9.1	5.606	-	0.913
DLO2-20-ACJ-30	4.5	4.7	0.845	-	0.927
DLO2-20-ACJ-31	12.6	13.6	16.742	-	0.837
DLO2-20-ACJ-32	4.2	4.3	0.665	=	0.898
DLO2-20-ACJ-33	7.7	8.2	4.755	-	1.042
DLO2-20-ACJ-34	4.2	4.3	0.658	-	0.888
DLO2-20-ACJ-35	10.9	11.8	12.369	-	0.955
DLO2-20-ACJ-36	6.4	6.8	2.462	-	0.939
DLO2-20-ACJ-37	8.3	8.9	5.388	-	0.942
DLO2-20-ACJ-38	7.9	8.4	5.500	-	1.116
DLO2-20-ACJ-39	9.2	9.9	6.549	=	0.841
DLO2-20-ACJ-40	4.1	4.2	0.641	-	0.930
DLO2-20-ACJ-41	7.7	8.2	4.508	-	0.987
DLO2-20-ACJ-42	7.8	8.3	4.182	-	0.881
DLO2-20-ACJ-43	4.5	4.7	0.927	-	1.017
DLO2-20-ACJ-44	8.2	8.7	4.926	1	0.893
DLO2-20-ACJ-45	4.8	5.0	1.029	0	0.930
DLO2-20-ACJ-46	7.9	8.5	4.966	1	1.007
DLO2-20-ACJ-47	8.3	8.8	5.463	1	0.955
DLO2-20-ACJ-48	9.8	10.5	8.005	2	0.851
DLO2-20-ACJ-49	5.1	5.3	1.223	0	0.922
DLO2-20-ACJ-50	6.2	6.5	2.250	1	0.944
DLO2-20-ACJ-51	10.0	10.7	8.649	2	0.865
DLO2-20-ACJ-52 DLO2-20-ACJ-53	14.4	15.6	23.546	4	0.789
DLO2-20-ACJ-53 DLO2-20-ACJ-54	4.3 14.1	4.5 15.3	0.753 24.999	-	0.947 0.892
DLO2-20-ACJ-54 DLO2-20-ACJ-55	14.1	15.3	11.279	-	0.892
DLO2-20-ACJ-56	6.5	6.9	2.760	-	1.005
DLUZ-20-7100-00	0.0	0.5	2.700	-	1.000

Table G.19: Arctic Charr Measurements from Fish Captured at Sheardown Lake SE by Electrofishing, Mary River Project CREMP, August 2020

_			_	_	T	1
		Fork	Total	Body	Age	Fulton's Condition
	Specimen ID	Length	Length	Weight	(years)	Factor
		(cm)	(cm)	(g)		(K)
	LO2-20-ACJ-58	10.3	11.1	9.169	-	0.839
	LO2-20-ACJ-59	8.2	8.7	6.186	-	1.122
	LO2-20-ACJ-60 LO2-20-ACJ-61	9.5 8.8	10.2 9.4	7.100 5.665	-	0.828
	LO2-20-ACJ-61 LO2-20-ACJ-62				-	0.831
	LO2-20-ACJ-62	7.6 8.8	8.1 9.3	4.990 6.787	-	1.137 0.996
	LO2-20-ACJ-64	9.5	10.1	8.550		0.997
	LO2-20-ACJ-65	7.9	8.4	4.357	-	0.997
	LO2-20-ACJ-66	9.2	9.8	7.659	-	0.984
	LO2-20-ACJ-67	13.9	15.0	20.854	-	0.777
	LO2-20-ACJ-68	9.5	10.1	7.368	_	0.859
	LO2-20-ACJ-69	4.9	5.1	1.002	_	0.852
	LO2-20-ACJ-70	7.9	8.4	4.807	-	0.975
	LO2-20-ACJ-71	6.9	7.3	3.089	-	0.940
	LO2-20-ACJ-72	8.9	9.4	6.559	-	0.930
	LO2-20-ACJ-73	7.5	8.0	4.038	-	0.957
	LO2-20-ACJ-74	7.8	8.3	4.184	-	0.882
D	LO2-20-ACJ-75	10.5	11.3	10.180	-	0.879
D	LO2-20-ACJ-76	8.2	8.7	4.756	-	0.863
D	LO2-20-ACJ-77	7.7	8.2	4.234	-	0.927
D	LO2-20-ACJ-78	4.7	4.9	1.114	-	1.073
D	LO2-20-ACJ-79	6.4	6.9	3.014	-	1.150
D	LO2-20-ACJ-80	4.3	4.4	0.650	-	0.818
D	LO2-20-ACJ-81	8.1	8.6	5.512	-	1.037
D	LO2-20-ACJ-82	8.6	9.2	6.263	-	0.985
D	LO2-20-ACJ-83	4.9	5.1	1.111	-	0.944
	LO2-20-ACJ-84	7.0	7.4	3.030	-	0.883
	LO2-20-ACJ-85	10.1	10.9	10.236	-	0.993
	LO2-20-ACJ-86	7.8	8.3	4.538	-	0.956
	LO2-20-ACJ-87	9.2	9.9	7.853	-	1.008
	LO2-20-ACJ-88	8.4	9.0	6.501	-	1.097
	LO2-20-ACJ-89	8.3	8.9	6.113	-	1.069
	LO2-20-ACJ-90	7.7	8.1	3.950	-	0.865
	LO2-20-ACJ-91	7.0	7.5	2.922	=	0.852
	LO2-20-ACJ-92 LO2-20-ACJ-93	4.5	4.7	0.746	-	0.819 0.872
		6.8	7.2	2.742	-	
	LO2-20-ACJ-94 LO2-18-ACJ-95	8.3 8.0	8.8 8.5	5.335 4.659	-	0.933 0.910
	LO2-18-ACJ-95	8.8	9.4	6.169	-	0.910
	LO2-18-ACJ-96	8.6	9.4	6.852	-	1.077
	LO2-18-ACJ-97	4.5	4.7	0.898	-	0.985
	LO2-18-ACJ-99	9.6	10.3	7.566	-	0.855
	LO2-18-ACJ-100	8.4	9.0	5.726	-	0.966
	Sample Size (N)	100	100	100	10	100
ج	Average	7.7	8.2	5.279	1.7	0.938
Overall Catch Summary	Median	7.9	8.5	4.784	1.0	0.930
verall Catc Summary	Standard Deviation	2.3	2.6	4.681	1.6	0.080
era	Standard Error	0.23	0.26	0.468	0.52	0.008
Š	Minimum	4.1	4.2	0.641	0.0	0.777
	Maximum	14.4	15.6	24.999	5.0	1.150
	proportion of YOY			24%		
ear	Sample Size (N)	24	24	24	2	24
	Average	4.5	4.6	0.854	0	0.943
‡ <u>‡</u>	Median	4.5	4.7	0.872	0	0.932
-of Su	Standard Deviation	0.3	0.3	0.168	0	0.072
oung-of-the-Yea Catch Summary	Standard Error	0.1	0.1	0.034	0	0.015
Young-of-the-Year Catch Summary	Minimum	4.1	4.2	0.641	0	0.818
	Maximum	5.1	5.3	1.223	0	1.133
		÷	3.0		ı	

Table G.20: Results of Nearshore Arctic Charr Non-Young-of-the-Year (YOY) Health Endpoint Statistical Comparisons between Sheardown Lake SE (DLO-02) and Reference Lake 3 (REF), Mary River Project CREMP, August 2020

			Vari	ables	Sami	ole Size		ANCO	OVA Model S	tatistics					
			Valle		Odini	JIC OIZC	-	Interaction	Parallel		Sumn	nary Statis	tics ^b	_ ,	Magnitude of
Group	Indicator	Endpoint	Boomenee	Covariata	REF	DLO-02	Test	Model	Slope Model	Covariate Value for				Test P-value	Difference (%) ^{c,d}
			Response	Covariate	KEF	DLO-02		Interaction P-value	Covariate P-value	Comparisons ^a	Statistic	REF	DLO-02		(76)
All Fish	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	100	100	K-S	-	-	-	-	-	-	0.006	-
	Body Size	Fork Length	Fork Length (cm)	-	21	24	tequal	-	-	-	Mean	3.60	4.47	<0.001	24
YOY	Body Size	Body Weight	Body Weight (g)	-	21	24	tequal	-	-	-	Mean	0.388	0.854	<0.001	120
101	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	21	24	ANCOVA	0.339	<0.001	4.03	Adjusted Mean	0.535	0.607	0.01	13
	Lifelgy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	20 ^e	24	ANCOVA	0.437	<0.001	4.04	Adjusted Mean	0.525	0.614	<0.001	17
	Survival	Length Frequency Distribution	Fork Length (cm)	-	79	76	K-S	-	-	-	-	-	-	<0.001	-
Non-YOY	Body Size	Fork Length	Fork Length (cm)	-	79	76	M-W	-	-	-	Median	7.70	8.20	<0.001	6.5
NOII-101	Dody Size	Body Weight	Body Weight (g)	-	79	76	M-W	-	-	-	Median	3.55	5.43	<0.001	53
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	79	76	ANCOVA	<0.001 ^f	<0.001	8.13	Adjusted Mean	4.41	5.03	<0.001	14

Area P-value < 0.1 or Interaction P-value < 0.05

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint)

The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

(where the data sets overlap) for ANCOVAs where a significant interaction was detected.
The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in

covariate values as : [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

The median, mean (geometric mean for log 10-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate

^d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CRFDs was observed.

One outlier (REF3-20-ACJ-55, Stdnt resid: 4.035) removed from analysis.

ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9856 and R2 of parallel slope model = 0.9845; a difference < 0.02) following Environment Canada (2012).

Table G.21: Arctic Charr Estimated Sample Sizes to Detect Various Effect Sizes as a Percentage Change in Respective Fish Health Endpoints at Sheardown Lake SE (DLO-02) Using 2020 Data Relative to Reference Lake 3 Data (2020) or Sheardown Lake SE Baseline Data (2006 to 2013) with α=β=0.1, Mary River Project 2020 CREMP

				Var	iables				Minimum Sam	ple Size to	Detect an	Effect Size	(% Increa	se/Decrea	se Relative	to Refere	nce) with o	x=β=0.1
Comparison	Group	Indicator	Endpoint	Response	Covariate	Test ^a	Sb	COV (%) ^c	log(Response)	5% -5%	10% -9%	20% -17%	25% -20%	30% -23%	33% -25%	40% -29%	50% -33%	100% -50%
				Response	Oovariate				Response	±5%	±10%	±20%	±25%	±30%	±33%	±40%	±50%	±100%
rctic ng) ake 3,		D 1 0:	Fork Length	Fork Length (cm)	-	M-W	0.0879	23.8	Response	343	91	26	18	13	12	9	6	4
Nearshore Arctic Charr (Electrofishing) versus Ref. Lake 3	Non- YOY	Body Size	Body Weight	Body Weight (g)	-	M-W	0.259	110	Response	2,966	778	215	144	105	87	64	44	17
Near (Ele versus 20		Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0342	-	log(Response)	47	14	6	5	4	4	4	3	3
harr		Body Size	Fork Length	Fork Length (cm)	-	M-W	0.0709	24.8	Response	224	60	18	12	10	9	6	5	4
rshore Arctic (Electrofishing 2020 versus Baseline A A Coo	Body Size	Body Weight	Body Weight (g)	-	M-W	0.210	163	Response	1,947	512	142	95	69	58	43	31	12	
	YOY	Energy	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0528	-	log(Response)	108	30	10	7	6	5	5	4	3
		Storage	Condition ^d	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0417	-	log(Response)	69	20	7	6	5	4	4	4	3
Arctic 2020		Dody Size	Fork Length	Fork Length (cm)	-	M-W	0.0828	20.9	Response	305	82	24	16	12	10	7	5	4
Littoral/Profundal Arctic Charr (Gill Netting) versus Ref. Lake 3, 202(Data	All fish	Body Size	Body Weight	Body Weight (g)	-	M-W	0.258	78.8	Response	2,933	770	212	142	104	86	63	44	14
ral/Prof Ch (Gill N Is Ref. I	All listi	Energy	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0478	-	log(Response)	90	25	9	7	5	5	4	4	3
Litto		Storage	Condition ^e	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0453	-	log(Response)	81	23	8	6	5	5	4	4	3
rctic		Rody Sizo	Fork Length	Fork Length (cm)	-	M-W	0.0617	12.4	Response	123	32	10	7	5	5	4	4	3
Littoral/Profundal Arctic Charr (Gill Netting) 2020 versus Baseline IN	Body Size	Body Weight	Body Weight (g)		M-W	0.193	31.9	Response	806	203	53	34	25	20	14	10	4	
	VII II2[]	Energy	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0477	-	log(Response)	89	25	9	7	5	5	4	4	3
Litto 202		Storage	Condition ^f	log[Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0455	-	log(Response)	81	23	8	6	5	5	4	4	3

^a Sample size estimates for the M-W test were estimated based for a two-sample t-test using sample sizes multiplied by 0.864. The 0.864 is the lower bound of the asymptotic relative efficiency of the Mann-Whitney test and the two-sample t-test (Hodges and Lehmann 1956). Estimates were generated for the response variable on the untransformed and log 10-transformed scales and the lowest sample size is reported.

^b Pooled standard deviation of the regression residuals

^c Coefficient of variation (pooled standard deviation/reference mean)×100%

^d One outlier (SLSE-07-1 Stdnt resid:-4.398; SLSE-07-2 Stdnt resid: -4.398) removed from analysis.

^e One outlier (REF3-20-AC-03, Stdnt resid: -4.445) was removed from the analysis.

^f One outlier (SLSE-08-AC-11, Stdnt resid: 4.136) was removed from the analysis.

Table G.22: Gill Netting Catch Records for Sheardown Lake SE, Mary River Project CREMP, August 2020

Gill Net Set ID	Loca (NAD83, UTN		Length	Set Date	Lift Date	Set Time	Lift Time	Fishing Hours	Effort (m*hrs/100 m)		Charr Cat Mesh Size		Total Catch	CPUE
Set ID	Easting	Northing	(m)	Date	Date	Time	Time	Hours	(111-111-5/100 111)	11/2"	2"	3"	Catch	
DLO2-20-GN-1A	560768	7912286	91.4	10-Aug-20	10-Aug-20	9:18	10:22	1.07	0.975	1	0	1	2	2.05
DLO2-20-GN-1B	560768	7912286	91.4	10-Aug-20	10-Aug-20	10:36	12:23	1.78	1.63	2	3	1	6	3.68
DLO2-20-GN-1C	560768	7912286	91.4	10-Aug-20	10-Aug-20	12:45	13:57	1.20	1.10	0	2	2	4	3.65
DLO2-20-GN-1D	560768	7912286	91.4	10-Aug-20	10-Aug-20	14:19	16:04	1.75	1.60	1	1	0	2	1.25
DLO2-20-GN-2A	561155	7911991	91.4	10-Aug-20	10-Aug-20	9:30	10:44	1.23	1.13	1	3	5	9	7.98
DLO2-20-GN-2B	561155	7911991	91.4	10-Aug-20	10-Aug-20	11:26	12:55	1.48	1.36	1	0	2	3	2.21
DLO2-20-GN-2C	561155	7911991	91.4	10-Aug-20	10-Aug-20	13:10	14:54	1.73	1.58	3	6	1	10	6.31
DLO2-20-GN-2D	561155	7911991	91.4	10-Aug-20	10-Aug-20	15:24	16:50	1.43	1.31	2	1	1	4	3.05
DLO2-20-GN-2E	561155	7911991	91.4	10-Aug-20	10-Aug-20	17:07	17:44	0.617	0.564	0	0	0	0	0
DLO2-20-GN-3A	561545	7911868	91.4	10-Aug-20	10-Aug-20	9:41	11:32	1.85	1.69	0	6	3	9	5.32
DLO2-20-GN-3B	561545	7911868	91.4	10-Aug-20	10-Aug-20	12:10	13:34	1.40	1.28	0	1	1	2	1.56
DLO2-20-GN-3C	561545	7911868	91.4	10-Aug-20	10-Aug-20	13:45	15:28	1.72	1.57	0	2	3	5	3.19
DLO2-20-GN-4A	560963	7912119	91.4	10-Aug-20	10-Aug-20	12:51	14:22	1.52	1.39	2	1	4	7	5.05
DLO2-20-GN-4B	560963	7912119	91.4	10-Aug-20	10-Aug-20	14:50	16:15	1.42	1.30	1	0	1	2	1.54
DLO2-20-GN-4C	560963	7912119	91.4	10-Aug-20	10-Aug-20	16:25	17:31	1.10	1.01	0	1	1	2	1.99
DLO2-20-GN-5	561051	7912067	91.4	10-Aug-20	10-Aug-20	17:14	18:05	0.850	0.777	3	0	1	4	5.15
DLO2-20-GN-6	560833	7912227	91.4	11-Aug-20	11-Aug-20	15:58	16:52	0.900	0.823	0	2	1	3	3.65
DLO2-20-GN-7	560987	7912107	91.4	11-Aug-20	11-Aug-20	16:04	17:07	1.05	0.960	0	0	0	0	0
DLO2-20-GN-8	561199	7912003	91.4	11-Aug-20	11-Aug-20	16:09	17:13	1.07	0.975	1	3	7	11	11.3
DLO2-20-GN-9A	561200	7911958	91.4	13-Aug-20	13-Aug-20	10:15	11:05	0.833	0.762	0	1	2	3	3.94
DLO2-20-GN-9B	561200	7911958	91.4	13-Aug-20	13-Aug-20	11:19	12:11	0.867	0.792	1	2	4	7	8.84
DLO2-20-GN-10A	561420	7911938	91.4	13-Aug-20	13-Aug-20	10:22	11:21	0.983	0.899	0	5	1	6	6.68
DLO2-20-GN-10B	561420	7911938	91.4	13-Aug-20	13-Aug-20	11:40	12:34	0.900	0.823	0	1	2	3	3.65
DLO2-20-GN-11A	561479	7911775	91.4	13-Aug-20	13-Aug-20	10:30	11:43	1.22	1.11	0	1	0	1	0.899
DLO2-20-GN-11B	561479	7911775	91.4	13-Aug-20	13-Aug-20	11:50	12:48	0.967	0.884	1	0	1	2	2.26
								Total	28.3	20	42	45	107	3.81

Note: Catch-per-unit-effort (CPUE) represents the number of fish captured per 100 m·hours of net.

Table G.23: Arctic Charr Measurements from Fish Captured at Sheardown Lake SE by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
DLO2-20-AC-01	DLO2-GN-1A	1½	36.7	39.4	410	-	0.829
DLO2-20-AC-02	DLO2-GN-1A	3	39.2	42.4	540	-	0.896
DLO2-20-AC-03	DLO2-GN-2A	3	33.9	36.9	305	DOLLOITI CAUUAI IIIT	0.783
DLO2-20-AC-04	DLO2-GN-2A	3	36.4	39.5	460	- Finnag	0.954
DLO2-20-AC-05	DLO2-GN-2A	3	39.6	43.0	605	-	0.974
DLO2-20-AC-06	DLO2-GN-2A	3	38.0	41.3	495	-	0.902
DLO2-20-AC-07	DLO2-GN-2A	3	39.9	43.2	570	-	0.897
DLO2-20-AC-08	DLO2-GN-2A	2	35.6	38.7	440	-	0.975
DLO2-20-AC-09	DLO2-GN-2A	2	35.4	37.9	425	Mortality	0.958
DLO2-20-AC-10	DLO2-GN-2A	2	39.5	42.8	540	-	0.876
DLO2-20-AC-11	DLO2-GN-2A	11/2	31.3	33.5	296	Mortality	0.965
DLO2-20-AC-12	DLO2-GN-3A	3	38.5	41.6	495	-	0.867
DLO2-20-AC-13	DLO2-GN-3A	3	37.0	40.0	520	-	1.027
DLO2-20-AC-14	DLO2-GN-3A	3	40.8	44.3	590	-	0.869
DLO2-20-AC-15	DLO2-GN-3A	2	33.0	35.5	350	Mortality	0.974
DLO2-20-AC-16	DLO2-GN-3A	2	39.9	42.7	505	-	0.795
DLO2-20-AC-17	DLO2-GN-3A	2	35.2	38.0	425	Mortality	0.974
DLO2-20-AC-18	DLO2-GN-3A	2	34.0	38.0	415	Mortality	1.056
DLO2-20-AC-19	DLO2-GN-3A	2	28.2	30.2	195	-	0.870
DLO2-20-AC-20	DLO2-GN-3A	2	32.2	35.3	305	_	0.914
DLO2-20-AC-21	DLO2-GN-9A	3	42.1	45.9	650	-	0.871
DLO2-20-AC-22	DLO2-GN-9A	3	38.2	41.5	490	_	0.879
DLO2-20-AC-23	DLO2-GN-9A	2	37.5	40.3	450	-	0.853
DLO2-20-AC-24	DLO2-GN-10A	3	36.8	40.0	465	_	0.933
DLO2-20-AC-25	DLO2-GN-10A	2	39.0	42.4	550	-	0.927
DLO2-20-AC-26	DLO2-GN-10A	2	44.4	48.0	660	_	0.754
DLO2-20-AC-27	DLO2-GN-10A	2	38.6	41.9	440	_	0.765
DLO2-20-AC-28	DLO2-GN-10A	2	31.8	34.5	290	-	0.902
DLO2-20-AC-29	DLO2-GN-10A	2	35.6	38.7	460	_	1.020
DLO2-20-AC-30	DLO2-GN-11A	2	37.5	40.5	520	-	0.986
DLO2-20-AC-31	DLO2-GN-9B	3	41.4	44.8	635	_	0.895
DLO2-20-AC-32	DLO2-GN-9B	3	41.6	45.6	720	-	1.000
DLO2-20-AC-33	DLO2-GN-9B	3	35.1	38.1	435	_	1.006
DLO2-20-AC-34	DLO2-GN-9B	3	40.0	44.1	540	-	0.844
DLO2-20-AC-35	DLO2-GN-9B	2	34.6	37.5	420	_	1.014
DLO2-20-AC-36	DLO2-GN-9B	2	34.9	38.2	410	Mortality	0.965
DLO2-20-AC-37	DLO2-GN-9B	11/2	39.6	43.1	555	-	0.894
DLO2-20-AC-38	DLO2-GN-10B	3	38.2	41.3	505	-	0.906
DLO2-20-AC-39	DLO2-GN-10B	3	38.2	41.5	500	-	0.897
DLO2-20-AC-40	DLO2-GN-10B	2	35.5	30.3	415	-	0.928
DLO2-20-AC-41	DLO2-GN-1B	3	37.6	40.9	450	-	0.847
DLO2-20-AC-42	DLO2-GN-1B	2	38.7	42.1	475	-	0.820
DLO2-20-AC-43	DLO2-GN-1B	2	28.3	30.2	225	-	0.993
DLO2-20-AC-44	DLO2-GN-1B	2	36.9	40.0	430	Mortality	0.856
DLO2-20-AC-45	DLO2-GN-1B	11/2	25.1	27.3	105	- 1	0.664
DLO2-20-AC-46	DLO2-GN-1B	11/2	39.0	42.3	520	-	0.877
DLO2-20-AC-47	DLO2-GN-2B	11/2	38.8	42.1	670	-	1.147
DLO2-20-AC-48	DLO2-GN-2B	3	36.7	39.8	465	-	0.941
DLO2-20-AC-49	DLO2-GN-2B	3	37.1	40.1	540	-	1.057
DLO2-20-AC-50	DLO2-GN-3B	3	39.6	38.4	460	-	0.741
DLO2-20-AC-51	DLO2-GN-3B	2	32.5	35.3	302	Mortality	0.880
DLO2-20-AC-52	DLO2-GN-1C	2	35.8	38.7	385	Mortality	0.839
DLO2-20-AC-53	DLO2-GN-1C	2	33.6	36.3	310	Mortality	0.817

Table G.23: Arctic Charr Measurements from Fish Captured at Sheardown Lake SE by Gill Netting, Mary River Project CREMP, August 2020

Specimen ID	Net ID	Net Mesh Size (inches)	Fork Length (cm)	Total Length (cm)	Body Weight (g)	Abnormalities	Fulton's Condition Factor (K)
DLO2-20-AC-54	DLO2-GN-1C	3	37.2	39.9	450	_	0.874
DLO2-20-AC-55	DLO2-GN-1C	3	35.2	37.6	415	-	0.952
DLO2-20-AC-56	DLO2-GN-4A	3	35.5	40.0	495	Lesions on len	1.106
DLO2-20-AC-57	DLO2-GN-4A	3	33.6	36.3	375	- lotoral line	0.989
DLO2-20-AC-58	DLO2-GN-4A	3	27.5	29.6	213	Mortality	1.024
DLO2-20-AC-59	DLO2-GN-4A	3	39.6	43.1	440	Mortality	0.709
DLO2-20-AC-60	DLO2-GN-4A	2	37.7	40.9	510	-	0.952
DLO2-20-AC-61	DLO2-GN-4A	1½	38.5	41.4	685	-	1.200
DLO2-20-AC-62	DLO2-GN-4A	11/2	42.6	45.0	675	-	0.873
DLO2-20-AC-63	DLO2-GN-2C	11/2	38.6	41.5	530	Mortality	0.922
DLO2-20-AC-64	DLO2-GN-2C	11/2	24.9	26.8	135	Mortality	0.874
DLO2-20-AC-65	DLO2-GN-2C	11/2	31.5	34.1	305	Mortality	0.976
DLO2-20-AC-66	DLO2-GN-2C	2	37.9	41.1	500	-	0.918
DLO2-20-AC-67	DLO2-GN-2C	2	34.2	36.9	410	Mortality	1.025
DLO2-20-AC-68	DLO2-GN-2C	2	38.4	41.4	505	Mortality	0.892
DLO2-20-AC-69	DLO2-GN-2C	2	37.1	40.5	510	Mortality	0.999
DLO2-20-AC-70	DLO2-GN-2C	2	38.6	41.9	560	Mortality	0.974
DLO2-20-AC-71	DLO2-GN-2C	2	37.6	40.5	520	Mortality	0.978
DLO2-20-AC-72	DLO2-GN-2C	3	40.0	43.4	685		1.070
DLO2-20-AC-73	DLO2-GN-3C	2	41.7	45.1	615	-	0.848
DLO2-20-AC-74	DLO2-GN-3C	2	27.0	29.6	170	-	0.864
DLO2-20-AC-75	DLO2-GN-3C	3	37.7	40.8	495	-	0.924
DLO2-20-AC-76	DLO2-GN-3C	3	39.9	42.6	660	Mortality	1.039
DLO2-20-AC-77	DLO2-GN-3C	3	37.6	41.5	515	-	0.969
DLO2-20-AC-78	DLO2-GN-1D	11/2	25.5	27.6	145	-	0.874
DLO2-20-AC-79	DLO2-GN-1D	2	38.5	42.6	565	Mortality	0.990
DLO2-20-AC-80	DLO2-GN-4B	11/2	30.7	33.3	223	-	0.771
DLO2-20-AC-81	DLO2-GN-4B	3	38.5	41.6	515	-	0.902
DLO2-20-AC-82	DLO2-GN-2D	1½	32.2	35.1	305	-	0.914
DLO2-20-AC-83	DLO2-GN-2D	11/2	42.2	46.0	695	-	0.925
DLO2-20-AC-84	DLO2-GN-2D	2	38.0	41.4	480	Mortality	0.875
DLO2-20-AC-85	DLO2-GN-2D	3	42.3	44.5	720	-	0.951
DLO2-20-AC-86	DLO2-GN-4C	3	40.0	40.6	565	-	0.883
DLO2-20-AC-87	DLO2-GN-4C	2	36.2	38.9	390	-	0.822
DLO2-20-AC-88	DLO2-GN-5	3	37.4	40.7	675	Mortality	1.290
DLO2-20-AC-89	DLO2-GN-5	1½	26.0	28.2	165	-	0.939
DLO2-20-AC-90	DLO2-GN-5	1½	24.1	26.1	135	-	0.964
DLO2-20-AC-91	DLO2-GN-5	11/2	31.4	34.1	285	-	0.921
DLO2-20-AC-92	DLO2-GN-6	2	27.9	30.1	220	-	1.013
DLO2-20-AC-93	DLO2-GN-6	2	23.9	25.7	120	-	0.879
DLO2-20-AC-94	DLO2-GN-6	3	40.3	43.2	585	-	0.894
DLO2-20-AC-95	DLO2-GN-8	11/2	28.8	31.4	215	-	0.900
DLO2-20-AC-96	DLO2-GN-8	2	32.0	34.5	330	Mortality	1.007
DLO2-20-AC-97	DLO2-GN-8	2	32.6	35.6	320	Mortality	0.924
DLO2-20-AC-98	DLO2-GN-8	2	43.4	46.6	620	-	0.758
DLO2-20-AC-99	DLO2-GN-8	3	34.9	38.0	410	-	0.965
DLO2-20-AC-100	DLO2-GN-8	3	38.6	42.2	510	-	0.887
	Sam	nple Size (N)	100	100	100	-	100
		Average	36.0	38.9	449	-	0.923
Overall Catch		Median	37.3	40.2	465	-	0.916
Summary		rd Deviation	4.6	5.0	149	-	0.096
	Sta	andard Error	0.46	0.50	14.9	-	0.010
		Minimum	23.9	25.7 48.0	105 720	<u>-</u>	0.664
	L	Maximum	44.4	48.0	720	-	1.290

Table G.24: Results of Littoral/Profundal Arctic Charr Health Endpoint Statistical Comparisons between 2020 Sheardown Lake SE (DLO-02) and 2020 Reference Lake 3 (REF) Data, and for Sheardown Lake SE between 2020 and the Mine Baseline Period (2006 to 2013), Mary River Project 2020 CREMP

			Varial	oles	Sample	e Size		ANCO	OVA Model S	tatistics	Sum	mary Statis	tics ^b		
Comparison	Indicator	Endpoint			REF 2020 or	DLO-02	Test	Interaction Model	Parallel Slope Model	Covariate Value for		REF 2020 or	DLO-02	Test P-value	Magnitude of Difference
			Response	Covariate	DLO-02 Baseline	2020		Interaction P-value	Covariate P-value	Comparisons ^a	Statistic	DLO-02 Baseline	2020		(%) ^{c,d}
	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	69	100	K-S	-	-	-	-	-	-	<0.001	-
Sheardown Lake SE	Body Size	Fork Length	Fork Length (cm)	-	69	100	M-W	-	-	-	Median	30.9	37.3	<0.001	21
versus Reference Lake 3, 2020 Energy St	body olze	Body Weight	Body Weight (g)	-	69	100	M-W	-	-	-	Median	225	465	<0.001	107
	Enorgy Storago	Condition	log[Rody Woight (g)]	og[Eark Langth (cm)]	69	100	ANCOVA	0.258	<0.001	34.1	Adjusted Mean	317	365	<0.001	15
	Lifelgy Storage	Condition	log[Body Weight (g)]	ogli ork Lengui (cm)j	68 ^e	100	ANCOVA	0.278	<0.001	34.2	Adjusted Mean	320	366	<0.001	14
	Survival	Length Frequency Distribution	Fork Length (cm)	-	70	100	K-S	-	-	-	-	-	-	0.261	-
Sheardown	Body Size	Fork Length	Fork Length (cm)	-	70	100	M-W	-	-	-	Median	37.4	37.3	0.499	-
Lake SE 2020 versus	body olze	Body Weight	Body Weight (g)	-	70	100	M-W	-	-	-	Median	500	465	0.070	-7.0
Baseline	Energy Storage	Condition	log[Body Weight (g)]	og[Fork Length (cm)]	70	100	ANCOVA	0.434	<0.001	35.9	Adjusted Mean	450	425	0.001	-5.6
	Lifergy Storage	Condition	Toglody Meight (8)]	ogli oik Lengui (ciii)]	69 ^f	100	ANCOVA	0.702	<0.001	35.9	Adjusted Mean	446	424	0.002	-5.0

Area P-value < 0.1 or Interaction P-value < 0.05.

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint).

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log ₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

^d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CRFDs was observed.

^e One outlier (REF3-20-AC-03, Stdnt resid: -4.445) was removed from the analysis.

^f One outlier (SLSE-08-AC-11, Stdnt resid: 4.136) was removed from the analysis.

Table G.25: Arctic Charr Measurements from Fish Captured at Mary Lake by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length (cm)	Total Length (cm)	Total Weight (g)	Age (years)	Fulton's Condition Factor (K)
BLO-20-ACJ-01	8.1	8.6	4.703	-	0.885
BLO-20-ACJ-02	7.8	8.2	3.991	-	0.841
BLO-20-ACJ-03	8.5	9.0	5.246	-	0.854
BLO-20-ACJ-04	8.2	8.8	4.157	-	0.754
BLO-20-ACJ-05	10.7	11.5	10.313	-	0.842
BLO-20-ACJ-06	8.1	8.6	4.265	-	0.803
BLO-20-ACJ-07	8.0	8.6	5.007	-	0.978
BLO-20-ACJ-08	8.2	8.7	4.769	-	0.865
BLO-20-ACJ-09	10.3	11.1	8.912	-	0.816
BLO-20-ACJ-10	6.8	7.2	2.764	-	0.879
BLO-20-ACJ-11	7.3	7.7	3.020	-	0.776
BLO-20-ACJ-12	8.9	9.5	6.097	-	0.865
BLO-20-ACJ-13	6.8	7.2	2.572	-	0.818
BLO-20-ACJ-14	8.9	9.5	7.231	-	1.026
BLO-20-ACJ-15	10.2	11.0	9.647	-	0.909
BLO-20-ACJ-16	8.5	9.1	5.621	-	0.915
BLO-20-ACJ-17	7.3	7.7	3.018	-	0.776
BLO-20-ACJ-18	7.7	8.2	3.623	-	0.794
BLO-20-ACJ-19	8.0	8.6	3.974	-	0.776
BLO-20-ACJ-20	7.9	8.5	4.098	-	0.831
BLO-20-ACJ-21	7.7	8.2	3.944	-	0.864
BLO-20-ACJ-22	7.2	7.7	3.130	-	0.839
BLO-20-ACJ-23	7.1	7.4	2.698	-	0.754
BLO-20-ACJ-24	8.4	8.9	4.702	-	0.793
BLO-20-ACJ-25	8.0	8.6	5.178	-	1.011
BLO-20-ACJ-26	9.8	10.6	8.826	-	0.938
BLO-20-ACJ-27	7.9	8.5	4.180	-	0.848
BLO-20-ACJ-28	6.9	7.3	2.527	-	0.769
BLO-20-ACJ-29	6.7	7.1	2.273	-	0.756
BLO-20-ACJ-30	7.4	7.9	4.242	-	1.047
BLO-20-ACJ-31	8.5	9.1	5.161	-	0.840
BLO-20-ACJ-32	6.3	6.7	1.964	-	0.785
BLO-20-ACJ-33	6.9	7.4	2.621	-	0.798
BLO-20-ACJ-34	8.0	8.5	4.266	-	0.833
BLO-20-ACJ-35	7.6	8.1	3.556	-	0.810
BLO-20-ACJ-36	7.4	7.8	3.378	-	0.834
BLO-20-ACJ-37	8.4	8.9	5.096	-	0.860
BLO-20-ACJ-38	7.7	8.2	3.790	-	0.830
BLO-20-ACJ-39	6.6	7.0	2.347	-	0.816
BLO-20-ACJ-40	7.3	7.8	3.230	-	0.830
BLO-20-ACJ-41	7.2	7.7	3.123	-	0.837
BLO-20-ACJ-42	6.3	6.7	2.091	-	0.836
BLO-20-ACJ-43	6.7	7.2	2.279	-	0.758
BLO-20-ACJ-44	8.5	9.0	5.091	-	0.829
BLO-20-ACJ-45	6.8	7.2	2.745	-	0.873

Table G.25: Arctic Charr Measurements from Fish Captured at Mary Lake by Electrofishing, Mary River Project CREMP, August 2020

Specimen ID	Fork Length (cm)	Total Length (cm)	Total Weight (g)	Age (years)	Fulton's Condition Factor (K)
BLO-20-ACJ-46	7.9	8.4	3.808	-	0.772
BLO-20-ACJ-47	8.2	8.7	4.932	-	0.895
BLO-20-ACJ-48	6.1	6.4	1.737	-	0.765
BLO-20-ACJ-49	6.3	6.7	2.586	-	1.034
BLO-20-ACJ-50	8.2	8.8	4.451	-	0.807
BLO-20-ACJ-51	8.8	9.5	5.333	-	0.783
BLO-20-ACJ-52	6.4	6.7	1.911	-	0.729
BLO-20-ACJ-53	7.4	7.9	3.259	-	0.804
BLO-20-ACJ-54	9.2	9.8	5.922	2	0.761
BLO-20-ACJ-55	7.2	7.6	3.232	1	0.866
BLO-20-ACJ-56	9.8	10.5	8.010	2	0.851
BLO-20-ACJ-57	4.1	4.2	0.503	0	0.730
BLO-20-ACJ-58	7.7	8.1	3.477	1	0.762
BLO-20-ACJ-59	8.5	9.1	5.057	1	0.823
BLO-20-ACJ-60	7.4	7.9	3.588	1	0.885
BLO-20-ACJ-61	6.3	6.7	1.975	1	0.790
BLO-20-ACJ-62	12.8	13.9	23.332	3	1.113
BLO-20-ACJ-63	12.0	13.0	15.624	4	0.904
BLO-20-ACJ-64	8.5	9.1	5.002	-	0.814
BLO-20-ACJ-65	6.6	7.0	2.441	-	0.849
BLO-20-ACJ-66	8.4	9.0	5.394	-	0.910
BLO-20-ACJ-67	9.1	9.8	6.730	-	0.893
BLO-20-ACJ-68	7.0	7.4	2.540	-	0.741
BLO-20-ACJ-69	6.5	6.9	2.852	-	1.039
BLO-20-ACJ-70	10.1	11.0	8.975	-	0.871
BLO-20-ACJ-71	9.3	9.9	6.306	-	0.784
BLO-20-ACJ-72	7.6	8.1	3.335	-	0.760
BLO-20-ACJ-73	10.6	11.4	11.564	-	0.971
BLO-20-ACJ-74	10.6	11.4	9.466	ı	0.795
BLO-20-ACJ-75	7.5	8.0	3.579	-	0.848
BLO-20-ACJ-76	10.4	11.2	9.650	-	0.858
BLO-20-ACJ-77	12.0	13.0	17.642	-	1.021
BLO-20-ACJ-78	5.9	6.7	1.784	-	0.869
BLO-20-ACJ-79	6.3	6.7	1.955	-	0.782
BLO-20-ACJ-80	6.8	7.2	2.455	-	0.781
BLO-20-ACJ-81	7.2	7.7	3.094	-	0.829
BLO-20-ACJ-82	6.9	7.4	2.870	-	0.874
BLO-20-ACJ-83	7.4	7.8	3.481	-	0.859
BLO-20-ACJ-84	6.5	6.9	2.361	-	0.860
BLO-20-ACJ-85	5.8	6.2	1.559	-	0.799
BLO-20-ACJ-86	7.3	7.8	3.379	-	0.869
BLO-20-ACJ-87	11.4	12.4	15.115	-	1.020
BLO-20-ACJ-88	7.1	7.5	2.942	-	0.822
BLO-20-ACJ-89	8.3	8.8	5.198	-	0.909
BLO-20-ACJ-90	8.5	9.1	4.962	-	0.808

Table G.25: Arctic Charr Measurements from Fish Captured at Mary Lake by Electrofishing, Mary River Project CREMP, August 2020

	Specimen ID	Fork Length (cm)	Total Length (cm)	Total Weight (g)	Age (years)	Fulton's Condition Factor (K)
Е	BLO-20-ACJ-91	5.9	6.2	1.765	-	0.859
Е	BLO-20-ACJ-92	8.8	9.4	5.579	-	0.819
Е	BLO-20-ACJ-93	4.1	4.2	0.546	-	0.792
Е	BLO-20-ACJ-94	6.2	6.5	1.882	-	0.790
Е	BLO-20-ACJ-95	6.6	6.9	2.257	-	0.785
Е	BLO-20-ACJ-96	6.2	6.6	2.257	-	0.947
Е	BLO-20-ACJ-97	7.1	7.6	3.349	-	0.936
Е	BLO-20-ACJ-98	7.6	8.1	3.704	-	0.844
Е	BLO-20-ACJ-99	7.0	7.5	3.040	-	0.886
В	LO-20-ACJ-100	7.3	7.8	3.212	-	0.826
	Sample Size (N)	100	100	100	10	100
5	Average	7.8	8.4	4.684	1.6	0.848
Overall Catch Summary	Median	7.6	8.1	3.606	1.0	0.835
] E	Standard Deviation	1.5	1.7	3.521	1.2	0.077
Vera	Standard Error	0.15	0.17	0.352	0.37	0.008
Ó	Minimum	4.1	4.2	0.503	0.0	0.729
	Maximum	12.8	13.9	23.332	4.0	1.113
	proportion of YOY			2%		
ear 7	Sample Size (N)	2	2	2	1	2
9-Ye mai	Average	4.1	4.2	0.525	0	0.761
Ę Ę	Median	4.1	4.2	0.525	0	0.761
Young-of-the-Year Catch Summary	Standard Deviation	0.0	0.0	0.030	0	0.044
unç atc	Standard Error	0.0	0.0	0.022	0	0.031
ې ۶	Minimum	4.1	4.2	0.503	0	0.730
	Maximum	4.1	4.2	0.546	0	0.792

Table G.26: Results of Nearshore Arctic Charr Non-Young-of-the-Year (YOY) Health Endpoint Statistical Comparisons between Mary Lake (BLO) and Reference Lake 3 (REF), Mary River Project CREMP, August 2020

			Varia	phles	Samn	le Size		ANCO	OVA Model S	tatistics					
			Valla		Jamp	le Size	=	Interaction	Parallel		Sum	mary Statis	stics ^b		Magnitude of
Group	Indicator	Endpoint					Test	Model	Slope Model	Covariate Value for				Test P-value	Difference
All Fish			Response	Covariate	REF	BLO		Interaction P-value	Covariate P-value	Comparisons ^a	Statistic	REF	BLO		(%) ^{c,d}
All Fish	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	100	100	K-S	-	-	-	-	-	-	0.001	-
	Survival	Length Frequency Distribution	Fork Length (cm)	-	79	98	K-S	-	-	-	-	-	-	0.761	-
Non-YOY	Body Size	Fork Length	Fork Length (cm)	-	79	98	M-W	-	-	-	Median	7.70	7.65	0.712	-
Non-101	Body Size	Body Weight	Body Weight (g)	-	79	98	M-W	-	-	-	Median	3.55	3.66	0.555	-
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	79	98	ANCOVA	0.005 ^e	<0.001	7.78	Adjusted Mean	3.89	3.99	0.034	2.6

Area P-value < 0.1 or Interaction P-value < 0.05

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint)

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log ₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CRFDs was observed.

^e ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9838 and R2 of parallel slope model = 0.9831; a difference < 0.02) following Environment Canada (2012).

Table G.27: Arctic Charr Estimated Sample Sizes to Detect Various Effect Sizes as a Percentage Change in Respective Fish Health Endpoints at Mary Lake (BLO) Using 2020 Data Relative to Reference Lake 3 Data (2020) or Mary Lake Baseline Data (2006 to 2013) with α=β=0.1, Mary River Project 2020 CREMP

				Varia	ables			201/	Minimum	Sample Siz	ze to Detect	an Effect Si	ize (% Increa	ase/Decreas	e Relative to	Reference	e) with α=β=	0.1
Comparison	Group	Indicator	Endpoint	_		Test ^a	Sp	COV (%)°	log(Response)	5%	10%	20%	25%	30%	33%	40%	50%	100%
				Response	Covariate				Response	-5% ±5%	-9% ±10%	-17% ±20%	-20% ±25%	-23% ±30%	-25% ±33%	-29% ±40%	-33% ±50%	-50% ±100%
rctic ng) ake 3,		D. d. Ci-	Fork Length	Fork Length (cm)	-	M-W	0.0854	21.9	Response	323	86	25	17	12	11	7	6	4
Nearshore Arctic Charr (Electrofishing) versus Ref. Lake 3, 2020 Data	Non- YOY	Body Size	Body Weight	Body Weight (g)	-	M-W	0.265	99.1	Response	3,095	813	224	150	109	91	66	47	17
	Energy Storage	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0346	-	log(Response)	48	14	6	5	4	4	4	3	3	
rctic 2020		Dady Cina	Fork Length	Fork Length (cm)	-	M-W	0.0901	24.7	Response	360	95	27	19	14	12	10	7	4
ndal A rr tting) ake 3,	All fish	Body Size	Body Weight	Body Weight (g)	-	M-W	0.274	115	Response	3,316	871	239	160	116	98	71	50	18
ral/Profu Cha (Gill Na Is Ref. L	All lish	Energy	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0465	-	log(Response)	85	24	8	6	5	5	4	4	3
Litto		Storage	Condition ^d	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0437	-	log(Response)	75	21	8	6	5	5	4	4	3
rctic ine		Body Size	Fork Length	Fork Length (cm)	-	M-W	0.0973	21.5	Response	369	93	25	17	12	10	7	6	4
undal A arr etting) s Basel	All fich		Body Weight	Body Weight (g)	-	M-W	0.28	77.0	Response	3,461	909	249	167	122	101	75	49	13
Littoral/Profundal Arctic Charr (Gill Netting) 2020 versus Baseline	All IISN	Energy	Condition	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0563	-	log(Response)	123	34	11	8	7	6	5	4	3
Litto		Storage	Conditione	log[Adjusted Body Weight (g)]	log[Fork Length (cm)]	ANCOVA	0.0547	-	log(Response)	117	32	10	8	6	6	5	4	3

^a Sample size estimates for the M-W test were estimated based for a two-sample t-test using sample sizes multiplied by 0.864. The 0.864 is the lower bound of the asymptotic relative efficiency of the Mann-Whitney test and the two-sample t-test (Hodges and Lehmann 1956). Estimates were generated for the response variable on the untransformed and log 10-transformed scales and the lowest sample size is reported.

^b Pooled standard deviation of the regression residuals

^c Coefficient of variation (pooled standard deviation/reference mean)×100%

^d One outlier (REF3-20-AC-03, Stdnt resid: -4.722) was removed from the analysis.

^e One outlier (MLS-06-AC-11, Stdnt resid: 4.102) was removed from analysis.

Table G.28: Gill Netting Catch Records for Mary Lake, Mary River Project CREMP, August 2020

Gill Net		ation M Zone 17W)	_	Set	Lift	Set	Lift	Fishing	Effort	Arctic Ch	arr Catch Size	per Mesh	Total	CPUE
Set ID	Easting	Northing	(m)	Date	Date	Time	Time	Hours	(m*hrs/100 m)	1½"	2"	3"	Catch	
BLO-20-GN-1	555150	7905810	91.4	15-Aug-20	15-Aug-20	15:06	15:53	0.783	0.716	1	0	0	1	1.40
BLO-20-GN-2	554964	7906049	91.4	15-Aug-20	15-Aug-20	15:13	16:02	0.817	0.747	1	1	2	4	5.36
BLO-20-GN-3A	554852	7906039	91.4	15-Aug-20	15-Aug-20	15:18	16:25	1.12	1.02	1	3	4	8	7.83
BLO-20-GN-3B	554852	7906039	91.4	15-Aug-20	15-Aug-20	16:55	17:35	0.667	0.610	1	2	0	3	4.92
BLO-20-GN-4	554852	7905955	91.4	15-Aug-20	15-Aug-20	16:25	17:14	0.817	0.746	0	2	4	6	8.04
BLO-20-GN-5	554800	7906071	91.4	15-Aug-20	15-Aug-20	17:00	17:47	0.783	0.716	2	2	1	5	6.98
BLO-20-GN-6A	554536	7906390	91.4	16-Aug-20	16-Aug-20	8:52	9:47	0.917	0.838	2	4	4	10	11.9
BLO-20-GN-6B	554536	7906390	91.4	16-Aug-20	16-Aug-20	10:30	11:48	1.30	1.19	0	3	2	5	4.21
BLO-20-GN-6C	554536	7906390	91.4	16-Aug-20	16-Aug-20	12:23	13:36	1.22	1.11	0	1	1	2	1.80
BLO-20-GN-6D	554536	7906390	91.4	16-Aug-20	16-Aug-20	13:52	15:11	1.32	1.20	0	1	2	3	2.49
BLO-20-GN-7A	554639	7906204	91.4	16-Aug-20	16-Aug-20	9:02	10:32	1.50	1.37	1	2	4	7	5.11
BLO-20-GN-7B	554639	7906204	91.4	16-Aug-20	16-Aug-20	11:10	12:26	1.27	1.16	0	2	1	3	2.59
BLO-20-GN-7C	554639	7906204	91.4	16-Aug-20	16-Aug-20	12:43	13:54	1.18	1.08	0	3	1	4	3.70
BLO-20-GN-7D	554639	7906204	91.4	16-Aug-20	16-Aug-20	14:13	15:33	1.33	1.22	2	0	1	3	2.46
BLO-20-GN-8A	554834	7906040	91.4	16-Aug-20	16-Aug-20	9:11	11:13	2.03	1.86	0	4	4	8	4.30
BLO-20-GN-8B	554834	7906040	91.4	16-Aug-20	16-Aug-20	11:44	12:46	1.03	0.944	1	1	1	3	3.18
BLO-20-GN-8C	554834	7906040	91.4	16-Aug-20	16-Aug-20	13:08	14:18	1.17	1.07	0	2	1	3	2.81
BLO-20-GN-8D	554834	7906040	91.4	16-Aug-20	16-Aug-20	14:33	16:07	1.57	1.43	1	2	2	5	3.49
BLO-20-GN-9A	554926	7906000	91.4	16-Aug-20	16-Aug-20	13:30	14:43	1.22	1.11	1	4	1	6	5.40
BLO-20-GN-9B	554926	7906000	91.4	16-Aug-20	16-Aug-20	15:03	16:27	1.40	1.28	0	2	3	5	3.91
		• 	21.4	14	41	39	94	4.60						

Note: Catch-per-unit-effort (CPUE) represents the number of fish captured per 100 m·hours of net.

Table G.29: Arctic Charr Measurements from Fish Captured at Mary Lake by Gill Netting, Mary River Project CREMP, August 2020

On a simon ID	N-4 ID	Net Mesh	Fork	Total	Body	A la a a l'éé a a	Fulton's	
Specimen ID	Net ID	Size	Length	Length	Weight	Abnormalities	Condition	
51.0.00.10.01	51.0.011.1	(inches)	(cm)	(cm)	(g)		Factor (K)	
BLO-20-AC-01	BLO-GN-1	1½	38.5	41.8	545	-	0.955	
BLO-20-AC-02	BLO-GN-2	3	38.9	42.5	495	-	0.841	
BLO-20-AC-03	BLO-GN-2	3	41.0	45.2	590	-	0.856	
BLO-20-AC-04	BLO-GN-2	2	39.3	42.2	500	-	0.824	
BLO-20-AC-05	BLO-GN-2	1½	36.6	40.2	480	-	0.979	
BLO-20-AC-06	BLO-GN-3A	3	37.0	40.6	435	-	0.859	
BLO-20-AC-07	BLO-GN-3A	3	38.6	41.9	560	-	0.974	
BLO-20-AC-08	BLO-GN-3A	3	38.9	42.2	585	-	0.994	
BLO-20-AC-09	BLO-GN-3A	3	36.7	39.9	465	-	0.941	
BLO-20-AC-10	BLO-GN-3A	2	39.6	43.1	600	-	0.966	
BLO-20-AC-11	BLO-GN-3A	2	38.3	41.4	495	-	0.881	
BLO-20-AC-12	BLO-GN-3A	2	37.9	40.5	520	-	0.955	
BLO-20-AC-13	BLO-GN-3A	1½	41.2	44.8	540	-	0.772	
BLO-20-AC-14	BLO-GN-4	3	36.5	39.9	455	-	0.936	
BLO-20-AC-15	BLO-GN-4	3	40.3	43.5	585	-	0.894	
BLO-20-AC-16	BLO-GN-4	3	37.4	41.0	490	-	0.937	
BLO-20-AC-17	BLO-GN-4	3	38.0	41.0	520	-	0.948	
BLO-20-AC-18	BLO-GN-4	2	37.9	40.8	460	Mortality	0.845	
BLO-20-AC-19	BLO-GN-4	2	33.2	35.3	370	-	1.011	
BLO-20-AC-20	BLO-GN-3B	2	45.1	48.1	920	-	1.003	
BLO-20-AC-21	BLO-GN-3B	2	33.6	36.5	400	-	1.054	
BLO-20-AC-22	BLO-GN-3B	1½	33.8	36.5	330	-	0.855	
BLO-20-AC-23	BLO-GN-5	3	41.9	45.3	550	-	0.748	
BLO-20-AC-24	BLO-GN-5	2	39.2	43.1	450	-	0.747	
BLO-20-AC-25	BLO-GN-5	2	40.5	43.5	605	-	0.911	
BLO-20-AC-26	BLO-GN-5	1½	23.8	25.9	115	Mortality	0.853	
BLO-20-AC-27	BLO-GN-5	1½	31.9	34.8	295	-	0.909	
BLO-20-AC-28	BLO-GN-6A	1½	18.1	19.5	60	-	1.012	
BLO-20-AC-29	BLO-GN-6A	1½	31.3	34.0	255	Mortality	0.832	
BLO-20-AC-30	BLO-GN-6A	2	39.6	43.1	595	•	0.958	
BLO-20-AC-31	BLO-GN-6A	2	37.6	41.0	565	Mortality	1.063	
BLO-20-AC-32	BLO-GN-6A	2	36.4	39.2	460	Mortality	0.954	
BLO-20-AC-33	BLO-GN-6A	3	38.1	42.0	510	-	0.922	
BLO-20-AC-34	BLO-GN-6A	2	36.9	40.1	420	-	0.922	
BLO-20-AC-35	BLO-GN-6A	3	36.1	39.3	400	-	0.850	
BLO-20-AC-36	BLO-GN-6A	3	36.5	40.1	560	-	1.152	
BLO-20-AC-37	BLO-GN-6A	3	37.0	39.8	480	-	0.948	
BLO-20-AC-38	BLO-GN-7A	3	38.9	42.3	530	-	0.900	
BLO-20-AC-39	BLO-GN-7A	3	36.0	39.0	450	-	0.965	
BLO-20-AC-40	BLO-GN-7A	3	39.5	43.4	490	-	0.795	
BLO-20-AC-41	BLO-GN-7A	3	38.8	41.7	510	-	0.873	
BLO-20-AC-42	BLO-GN-7A	2	38.9	42.2	460	-	0.781	
BLO-20-AC-43	BLO-GN-7A	2	65.3	68.8	2,525	-	0.907	
BLO-20-AC-44	BLO-GN-7A	1½	40.6	44.2	580	-	0.867	
BLO-20-AC-45	BLO-GN-8A	3			520	-	0.819	
BLO-20-AC-46	BLO-GN-8A	3			-	0.948		
BLO-20-AC-47	BLO-GN-8A	3	64.0	67.5	2,150	Gill parasites		
BLO-20-AC-48	BLO-GN-8A	3	38.5	41.6	510	-	0.820 0.894	
BLO-20-AC-49	BLO-GN-8A	2	38.8	41.8	495	-	0.847	

Table G.29: Arctic Charr Measurements from Fish Captured at Mary Lake by Gill Netting, Mary River Project CREMP, August 2020

		Net Mesh	Fork	Total	Body		Fulton's	
Specimen ID	Net ID	Size	Length	Length	Weight	Abnormalities	Condition Factor (K)	
Specimenio	Met ID	(inches)	(cm)	(cm)	(g)	Abiloillialities		
BLO-20-AC-50	BLO-GN-8A 2		31.9	34.5	295	Mortality	0.909	
BLO-20-AC-50 BLO-20-AC-51		O-GN-8A 2		37.7	420	•	0.909	
		2	35.2	44.2		Mortality		
BLO-20-AC-52	BLO-GN-8A	3	40.5 36.7		580 460	Mortality	0.873	
BLO-20-AC-53	BLO-GN-6B	3		39.0		-	0.931	
BLO-20-AC-54	BLO-GN-6B		36.9	39.9	490	- Mantality	0.975	
BLO-20-AC-55	BLO-GN-6B	2	35.5	38.4	430	Mortality	0.961	
BLO-20-AC-56	BLO-GN-6B	2	34.9	37.7	405	Mortality	0.953	
BLO-20-AC-57	BLO-GN-6B	3	36.1	39.0	415	Mortality	0.882 0.909	
BLO-20-AC-58	BLO-GN-7B	2	37.9	41.1	495 370	-		
BLO-20-AC-59	BLO-GN-7B		33.4	36.1		-	0.993	
BLO-20-AC-60	BLO-GN-7B	2	35.6	38.4	445	-	0.986	
BLO-20-AC-61	BLO-GN-8B	3	37.9	41.4	530	-	0.974	
BLO-20-AC-62	BLO-GN-8B	2	32.9	35.7	345	-	0.969	
BLO-20-AC-63	BLO-GN-8B	1½	46.8	49.9	910	-	0.888	
BLO-20-AC-64	BLO-GN-6C	3	37.4	40.4	515	-	0.984	
BLO-20-AC-65	BLO-GN-6C	2	37.1	39.7	420	Mortality	0.822	
BLO-20-AC-66	BLO-GN-7C	3	38.6	41.4	495	-	0.861	
BLO-20-AC-67	BLO-GN-7C	2	37.9	41.0	440	-	0.808	
BLO-20-AC-68	BLO-GN-7C	2	28.4	31.0	212	-	0.926	
BLO-20-AC-69	BLO-GN-7C	2	32.5	35.7	320	Mortality	0.932	
BLO-20-AC-70	BLO-GN-8C	3	67.5	71.6	2,550	-	0.829	
BLO-20-AC-71	BLO-GN-8C	2	38.2	41.5	360	-	0.646	
BLO-20-AC-72	BLO-GN-8C	2	64.5	69.3	2,325	-	0.866	
BLO-20-AC-73	BLO-GN-9A	2	32.8	35.4	355	-	1.006	
BLO-20-AC-74	BLO-GN-9A	3	39.9	43.1	485	-	0.764	
BLO-20-AC-75	BLO-GN-9A	2	34.0	36.9	380	Mortality	0.967	
BLO-20-AC-76	BLO-GN-9A	2	39.9	42.9	565	-	0.889	
BLO-20-AC-77	BLO-GN-9A	2	37.7	40.6	510	-	0.952	
BLO-20-AC-78	BLO-GN-9A 1½		34.1	36.8	373	-	0.941	
BLO-20-AC-79	BLO-GN-6D	3	40.9	44.0	573	-	0.837	
BLO-20-AC-80	BLO-GN-6D	3	39.6	43.1	555	-	0.894	
BLO-20-AC-81	BLO-GN-6D 2		61.1	65.4	2,100	Mortality	0.921	
BLO-20-AC-82	BLO-GN-7D	3	37.0	39.9	505	-	0.997	
BLO-20-AC-83	BLO-GN-7D	1½	33.4	36.3	365	Mortality	0.980	
BLO-20-AC-84	BLO-GN-7D	1½	33.6	35.9	475	-	1.252	
BLO-20-AC-85	BLO-GN-8D	3	38.4	41.5	560	-	0.989	
BLO-20-AC-86	BLO-GN-8D	3	39.1	42.2	520	-	0.870	
BLO-20-AC-87	BLO-GN-8D	2	36.7	39.9	485	Mortality	0.981	
BLO-20-AC-88	BLO-GN-8D	2	35.9	38.8	360	-	0.778	
BLO-20-AC-89	BLO-GN-8D	1½	36.7	39.3	455	-	0.920	
BLO-20-AC-90	BLO-GN-9B	3	38.3	41.1	540	_	0.961	
BLO-20-AC-91	BLO-GN-9B	3	39.9	43.4	495	-	0.779	
BLO-20-AC-92	BLO-GN-9B	3	37.1	40.1	480	_	0.940	
BLO-20-AC-93	BLO-GN-9B	2	40.0	43.1	595	_	0.930	
BLO-20-AC-94	BLO-GN-9B	2	36.2	38.6	425	Mortality	0.896	
	Sample Size (N) Average		94	94	94	-	94	
			38.5	41.6	572	_	0.911	
		37.9	41.0	490	_	0.921		
Overall Catch	Standa	7.2	7.6	437	-	0.087		
Summary	Standa	0.75	0.78	457	-	0.009		
	Ote	18.1	19.5	60	-	0.646		
		67.5	71.6	2,550	-	1.252		
		Maximum	01.0	11.0	2,000	-	1.202	

Table G.30: Results of Littoral/Profundal Arctic Charr Health Endpoint Statistical Comparisons between 2020 Mary Lake (BLO) and 2020 Reference Lake 3 (REF) Data, and for Camp Lake between 2020 and the Mine Baseline Period (2005 to 2013), Mary River Project 2020 CREMP

Comparison	Indicator	Endpoint	Variables		Sample Size			ANCOVA Model Statistics		tatistics					
			Valiables					Interaction	Parallel Slope	Covariate	Summary Statistics ^b		Test	Magnitude of	
			Response	Covariate	REF 2020 or BLO Base	BLO 2020	Test	Model Interaction P-value	Model Covariate P-value	Value for Comparisons ^a	Statistic	REF 2020 or BLO Base	BLO 2020	P-value	Difference (%) ^{c,d}
Camp Lake versus Reference Lake 3, 2020	Recruitment/ Survival	Length Frequency Distribution	Fork Length (cm)	-	69	94	K-S	-	-	-	-	-	-	<0.001	-
	Body Size	Fork Length	Fork Length (cm)	-	69	94	M-W	-	-	-	Median	30.9	37.9	<0.001	23
		Body Weight	Body Weight (g)	-	69	94	M-W	-	-	-	Median	225	490	<0.001	118
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	69	94	ANCOVA	0.004 ^e	<0.001	35.3	Adjusted Mean	349	399	<0.001	14
		Condition	log[Body Weight (g)]	log[Fork Length (cm)]	68	94	ANCOVA	0.003 ^g	<0.001	35.3	Adjusted Mean	352	401	<0.001	14
Camp Lake 2020 versus Baseline	Survival	Length Frequency Distribution	Fork Length (cm)	-	183	94	K-S	-	-	-	-	-	-	0.008	-
	Body Size	Fork Length	Fork Length (cm)	-	183	94	M-W	-	-	-	Median	38.4	37.9	0.492	-
		Body Weight	Body Weight (g)	-	183	94	M-W	-	-	-	Median	500	490	0.606	-
	Energy Storage	Condition	log[Body Weight (g)]	log[Fork Length (cm)]	183	94	ANCOVA	0.613	<0.001	36.5	Adjusted Mean	440	445	0.471	-
		Condition	log[Body Weight (g)]	log[Fork Length (cm)]	182 ^h	94	ANCOVA	0.784	<0.001	36.6	Adjusted Mean	441	447	0.389	-

Area P-value < 0.1 or Interaction P-value < 0.05

Absolute Magnitude of Difference ≥ 10% for Condition (EEM effect endpoint)

^a The mean value of the covariate (that corresponds to the adjusted means for the response variable) for the parallel slope ANCOVA model or the minimum and maximum values of the overlap in covariate values for the interaction ANCOVA model.

^b The median, mean (geometric mean for log ₁₀-transformed variables), and adjusted mean are reported for Mann-Whitney, t-test and ANCOVA, respectively, and the predicted mean values from the regression line equations for minimum and maximum values of the covariate (where the data sets overlap) for ANCOVAs where a significant interaction was detected.

^c The magnitude of difference calculated as: [(exposed area mean - reference area mean) / reference area mean] x 100. When there is a significant interaction in the ANCOVA, the magnitude of difference is calculated at the minimum and maximum values of overlap in covariate values as: [(exposed area predicted mean - reference area predicted mean) / reference area predicted mean] x 100.

d Calculated as the maximum difference in the cumulative relative frequency distributions (CRFD) between areas. A negative difference implies that the exposed area has more fish less than the length where the maximum difference in CRFDs was observed. A positive difference implies that the exposed area has fewer fish less than the length where the maximum difference in CRFDs was observed.

^e ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9783 and R2 of parallel slope model = 0.9772; a difference < 0.02) following Environment Canada (2012).

^f One outlier (REF3-20-AC-03, Stdnt resid: -4.722) was removed from the analysis.

g ANCOVA proceeded under the assumption that the slopes are practically parallel (R2 of interaction model = 0.9807 and R2 of parallel slope model = 0.9796; a difference < 0.02) following Environment Canada (2012).

^h One outlier (MLS-06-AC-11, Stdnt resid: 4.102) was removed from analysis.